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ABSTRACT

Classical reinforcement learning (RL) aims to optimize the expected cumulative rewards. In this work, we
consider the RL setting where the goal is to optimize the quantile of the cumulative rewards. We parameterize
the policy controlling actions by neural networks and propose a novel policy gradient algorithm called
Quantile-Based Policy Optimization (QPO) and its variant Quantile-Based Proximal Policy Optimization
(QPPO) to solve deep RL problems with quantile objectives. QPO uses two coupled iterations running at
different time scales for simultaneously estimating quantiles and policy parameters. Our numerical results
demonstrate that the proposed algorithms outperform the existing baseline algorithms under the quantile
criterion.

1 INTRODUCTION

In recent years, deep reinforcement learning (RL) has made significant achievements in games (Mnih et al.
2015; Silver et al. 2016), robotic control (Levine et al. 2016), recommendation (Zheng et al. 2018) and
other fields. RL formulates a complex sequential decision-making task as a Markov Decision Process
(MDP) and attempts to find an optimal policy by interacting with the environment. In the classical RL
framework, the goal is to optimize an expected cumulative reward. However, expectation only reflects the
average value of a distribution, but not the tail behavior. The tail of a distribution may capture catastrophic
outcomes. For example, the joint defaults of many subprime mortgages led to the 2008 financial crisis,
and in the post-crisis era, the Basel accord requires major financial institutes to maintain a minimal capital
level for sustaining the loss under extreme market circumstances. In financial management, quantiles, also
known as value-at-risk (VaR), can be directly translated into the minimal capital requirement.

Risk measures have been introduced into RL either in the forms of constraints or as the objectives,
which are referred as risk-sensitivity RL in the literature. The tail behavior of the distribution can be better
captured by risk measures, such as VaR and conditional value-at-risk (CVaR). With risk measures as the
objective function of RL, a well-trained agent can be expected to perform more robustly under extreme
events.

In this paper, we consider an RL setting where the goal is to optimize the quantiles of the cumulative
rewards. In financial investment, investors may want to obtain the highest return subject to an acceptable
level of risk; in system science, engineers may want to improve the system’s most conservative output under
extreme environment conditions. In Figure.1, although the mean values of the two distributions are the
same, the 10%-quantile of distribution 1 is significantly larger than that of distribution 2. If the returns of
two portfolios follow distributions 1 and 2, then it requires more capital to avoid bankruptcy in the presence
of 90% possible returns for the second portfolio. For some distributions, e.g. the Cauchy distribution, the
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Figure 1: Probability density plots of two normal distributions N (0,1) and N (0,2). The right boundaries
of shaded areas represent the value of 10%-quantile.

expectation may not exist so that it cannot be used as a performance measure in this situation. In contrast,
quantiles are always well-defined.

We parameterize the policy controlling actions by neural networks. For RL learning problems where
the dimension of the policy parameter is typically very high, gradient-based optimization provides a feasible
approach. The gradient of quantiles can be expressed as a function of gradients of the distribution and
quantile value. However, unlike an expectation whose gradient can be estimated in a single simulation
trajectory using techniques such as the likelihood ratio method, the gradient estimation for quantiles is
much more complicated. We propose a novel policy gradient algorithm named Quantile-Based Policy
Optimization (QPO) and its variant Quantile-Based Proximal Policy Optimization (QPPO) to solve deep
RL problems with quantile objectives. QPO uses two coupled iterations running at different time scales for
simultaneously estimating quantiles and policy parameters. Our proposed algorithms have been applied to
financial investment examples, and numerical results demonstrate that the proposed algorithms outperform
the existing baseline algorithms under the quantile criterion.

