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ABSTRACT

Through discrete-event simulation, we evaluate the impact of using a fleet of electric and autonomous vehicles
(EAVs) to decouple inbound trucks from the internal freight flows in a seaport located in the Netherlands.
To support the operational control of EAVs, we use agent-based modeling and support the decision-making
capabilities using a reinforcement learning (RL) approach. More specifically, to model the assignment of
EAVs to container transport or battery charge, we introduce the Internal Electric Fleet Dispatching Problem
(IEFDP). To solve the IEFDP, we propose an RL approach and benchmark its performance against four
different assignment heuristics. Our results are compelling: the RL approach outperforms the benchmark
heuristics, and the decoupling process significantly reduces congestion and waiting times for truck drivers
as well as potentially improve the traffic’s sustainability, against a slight increase in length of stay of
containers at the port.

1 INTRODUCTION

Freight transport volumes have been increasing for decades and are expected to more than double by 2050
(ITF 2021). This, combined with containerization, greatly affects the intermodal logistics areas that are
at the heart of international freight networks, such as ports and business parks in the hinterland (Behdani
et al. 2020). At these locations, a promising solution to increase throughput, and reduce congestion and
operational costs is the use of automated vehicles (AVs). AV systems are a type of vehicle-based internal
transport system traditionally used in manufacturing plants, distribution centers, container terminals, and
other confined environments (Le-Anh and De Koster 2006). Recent advances in technology have increased
the popularity of AVs along the logistics chain, where companies can now automate their logistics operations
outside of private yards, for example, with AVs shunting containers between terminals in a port area.

Currently, research is focused on electric automated vehicles (EAVs) due to increasing sustainability
concerns and decarbonization goals (Vdovic et al. 2019). By implementing EAV systems, organizations
aim to improve sustainability, flexibility, and efficiency. Furthermore, following the improvements in EAV
technology and the increase in freight volumes, the authorities of logistics areas, e.g., ports and business
parks, are now looking at scaling up the use of EAV systems for the whole area, thus servicing multiple
logistics companies (LCs), e.g., terminals, warehouses, and cross-docking centers. The goal is to share an
EAV fleet and coordinate transportation to increase operational efficiency and reduce congestion in logistics
areas, thus improving both safety and throughput of goods. By sharing EAVs, the LCs can benefit from
economies of scale and risk sharing, e.g., with regards to the cost of EAV ownership. The shift of paradigm
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from an intra-company to inter-company fleet of EAVs, e.g., for inter-terminal transport (ITT), brings many
operational challenges regarding the dynamic mixed-traffic environment, the efficient fleet management
considering operational constraints, and the coordination of decisions and information.

In this work, we address the first two problems by means of a detailed simulation model, and solve
the third by a reinforcement learning (RL) approach, i.e., the centralized dispatching of a shared EAV fleet
for internal transport at a logistics area, considering charging schedules, time-windows for delivery, and
uncertain arrivals of shipments. We refer to this problem as the Internal Electric Fleet Dispatching Problem
(IEFDP). We provide a Markov Decision Process (MDP) formulation that minimizes logistics costs and
lateness, and solve the IEFDP using the RL approach. We train the RL algorithm in a simplified environment
and test its performance in a detailed simulation model of the Port of Moerdijk (PoM), the Netherlands,
to consider complex traffic dynamics and operational constraints. We aim at (i) modeling a detailed
logistics system that faces uncertain events, where the delayed reward of current actions is considered in
the decision-making process, and (ii) designing a centralized dispatching algorithm to efficiently manage
a shared EAV fleet with operational constraints. The main contributions of this paper are the following.

1. We show the applicability of a general simulation framework for logistics areas to a major port
within the Netherlands (i.e., PoM), for the analysis of freight flows and emerging technologies,
such as EAVs for ITT.

2. We provide an MDP formulation for a new ITT problem called the Internal Electric Fleet Dispatching
Problem (IEFDP). The IEFDP focuses on the dispatching of EAVs with containers, considering
uncertain arrival of containers, energy consumption, and time-windows.

3. We provide insight into how the PoM could benefit from an EAV fleet and RL approach for the ITT
of inbound containers between a pre-gate parking site and various LCs at the port. We compare
this new scenario against the current situation in a detailed simulation model.