2 RELATED WORK

2.1 Mean-based RL

In RL with a mean-based criterion, there are two primary categories of methods. The first category is
value-based method, which learns a Q function and selects the action with the best value. In deep RL,
pioneer work includes Deep Q-learning (DQN) and its variants (Mnih et al. 2015; Hessel et al. 2018).
The second category is based on policy optimization, where the policy is parameterized by certain basis
functions and optimized by stochastic gradient ascent. REINFORCE is an early policy gradient algorithm
(Williams 1992) . Trust Region Policy Optimization (TRPO) introduces the importance sampling technique
into RL to improve data utilization efficiency (Schulman et al. 2015). By simplifying TRPO, Proximal
Policy Optimization (PPO) achieves a significant improvement through optimizing a clipped surrogate
objective and has become a commonly used baseline algorithm at present (Schulman et al. 2017). There
are also some algorithms that combine the two categories, such as Deep Deterministic Policy Gradient
(DDPG) and Soft Actor-Critic (SAC) (Lillicrap et al. 2015; Haarnoja et al. 2018).

2.2 Gradient Estimation of Risk Measure

Gradient estimation of risk measures has been studied actively. Classic gradient estimation problem considers
expectation (Fu 2006), whereas estimating gradients of quantile and CVaR is much more complicated. To
address the difficulties, different methods, such as infinite perturbation analysis (Hong 2009; Jiang and Fu
2015), kernel estimation (Liu and Hong 2009; Hong and Liu 2009), and measure-valued differentiation
(Heidergott and Volk-Makarewicz 2016), have been developed. Recently, Glynn et al. (2021) use generalized
likelihood ratio estimators to estimate the gradient for a rather general distortion risk measure. However,
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these methods would require analytic forms of transition probabilities or rewards in the MDP, which
is typically not satisfied in the RL setting. A well-known black-box gradient estimation approach is
Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall 1992). However, tuning parameters
such as the perturbation size and step size in optimization require care and it is typically hard to apply
SPSA to high-dimensional optimization such as our deep RL problems where the policy is parameterized
by neural networks.

2.3 Risk-sensitive RL

Risk-sensitive RL has recently gained steam. One can use a risk measure as the objective function of RL.
For example, expected exponential utility is used as the objective in Borkar (2001); Petrik and Subramanian
(2012) and Tamar et al. (2014) have studied CVaR-based objectives; Prashanth and Ghavamzadeh (2013)
aim to optimize several variance-related risk measures by SPSA and a smooth function approach; Prashanth
et al. (2016) apply SPSA to optimize an objective function in the cumulative prospect theory.

One can also impose a risk measure as the constraint of an RL problem. For example, dynamic and
time-consistent risk constraints are considered in Chow and Pavone (2013); Borkar and Jain (2014) use
CVaR as the constraint; Chow et al. (2017) develop policy gradient and actor-critic algorithms under VaR
and CVaR constraints. A Lagrangian approach has been used to solve the RL problem subject to some
risk measures (Bertsekas 1997). Tuning a multi-scale iterative algorithm to update Lagrange multipliers
requires care.

To the best of our knowledge, our work is the first to propose a two-time-scale iterative algorithm to
optimize quantiles, which can be applied to large-scale optimization for policy parameterized by neural
networks in deep RL problems.

The rest of the paper is organized as follows: In Section 3, we describe the MDP settings, the classical
framework of policy gradient algorithms, and our quantile optimization framework for RL. Section 4
introduces our new algorithms called QPO and its variant QPPO. In Section 5, we present theoretical results
for QPO. Numerical results are presented in Section 6. We conclude the paper and discuss future direction
in Section 7.

3 PROBLEM FORMULATION & PRELIMINARIES

3.1 Markov Decision Process

A Markov Decision Process (MDP) can be represented as a 5-tuple (S ,A , p,u,η), where S and A
are state and action spaces, respectively; p(s′|s,a) is the transition probability; u(s′,a,s) is the reward
function; η ∈ (0,1) is the reward discount factor. One may expect to optimize a parameterized policy
function π(a|s;θ), which is a distribution of the action conditional on the state, through the interaction
with the MDP system. We denote the state and action at time t ∈ {0,1,2, · · · ,T} by st and at , where
st ∼ p(·|st−1,at−1) and at ∼ π(·|st ;θ). Then the trajectory generated by the MDP can be defined as
τ = {s0,a0,s1, · · · ,aT−1,sT} ∼Π(·;θ). Here we have Π(τ;θ) = p(s0)∏

T−1
t=0 π(at |st ;θ)p(st+1|st ,at), where

s0 is the initial state. The total reward of the trajectory is denoted as R = ∑
T−1
t=0 η tu(st+1,at ,st) = U(τ),

which follows the distribution FR(·;θ). In an episode, a complete simulation trajectory of the action and
state is generated by the interaction between the agent and environment.

3.2 Mean-based Criterion for RL

In the classical setting, the objective function of RL algorithms is to maximize the expected cumulative
reward:

max
θ∈Θ

ER∼FR(·;θ)[R] = max
θ∈Θ

Eτ∼π(·;θ)[U(τ)]. (1)
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Policy gradient methods, an important class of RL algorithms, solve problem (1) by the stochastic gradient
ascent. The key for implementing policy gradient methods is to estimate gradient, and the likelihood ratio
method is a popular stochastic gradient estimation technique. Specifically, the gradient can be expressed
as below:

∇θE[U(τ)] = ∇θ

∫
Ωτ

U(τ)Π(τ;θ)dτ =
∫

Ωτ

U(τ)
∇θ Π(τ;θ)

Π(τ;θ)
Π(τ;θ)dτ

= E
[
U(τ)

T−1

∑
t=0

∇θ logπ(at |st ;θ)

]
, (2)

where the interchange of the gradient and integral in the second equality can be justified by the dominated
convergence theorem. The term U(τ)∑

T−1
t=0 ∇θ logπ(at |st ;θ) inside the expectation on the right hand side

of (2) is an unbiased stochastic gradient estimation of ∇θE[U(τ)].

3.3 Quantile-based Criterion for RL

For a given probability level α ∈ (0,1), the α-quantile for distribution FR(·;θ) is defined as

q(α;θ) = arg inf{r : P(R(θ)≤ r) = FR(r;θ)≥ α}.

We assume that FR(r;θ) is continuously differentiable on R, i.e. FR(r;θ) ∈C1(R), so that the α-quantile
can be written as an inverse of the distribution function q(α;θ) = F−1

R (α;θ). Our goal is to maximize the
α-quantile of the distribution on a compact convex set Θ⊂ Rm, i.e.,

max
θ∈Θ

q(α;θ) = max
θ∈Θ

F−1
R (α;θ). (3)

To solve problem (3), we consider a stochastic gradient ascent method. By definition, FR(q(α;θ);θ) = α .
Taking gradients on both sides with respect to θ , we have

∇θ q(α;θ) =−∇θ FR(r;θ)

fR(r;θ)

∣∣∣∣
r=q(α;θ)

. (4)

There are two difficulties in obtaining a single-run unbiased stochastic gradient estimator:

• The right hand side of equality (4) contains the α-quantile itself. The quantile would change in
the sequential update of θ .

• The density function fR(·;θ) of the cumulative reward usually does not have an analytical form.
We have fR(r;θ) = ∂

∂ r FR(r;θ) = ∂

∂ rE[1{R≤ r}], but the gradient and expectation operators cannot
be interchanged since 1{R≤ r} is discontinuous.

4 QUANTILE-BASED POLICY OPTIMIZATION

In this section, we propose a new on-policy RL algorithm, named Quantile-based Policy Optimization
(QPO) algorithm and its variant Quantile-based Proximal Policy Optimization (QPPO) algorithm to solve
the MDP with quantile criterion (3). The computation complexity of our algorithms will also be discussed.

4.1 Quantile Optimization of REINFORCE Style

To optimize quantiles, Hu et al. (2021) proposed a three-time-scale iterative algorithm, which includes
three coupled recursions to estimate gradient (4) and α-quantile, and do the gradient ascent. Although
this algorithm performs well for relatively simple stochastic systems, it is not best suited for RL settings.
First, it is typically difficult to tune step sizes with three time scales. In the RL context, the dimension of
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θ could be extremely large, and the simulation may be very costly. Less hyper-parameters and higher data
efficiency of the algorithm are critical for successful RL applications. Second, the density estimation in
the denominator of (4) is generally difficult, because the transition probability and reward function may
not be available in RL. Therefore, we provide a simpler algorithm with only two time scales, which does
not require estimating fR(r;θ).