The remainder of this paper is structured as follows. A concise literature review is presented in Section
2. We formally introduce the problem as an MDP and provide the RL algorithm for the IEFDP in Section
3. The simulation model and specific elements of the port simulation are described in Section 4. Numerical
experiments and results are presented in Section 5. Finally, we draw conclusions in Section 6.

2 LITERATURE REVIEW

The growth in freight volumes greatly impacts intermodal logistics areas, such as ports and business parks in
the hinterland. In this context, several ports such as Shanghai and Rotterdam are investing in multi-terminal
systems, which inherently result in highly complex transport systems within the port (Hu et al. 2019). As
a result, companies face new challenges in the field of ITT problems.

At the operational level, companies need to properly plan transport, deciding which vehicle transports
which container and using what route. Literature displays a wide range of problems to perform the freight
consolidation, which may involve different transportation services such as truck, rail, and barge (Heilig and
Voß 2017). In port areas, it is crucial to adopt digital platforms that share real-time information to plan,
control, and coordinate vehicle movements in ITT networks (Evers 2006). Heilig et al. (2017) propose
the Inter-Terminal Truck Routing Problem (ITTRP) that considers economic and ecological factors, and a
prototype decision support system for managing and planning ITT. To solve the ITTRP, they implement
two greedy heuristics and two hybrid simulated annealing algorithms, evaluating real-life instances based
on the port of Hamburg. Results show that the two hybrid heuristics achieve better performance than
the greedy heuristics. Hu et al. (2018) focus their study on the integrated planning of an inter-terminal
network connected with a hinterland rail network. They develop a tabu search algorithm, where results
show that the connection of ITT and external hinterland transport processes yields a reduction of 20%
in ITT costs and 44% in operational railway costs. In addition, most of the research on ITT focuses on
land-side vehicles in port areas (Hu et al. 2018). However, since in certain terminals the travel distances are
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much shorter by water, Zheng et al. (2021) propose a dynamic waterborne ITT problem with autonomous
guided vessels to face ITT requests. A tabu search algorithm with a restart strategy, in combination with
a rolling horizon, is developed to solve this problem. Simulation results based on the port of Rotterdam
show that larger fleet sizes and longer prediction horizons result in better scheduling performance. For an
extensive review on ITT, we refer the reader to Heilig and Voß (2017). When considering electric vehicles
for the ITTRP, research on the electric vehicle routing problem with time-windows and recharging stations
(E-VRP-TW-RS) (Schneider et al. 2014) is relevant.

Although extensive research has been carried out on AVs and ITT separately, to our knowledge, optimal
dispatching policies for EAVs in ITT have not been studied. This becomes particularly important due to
the high costs of EAVs, the cost and environmental impacts of battery replacements, and the effects on
operational service levels. Consequently, we aim to determine optimal charging actions of EAVs, following
a similar approach for mixed RL and simulation as in Asadi and Pinkley (2021). Usually, simulation studies
on port logistics tend to implement human-like heuristics to support decision-making. These strategies
might be accurate and fast but typically lack the ability to look ahead utilizing past experience. As a result,
we aim at analyzing the simulation of a port using an RL algorithm for the assignment of EAVs to delivery
and charging tasks, and to compare this system with a traditional internal logistics process.

3 REINFORCEMENT LEARNING APPROACH

The IEFDP is formally introduced in Section 3.1 using an MDP formulation. We solve the MDP approxi-
mately using a value-based RL algorithm as presented in Section 3.2.

3.1 Markov Decision Process Formulation

In the IEFDP, a logistics area comprises a single parking site (PS), at which trucks arrive with containers,
and several LCs, at which the containers should be delivered. As such, this problem models the daily
situation of a central fleet dispatcher that should transport containers from the PS to the LCs during working
hours. The transport of containers is carried out by EAVs and the delivery should meet the containers’
time-windows for delivery. The EAVs perform the deliveries in round trips that start and end at the PS and
have a re-chargeable battery with several energy levels. If unable to fulfill these transport jobs, a manned
vehicle takes care of the transport. Figure 1 illustrates a logistics area with a PS and several LCs.

Figure 1: Visualization of the IEFDP with three distance classes for the LCs.