Since the denominator of the α-quantile in equality (4) is non-negative, the ascent direction can be
simplified as d =−∇θ FR(r;θ)

∣∣
r=q(α;θ) in searching for the optimum. The likelihood ratio technique in (2)

can be applied analogously to derive the gradient ∇θ FR(r;θ) as below:

∇θ FR(r;θ) = ∇θE[1{R≤ r}] = ∇θE[1{U(τ)≤ r}] = ∇θ

∫
Ωτ

1{U(τ)≤ r}Π(τ;θ)dτ

= E[1{U(τ)≤ r}∇θ logΠ(τ;θ)] = E
[

1{U(τ)≤ r}
T−1

∑
t=0

∇θ logπ(at |st ;θ)

]
≈ 1

N

N−1

∑
n=0

1{U(τn)≤ r}
T−1

∑
t=0

∇θ logπ(an
t |sn

t ;θ).

Denote

D(τ;θ ,r) =−1{U(τ)≤ r}
T−1

∑
t=0

∇θ logπ(at |st ;θ).

We propose a two-time-scale iterative algorithm as follows:

qk+1 = qk +βk(α−1{U(τk)≤ qk)}), (5)

θk+1 = ϕ(θk + γkD(τk;θk,qk)), (6)

where ϕ(·) is a projection function to guarantee θk ∈Θ. Recursion (5) is used to track the quantile of the
current policy π(·|·;θk), i.e., a one-step search for the root of FR(q;θk) = α .

In practice, we divide D(τk;θk,qk) by the estimator of fR(qk;θk) to speed up searching for the optimum.
Here we offer two feasible approaches. One is to estimate the density by the empirical reward distribution.
Using the well-known Kernel Density Estimation (KDE) approach (Scott 2015; Silverman 2018), we may
construct the reward density function by a batch of episodes between two steps updating the parameters.
An alternative approach is to approximate the indicator 1{·} by a smooth function that can be directly
differentiated. For example, we have

fR(r;θ) =
∂E[1{R≤ r}]

∂ r
≈ ∂E [σ(r;R)]

∂ r
= E

[
σ
′(r;R)

]
,

where σ(·) is the sigmoid function defined as

σ(r;R) =
1

1+ e−(r−R)
.

Then 1
N ∑

N−1
n=0 σ ′(qk;U(τn

k )) can be used as an estimator of fR(qk;θk), which can be used as a factor of the
step size γk to facilitate convergence in implementation. We present the pseudo code of QPO in Algorithm
1 as follows.

4.2 Quantile Optimization of PPO Style

To improve data utilization efficiency and robustness, we propose a variant of our QPO algorithm by using
an importance sampling technique inspired by PPO. We consider a pair of policy networks π(·|·;θ) and
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Algorithm 1 Quantile-Based Policy Optimization (QPO)
1: Input: Policy network π(·|·;θ), quantile parameter α ∈ (0,1), and batch size N.
2: Initialize: Policy parameter θ0 ∈Θ and quantile estimator q0 ∈ R.
3: for k = 0, · · · ,K−1 do
4: Generate N episodes {τk

n}N−1
n=0 following policy π(·|·;θk);

5: qk+1← qk +βk
(
α− 1

N ∑
N−1
n=0 1{U(τk

n)≤ qk}
)
;

6: θk+1← ϕ
(
θk + γk

1
N ∑

N−1
n=0 D(τk

n ;θk,qk)
)
.

7: end for
8: Output: Trained policy network π(·|·;θK).

π(·|·; θ̃), where only π(·|·; θ̃) is used to interact with the environment. In each epoch, a batch of episodes
are generated by following policy π(·|·; θ̃). Then, the target policy π(·|·;θ) is updated according to the
episodes generated by π(·|·; θ̃), and the parameter θ̃ is updated by the latest value of θ .

Denote the importance sampling ratio as

ρ(ãt , s̃t) =
π(ãt |s̃t ;θ)

π(ãt |s̃t ; θ̃)
, ρ(τ̃) =

Π(τ̃;θ)

Π(τ̃; θ̃)
=

T−1

∏
t=0

ρ(ãt , s̃t), (7)

where the trajectory τ̃ = {s̃0, ã0, · · · , s̃T−1, ãT−1, s̃T} is generated by π(·|·; θ̃). By noticing ∇x f (x) =
f (x)∇x log f (x) and FR(r;θ) = E

τ̃∼Π(·;θ̃)[1{U(τ̃)≤ r}ρ(τ̃)], we have

∇θ FR(r;θ) = E
τ̃∼Π(·;θ̃)[ρ(τ̃)1{U(τ̃)≤ r}∇θ logΠ(τ̃;θ)].

Thus, we can rewrite recursions (5) and (6) as follows:

qk+1 = qk +βk(α−ρ(τ̃k)1{U(τ̃k)≤ qk)}), (8)

θk+1 = ϕ(θk + γkρ(τ̃k)D(τ̃k;θk,qk)). (9)

In practice, the gradient term ρ(τ̃k)D(τ̃k;θk,qk) can be calculated stepwisely, which is computationally
more efficient. If −1{U(τ̃k)≤ qk} is used as the advantage function Ak

t for each action ãk
t in the trajectory

τ̃k, then the searching direction in recursion (9) can be replaced by

d̂k =
T−1

∑
t=0

ρ(ãk
t , s̃

k
t )A

k
t ∇θ π(ãk

t |s̃k
t ;θk),

which can be obtained by differentiating the following surrogate objective:

Ê
[T−1

∑
t=0

ρ(ãt , s̃t)At

]
= Ê

[
−

T−1

∑
t=0

ρ(ãt , s̃t)1{U(τ̃k)≤ qk}
]
.

To constrain the difference between θ and θ̃ , we introduce a clip function clip(x,x−,x+), where x− and
x+ are the lower and upper truncation bounds. The clipped surrogate objective is

Ê
τ̃∼Π(·;θ̃)

[T−1

∑
t=0

min{ρ(ãt , s̃t)At ,clip(ρ(ãt , s̃t),1− ε,1+ ε)At}
]
. (10)

The pseudo code of QPPO is presented in Algorithm 2. To achieve a more stable performance, one may use
an extra baseline network B(s̃t |w) and take At =−1{U(τ̃k)≤ qk}−B(s̃t |w) as a new advantage function,
where B(s̃t |w) is updated by minimizing the MSE of −1{u(τ̃k)≤ qk}.
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Algorithm 2 Quantile-Based Proximal Policy Optimization (QPPO)
1: Input: Policy network π(·|·;θ) and π(·|·; θ̃), quantile parameter α ∈ (0,1), and batch size N.
2: Initialize: Policy parameter θ 0

0 , θ̃0 ∈Θ, and quantile estimator q0
0 ∈ R.

3: for k = 0, · · · ,K−1 do
4: Generate N episodes {τ̃k

n}N−1
n=0 following policy π(·|·; θ̃k);

5: for j = 0, · · · ,J−1 do
6: Use equality (7) to calculate {ρ(τ̃k

n)}N−1
n=0 ;

7: Update q j
k to q j+1

k by recursion (8);
8: Update θ

j
k to θ

j+1
k by maximizing clipped surrogate objective (10);

9: end for
10: q0

k+1← qJ−1
k , θ 0

k+1← θ
J−1
k , θ̃k+1← θ 0

k+1.
11: end for
12: Output: Trained policy network π(·|·;θ 0

K).