The problem can be defined as a set of EAVs that should transport containers j ∈ J = {1,2, ...,J} in
round trips from a PS to LCs of distance class d ∈ D = {1, ...,D}, which refers to the distance between
the PS and the LC to which the container will be transported. An arbitrarily long horizon is discretized
in consecutive time periods t ∈ T = {1,2, ...,T}, from now on called stages. This finite horizon allows all
input to the model to be time-dependent and enables incorporating anticipated or forecasted fluctuations
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between stages. At the last stage, the final costs are computed to evaluate the dispatcher’s performance.
Furthermore, containers arrive at the PS from outside the system according to a stochastic process with a
rate λ j,t ,∀ j ∈ J, t ∈ T . Every container should be delivered within its corresponding time-window of length
k ∈ K stages, which starts when its release period r ∈ R = {0, ...,R} is equal to zero. For example, a given
container that has r = 2 and k = 1 will become available for pickup after the next two upcoming stages
and it will have only one stage to be transported. If the shipment is not delivered on time, an alternative
transportation mode, i.e., a manned yard tractor, performs the transport at a high cost CL. Furthermore,
EAVs have one unit load capacity and b ∈ B = {0,1,2, ...B} incremental battery levels, where b = 0 means
that the EAV ran out of battery and can only recharge. There are Q charging stations located at the PS.
Transporting a given container j ∈ J to an LC of distance class d ∈ D takes d stages and battery levels.

The goal of the central dispatcher is to manage the fleet of EAVs, with regards to transport and charging
decisions, and thereby minimize the logistics costs under uncertainty, i.e., to maximize the use of the
EAV fleet and minimize the use of the manned vehicle while considering stochastic container arrivals and
anticipatory information. In the IEFDP, we make the following assumptions. First, we assume that charging
the battery by one level requires one stage. Second, we do not consider transportation costs for the EAVs’
deliveries, as the system should always bear those costs. Third, the manned yard tractor is always available
and transports all late containers at the end of the stage instantaneously. Fourth, for the same LC, the route
choice is negligible and the travel times are deterministic. Fifth, all LCs of distance class d ∈D require the
same travel time and battery consumption at any given moment. Last, we assume that container arrivals
are independent and identically distributed events, and their destination is a random LC.

We now formulate the MDP for the IEFDP described above. In the IEFDP, each period of time t
corresponds to a stage in the MDP formulation. Thus, stages are discrete and consecutive. Furthermore,
at each stage t, there are Jt,d,r,k containers with destination d, release stage r, and time-window length k at
the PS, and there are Vt,r,b EAVs with release stage r and battery level b to transport the containers. The
state of the system St consists of all container and vehicle variables at stage t, as seen in (1). We denote
the state space of the system by S, i.e., St ∈ S.

St =
[
(Jt,d,r,k,Vt,r,b)

]
∀d∈D,r∈R,k∈K,b∈B

(1)

At each stage t, the decision consists of (i) how many EAVs should transport containers of a certain
type and (ii) how many EAVs with a certain range should charge their battery. This decision is restricted by
the release day of the shipments, the battery level of the vehicles, and the number of vehicles available. We
use continuous variables XV

t,d,k,b and XC
t,b to represent the number of vehicles used to transport containers

to an LC of type d with time-window k and battery level b, and the number of vehicles with battery
level b sent to charge the battery, respectively. Decision xt consists of all decision variables at stage t,
i.e., xt ∈ Xt =

[
(XV

t,d,k,b,X
C
t,b)

]
,∀d ∈ D,k ∈ K,b ∈ B. Here, the decision space Xt is subject to constraints

that establish that (i) the maximum number of EAVs used cannot be larger than the available number
of EAVs, i.e., ∑k∈K ∑d∈D XV

t,d,k,b + XC
t,b ≤ Vt,0,b,∀b ∈ B; (ii) the EAVs used to transport containers to

LC’s of type d cannot exceed the number of containers available with the given destination type d, i.e.,
∑b∈B XV

t,d,k,b ≤ Jt,d,0,k,∀d ∈D,k ∈ K; and (iii) the number of EAVs sent to charge the battery at any stage t
cannot be larger than the number of charging stations, ∑b∈B XC

t,b ≤ Q.
The transition from St−1 to St is influenced by the decision xt ∈ Xt and the containers that arrive after this

decision. Note that arriving containers and their characteristics, i.e., the destination, the time-window length,
and the releasing stage, are stochastic and characterized by probability distributions. To model these stochastic
processes, we introduce Ĵe

t,d,r,k to represent the number of newly arriving containers to be transported. This
variable is defined with respect to stages t−1 and t, such that at t all information is known. The exogenous
information Wt at stage t consists of all the new information Ĵe

t,d,r,k, i.e., Wt = [(Ĵe
t,d,r,k)]∀d∈D,r∈R,k∈K . The

state St at stage t occurs as a result of the state of the previous stage St−1, the decision of the previous stage
xt−1 plus the exogenous information captured in Wt that became known between the stages. Accordingly,
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the transition of the jobs is set by the time-window k of the container, relative to the release time r, the
number of containers transported in the previous stage t−1, and the stochastic arrival of new containers.
All of these factors, and index relations, are used to capture the transition of the system. We represent
them using the transition function SM, i.e., St = SM(St−1,Xt−1,Wt(Ĵe

t )) ∀t ∈ T | t > 0.
The objective function C(St ,Xt) = ∑d∈DCL · zt,d in stage t depends on the use of the alternative

transportation mode. We define the variable zt,d as the number of containers delivered to d by the alternative
transportation mode at stage t. This variable is constrained by the given state and the decision variables, as
zt,d = Jt,d,0,0−∑b∈B\{0}XV

t,d,0,b ∀d ∈D. Our goal is to find the policy that minimizes logistics costs over our
planning horizon. Therefore, we define a policy π ∈Π as a function π : St → xt that maps each state to a
corresponding decision. The optimal policy π∗ may be found by solving the well-known Bellman optimality
equations for each state: V π∗

t (St) = minxt∈X(St){C(St ,xt)+∑St+1∈SP(St+1|St ,xt)V π∗
t+1(St+1)} ∀St ∈ S.

3.2 Approximate Value Iteration Algorithm

This section presents the Reinforcement Learning approach to approximately solve the MDP formulation
from Section 3.1. More specifically, we use approximate value iteration (Powell 2011; Sutton and Barto
2018), as outlined in Algorithm 1. Before explaining the steps of this algorithm, we first introduce some
notation. We formulate the value functions around the post-decision state Sx

t , which is defined as the state
of the system directly after a decision xt has been made but before the arrival of the next-stage exogenous
information Wt+1. The transition from a state St to a post-decision state Sx

t is given by the transition function
SM,x(St ,xt). After the arrival of the exogenous information, we have the transition SM(Sx

t ,Wt+1).
The expected value V t(Sx

t ) of a post-decision state Sx
t , i.e., the value function approximation (VFA),

is given by a linear regression model using a set of features φ
f

t (Sx
t ) ∀ f ∈ F with corresponding weights

θ
f

t ∀ f ∈ F , which are iteratively updated. The downstream cost v̂t provides the direct reward C(St ,xt) plus
the approximated downstream costs of the post-decision state V t(Sx

t ). That is, a one-step look-ahead with
a bootstrap estimate (Sutton and Barto 2018). The input data are the number of iterations N, the feature set
F , the value ε , the learning rate γ , and the initial values for V , v̂, and θ f . The output data are the learned
weights θ f ∀ f ∈ F , which indirectly determine the policy through the VFA V t(Sx

t ).

Algorithm 1: Approximate Value Iteration

Data: (N,F,ε,γ,V , v̂,θ f )
1 V 0, v̂0,θ

f
0 ← Initialize(), ∀ f ∈ F

2 n = 1
3 for n < N do
4 for t < T do
5 if t > 0 then

6 v̂t = minx∈Xt

{
C(St ,xt)+ γ V t

(
SM,x(St ,xt)

)}
7 θ

f
t =← update(θ f

t−1,φ
f

t−1, v̂t), ∀ f ∈ F

8 x̃t ← ε-greedy(Xt)
9 Sx

t = SM,x(St , x̃t)

10 φ
f

t ← Compute(Sx
t ), ∀ f ∈ F

11 Wt+1← Random(Ω)
12 St+1 = SM(Sx

t ,Wt+1)