4.3 Computation Complexity

We have proposed two new RL algorithms based on the quantile maximization criterion, which are
counterparts of two corresponding mean-based algorithms, i.e., REINFORCE and PPO. The computational
cost of calculating the stochastic gradient estimate for the policy parameter is comparable to that of the
mean-based algorithms. The main difference is that our algorithms need to estimate the quantile of the
current policy. Recursion (5) or (8) is a one-step iteration for the one-dimensional root searching problem,
which is computationally very cheap. Compared with the corresponding mean-based algorithm, the increase
in computation burden of QPO and QPPO is negligible.

5 CONVERGENCE ANALYSIS

In this section, we establish the global convergence of the QPO algorithm. Let (Ω,F ,P) be a probability
space. Define the filtration generated by our algorithm Fk = {θ0,q0, · · · ,θk,qk} for k = 0,1, · · · . Here we
introduce some assumptions before the analysis.
Assumption 1 For any α ∈ (0,1), q(α;θ) ∈C1(Θ).
Assumption 2 ∇θ FR(q;θ) is Lipschitz continuous with respect to both q and θ , i.e. there exists a constant
C such that ∥∇θ FR(q1;θ1)−∇θ FR(q2;θ2)∥ ≤C∥(q1,θ1)− (q2,θ2)∥ for any (qi,θi) ∈ R×Θ, i = 1,2.
Assumption 3 The step-size sequences {γk} and {βk} satisfy

(a) γk > 0, ∑
∞
k=0 γk = ∞, ∑

∞
k=0 γ2

k < ∞; (b) βk > 0, ∑
∞
k=0 βk = ∞, ∑

∞
k=0 β 2

k < ∞; (c) γk = o(βk).
Assumption 4 The log gradient of the neural network output with respect to θ is bounded, i.e., for any
state-action pair (s,a) and parameter θ , ∥∇θ logπ(a|s;θ)∥< ∞ .

Assumption 1 requires that the objective function is smooth enough, which is commonly assumed
in continuous optimization. Assumptions 2 and 3 are standard in stochastic approximation analysis.
Assumption 4 is necessary to avoid computational overflow.

Since γk = o(βk) in Assumption 3 (c), recursion (5) updates on a faster scale than recursion (6). Let

g1(q,θ) = α−FR(q;θ), g2(q,θ) =−∇θ ′FR(q;θ
′)
∣∣
θ ′=θ

,

and we expect them to track a coupled ODE:

q̇(t) = g1(q(t),θ(t)), θ̇(t) = ϕ̃(g2(q(t),θ(t))), (11)

where ϕ̃(·) is a projection function satisfying

ϕ̃(g2(q(t),θ(t))) = g2(q(t),θ(t))+ p(t),
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where p(t) ∈ −C(θ(t)) is the vector with the smallest norm needed to keep θ(t) in Θ, and C(θ) is the
normal cone to Θ at θ . When θ(t) ∈ ∂Θ, ϕ̃(·) projects the gradient onto ∂Θ.

Intuitively, θ(t) can be viewed as static for analyzing the dynamic of the process q(t). Suppose that
for some constant θ̄ ∈Θ, the unique global asymptotically stable equilibrium of the ODE

q̇(t) = g1(q(t), θ̄) (12)

is q(α; θ̄). Recursion (6) can be viewed as tracking the ODE

θ̇(t) = ϕ̃(g2(q(α;θ(t)),θ(t))). (13)

If θ ∗= argmaxθ∈Θ q(α;θ) is the unique global asymptotically stable equilibrium of this ODE, then the global
convergence of QPO to θ ∗ can be proved. Therefore, we first establish the unique global asymptotically
stable equilibriums for ODE (12) and (13).
Lemma 1 q(α; θ̄) is the unique global asymptotically stable equilibrium of ODE (12) for all θ̄ ∈Θ.
Lemma 2 If q(α;θ) is strictly convex on Θ, then θ ∗ is the unique global asymptotically stable equilibrium
of ODE (13).

To prove that recursions (5) and (6) track coupled ODE (11), we apply the convergence theorem of
the two-scale stochastic approximation as below:
Theorem 1 (Borkar 1997) Consider two coupled recursions:

qk+1 = qk +βk(g1(qk,θk)+ ε1,k),

θk+1 = ϕ(θk + γk(g2(qk,θk)+ ε2,k)),

where ϕ is a projection function, g1 and g2 are Lipschitz continuous, {βk} and {γk} satisfy Assumption
3, {ε1,k} and {ε2,k} are random variable sequences satisfying

∑
k

βkε1,k < ∞, ∑
k

γkε2,k < ∞, a.s.

If ODE (11) has a unique global asymptotically stable equilibrium λ (θ̄) for each θ̄ ∈Θ, then the coupled recur-
sions converge to the unique global asymptotically stable equilibrium of the ODE θ̇(t)= ϕ̃(g2(λ (θ(t)),θ(t)))
a.s. conditional on that the sequence {qk} is bounded.

Next we show that the sequence {qk} is almost surely bounded under our assumptions. Then the
conditions in Theorem 1 can be verified in Theorem 2.
Lemma 3 If Assumption 1 and 3(b) hold, then the sequence {qk} generated by recursion (5) is bounded
w.p.1, i.e., supk |qk|< ∞ w.p.1.
Theorem 2 If Assumption 1-4 hold and q(α;θ) is strictly convex on Θ, then the sequence {θk} generated
by recursions (5) and (6) converges to the unique optimal solution {q(α;θ ∗),θ ∗} of problem (3) w.p.1.

The convexity assumption is for guaranteeing convergence to the global optimum; otherwise, it can
be relaxed. The detailed proof of the lemmas and theorems mentioned above will be presented in a full
journal version.

6 EXPERIMENTS

In this section, we conduct simulation experiments on different RL tasks to compare our QPO and QPPO
with baseline RL algorithms REINFORCE and PPO. From our experiments, we find that the SPSA-based
algorithms cannot train neural networks in the deep RL settings, so they are not compared with our methods.

The selection of {βk} will affect the convergence speed of the algorithm. We propose an adaptive
updating approach for {βk}: βk = c0k−λ clip(|qk|,c1,c2), where λ ∈ (0.5,1), and c0, c1 and c2 are positive
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constants. This choice of {βk} satisfies Assumption 3(b). The rationale of this learning rate is to scale
up the searching step by the magnitude of the current quantile estimate clipped by some upper-and-lower
bounds. In practice, to speed up searching further, k−λ can be replaced by a factor that decays at a constant
rate after a certain number of iterations.

6.1 Toy Example: Zero Mean

In a simulation environment with T time steps, the reward of an agent at the t-th step is

Rt = Xt +h(δt)(Yt −
1
2
), Xt ∼N (0,1), Yt ∼ B(1,

1
2
),

where δt is an implicit system parameter vector controlled by the agent, and h(δt) is an explicit state vector
that can be observed. Then Rt follows a bimodal distribution with zero mean. Therefore, optimizing the
expected cumulative reward is ineffective, whereas the quantile performance can be optimized by controlling
δt . In the following results, we specify that h : R→ R.

The learning curves of REINFORCE, QPO, PPO and QPPO are presented in Figure 2. The policy is
represented by a neural network consisting of two hidden layers with each containing 32 neurons. The
initial learning rate is set as 5× 10−4, and it is multiplied by a decay factor 0.7 every 400 episodes.
All algorithms update their policy parameters every 4 episodes. On the left hand side of the figure, we
present the quantile estimated by total rewards in past 20 episodes. On the right hand side of the figure,
we present the true quantiles estimated by 50 replications per 25 episodes. The shaded areas represent
the 68% confidence intervals. We can see that QPO and QPPO significantly improve the agent’s quantile
performance. In contrast, the learning curves of REINFORCE and PPO keep oscillating around a low
level. PPO is one of state-of-the-art policy-based RL algorithms for optimizing the expectation, but it is
even harmful for training the agent in this quantile-based RL example.
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Figure 2: Learning curves for quantile (α = 0.1) of REINFORCE, QPO, PPO and QPPO in the Zero Mean
example estimated by 10 independent experiments.