13 return θ f ∀ f ∈ F

2679



Brunetti, Campuzano, and Mes

Algorithm 1 starts by setting initial values for V 0, v̂0,θ
f

0 , and n (lines 1 - 2). Next, line 3 loops over N
training iterations and line 4 loops over T stages. When the current stage is different from 0, lines 6-7 update
the weights of the linear regression model. More specifically, line 6 computes the expected downstream
costs v̂t of the best possible decision given our current knowledge, i.e., the lowest sum of direct costs plus
expected downstream costs. Line 7 updates the feature weights θ

f
t based on the least-squares error (Powell

2011) between V t−1 (given by θ
f

t−1 and φ
f

t−1) and v̂t . In Line 8, a decision x̃t is chosen based on the
ε-greedy decision policy (Powell 2011). The system then transitions towards the post-decision state Sx

t in
line 9. Next, in line 10, we compute the feature weights θ

f
t corresponding with the current post-decision

state Sx
t such that we can update them in the next stage. In line 11, we generate the next-stage exogenous

information Wt+1 and with this we transition to the next state St+1 in line 12.
To select a suitable set of features F , we analyzed the predictive value of a wide set of features. We

first ran a long simulation and stored each feature value for all encountered states. Next, for each of the
encountered states, we sum the costs over the states encountered in the subsequent ten stages, and chose
the feature set resulting in the lowest error and the highest predictive power explaining the upcoming 10
stage horizon costs. Accordingly, the selected set of features consists of the number of available EAVs
per battery level, the number of containers per release time, the number of urgent containers, i.e., that
cannot wait one more stage, the number of non-urgent containers, the number of non-urgent containers per
distance class, the total number of containers in the system, the number of newly arrived containers, the
average distance class over all containers, and the total travel time to transport all containers at the PS.

4 SIMULATION MODEL

We perform a simulation study for the authority of the PoM to evaluate the performance of an EAV fleet
for internal transport. For this, we follow the simulation framework described in Brunetti et al. (2020)
and implement a simulation model of the PoM in Siemens Tecnomatix Plant Simulation. In this section,
we introduce the PoM and present several characteristics and elements of the resulting detailed simulation
model that make it a challenging environment for the RL algorithm, as the latter is trained in a simplified
simulation environment based on the MDP model. Hence, we also describe our approach to adapt the
stage-based approach of the MDP model to a discrete event simulation with a virtually continuous horizon.

The PoM is the fourth largest seaport in the Netherlands. It services approximately 14,000 vessels
per year, for a total of 18.5 million tons of transshipment. In its area of 26.35 km2, there are about 430
companies, of which more than a third are purely logistics companies. The main problem in PoM is its lack
of maneuvering space on certain roads and intersections in the central area, leading to congestion during
peak hours. Furthermore, trucks wait for an available docking bay in front of the LC gate, leading to more
congestion, safety issues, and inefficiencies for the drivers, as they cannot leave or take an official break.
In PoM, all freight flows, i.e., hub-to-hub, first-, and last-mile transport, rely on manned tractors or trucks
and simple planning logic. We support the port authority by providing information on the potential impacts
of decoupling inbound and internal freight flows by means of a PS and an EAV fleet, to ease congestion
and improve hub-to-hub transport.

The simulation framework provides inputs, outputs, assumptions, process flowcharts, and a multi-agent
system for the simulation of emerging technologies at logistics areas, e.g., EAV fleets. In the multi-agent
system, independent LCs send transport requests to a central dispatcher, which, in this study, corresponds
to the RL dispatching algorithm. To obtain accurate infrastructure, we create a 3D visualization of the
PoM, shown in Figure 2, using the large-scale model generator from van Steenbergen et al. (2021) and the
LC data from the port authority. Specifically, we model road flows and roadside operations at LCs, as road
traffic is the current concern of the port authority. Moreover, we restrict ourselves to inbound shipments, as
in the IEFDP. Therefore, the outbound process for containers is not modeled and it is assumed that trucks
(i) leave the LCs after unloading their container or (ii) leave the PS right after decoupling their container.
In Figure 2, we see four port entrances for road modalities (white squares with truck images), more than a
hundred LCs (green squares), and the PS in the bottom left corner (blue rectangles). Furthermore, shipment
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arrivals at the PoM are on the order of thousands per day, with hourly variability and peak hours. Last,
the large-scale model generator allows us to achieve the level of detail of a micro-traffic simulation. This
leads to stochastic travel times, disruptions, and general uncertainty about the future availability of EAVs.
The resulting simulation environment is more complex than the training environment of the RL algorithm,
i.e., the value-based RL model is trained in a Monte Carlo simulation of the corresponding MDP, and the
resulting value functions are used within a more realistic simulation. The latter simulation drops several
of the assumptions from Section 3. In fact, we can now charge an arbitrary number of battery levels
(assumption 1); the route choice is no longer negligible, and the travel times are based on the actual traffic
conditions in the simulation (assumptions 4); battery consumption is still based on the discretized distance
class d ∈D of the LC, but LCs of the same distance class require different travel times based on their actual
distance from the PS (assumption 5); and, lastly, the destination of a container is not randomly allocated
but is proportional to the surface area (m2) of the LCs, i.e., larger LCs receive more containers.