6.2 Stock Trading with Simulated Prices: Sim Stock

We consider a simplified stock trading problem with N simulated stock prices and T time steps, where high
returns are associated with high risks. The price of every stock is generated independently beforehand by
a model in Moody and Saffell (2001). For the n-th stock, the log price xt+1 at time t +1 is

yn
t+1 = η1yn

t + ε
n
t

xn
t+1 = xn

t + yn
t +η2vn

t ,

where η1 and η2 are constants, εn
t and vn

t are noises which follow a bimodal distribution, more specifically, a
summation of a zero-mean normal random variable and a zero-mean binomial random variable. A bimodal
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distribution can capture distinctive statistical characteristics of the price movements under bull and bear
market scenarios. Then the price sequences {pn

t } are simulated by

pn
t = exp

(
xn

t

maxt xn
t −mint xn

t

)
.

The agent initially holds a random portfolio with a fixed total value 1 and can control the proportion of
cash invested into each stock. At every time step, the agent first makes investment decisions, and calculates
the total value of the portfolio under current stock prices and that under new stock prices. The agent is
rewarded by the differences of two total values. In addition, cash held by the agent offers 0.2% risk-free
return per time step. The observation state contains stock prices at the past few steps and the current
portfolio.

The learning curves of REINFORCE, QPO and QPPO are presented in Figure 3. The policy and
the baseline are represented by neural networks consisting of two hidden layers with each containing 64
neurons. The initial learning rate is set as 5×10−4, and it is multiplied by a decay factor 0.7 every 500
episodes. The agent invests into 8 stocks in 200 time steps and can look back at stock prices within the
past 5 steps. REINFORCE and QPO update their policy parameters every 2 episodes, while QPPO updates
every 3 episodes. On the left hand side of the figure, we present the quantile estimated by total rewards
in past 20 episodes. On the right hand side of the figure, we present the true quantiles estimated by 20
replications per 25 episodes. The shaded areas represent the 68% confidence intervals.
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Figure 3: Learning curves for quantile (α = 0.3) of REINFORCE, QPO and QPPO in the Sim Stock
example estimated by 5 independent experiments.

Better quantile performance of the portfolio indicates that it is more robust under extreme market
scenarios. The two quantile-based algorithms QPO and QPPO achieve much superior quantile performances
than the mean-based algorithm REINFORCE in this example. In addition, QPPO converges faster than
QPO.

6.3 Stock Trading with Real Prices: Dow Stock

We replace the simulated stock prices with the real data of Dow Jones 30 in Yang et al. (2020) and use
the metric ’prccd’ as a proxy of daily prices for the real stock market. We conduct experiments under the
same setting as in simulated stock prices.

The learning curves for REINFORCE, QPO and QPPO are presented in Figure 4. In this example,
QPO and QPPO still outperform the REINFORCE algorithm. QPPO converges faster than QPO at the
beginning, but it lags slightly behind the latter at the end. This phenomenon may be attributed to the
baseline network introduced in QPPO. Although baselines can speed up the convergence of policy-based
algorithms, they also introduce biases. Unlike the mean-based baseline in PPO, the quantile-based baseline
is not centralized so that it tends to be more difficult to learn.
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Figure 4: Learning curves for quantile (α = 0.3) of REINFORCE, QPO and QPPO in the Dow Stock
example estimated by 5 independent experiments.

7 CONCLUSION

In this paper, we propose a QPO algorithm and its variant QPPO for RL with a quantile criterion under
a policy optimization framework. To the best of our knowledge, this is the first deep RL algorithm that
directly optimizes quantile performance. The numerical experiments show that our proposed algorithms
are effective for optimizing policy with a quantile criterion. In future work, the criterion can be extended
to the distortion risk measure which is more general than quantiles. How to combine the quantile criterion
with more effective policy optimization algorithms also deserves further study.
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