Figure 2: 3D simulation model of the Port of Moerdijk, the Netherlands.

We will now describe several elements of the simulation that are relevant for this study: the PS, the
LCs, the EAVs and trucks, and the dispatch area for the EAVs. We refer to Brunetti et al. (2020) for further
details.

The PS is modeled as a buffer area where trucks and containers are decoupled, containers are forwarded
to the PS, and later coupled to the EAVs. When a container reaches the PS, its information is stored on a
cloud-based platform, represented by a data table, and copied to the destination LC.

The LC is modeled as multiple docking bays, the number of which is based on its surface size.
Operations at an LC are check-in, container unload and departure, and waiting at the entrance in case of
congestion. The type of unload operation in the docking bay depends on the LC, where the terminals
perform the transshipment of the containers, and the warehouses perform the unloading of the freight from
the containers, thus requiring a longer processing time. Furthermore, the type of LC determines whether
the LC is open 24/7, e.g., at terminals, or working during limited shifts, e.g., at warehouses.

Trucks, containers, yard tractors, and EAVs are represented as 3D objects with realistic sizes, scaled
down to the scale of the automatically generated infrastructure. EAVs and trucks can (de)couple containers
and select the fastest route to the container’s destination. The fastest route is automatically calculated by
Tecnomatix Plant Simulation considering both the length of each segment of the potential route, and the
speed limit of each type of road. Truck arrivals are generated at the beginning of the day and scheduled
for each hour, based on historical data and a fitted distribution. Lastly, containers are generated with a
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destination, a due date and an earliest availability for transport, as in the formulation of Section 3. Figure
3 shows trucks (red), containers (white), and EAVs (black and white tractors without driver cabin) in our
simulation environment, at two intersections of the 3D model.

Figure 3: Trucks, containers, and EAVs at a roundabout (left) and a rail crossing (right).

Finally, the dispatch area for the EAVs is next to the PS and includes multiple charging stations. Idle
EAVs wait here for their next transport or charging job. When assigned to a transport job, the EAV drives
to the PS, picks up a container, drives to the corresponding LC, decouples the container, and drives back
to the dispatch area. The EAV battery is consumed on the basis of the distance class of the LC, which is
simply calculated by discretizing the maximum distance between all LCs and the PS in the desired number
of classes. When assigned to a charging job, the EAV waits at a charging station for the inputted charging
time. Currently, the charging process takes a fixed time, but it could be extended to be stochastic and
dependent on the charging targets, e.g., from battery level a to battery level b. After charging, the battery
level is updated and the EAV is immediately available for dispatch.

In this discrete event simulation of the PoM, the processing times at LCs and travel times are continuous
variables, just as in reality. However, this causes a mismatch with the stage-based simplified simulation we
use to train the RL algorithm. In the detailed simulation, the processing times for containers are computed
with triangular distributions derived from experts at the main LCs of the port. Regarding travel times, note
that their stochastic duration is emerging from several factors: the interactions of vehicles on the road, the
route length, and the speed limits over different route segments. Moreover, operations at the PS or LCs
may further delay the return of an EAV to the dispatch area. Therefore, these unloading and transshipment
operations can take longer or shorter than the time corresponding to one stage of the MDP. To merge the
discrete event simulation environment and the stage-based simulation relying on the MDP formulation,
we schedule recurring dispatch choices over the discrete-event horizon based on the desired duration of a
stage. Also, we update the number of EAVs per battery level before the dispatch choice. The RL dispatcher
only assigns EAVs in the dispatch area to transport or charge. It does not consider EAVs that are currently
performing other tasks, although the system could be extended to consider multiple scheduled jobs per
EAV. After the dispatch choice, we update the due dates of the containers and count the amount of late
containers. Then, the amount of late containers is also checked when a container reaches the destination
LC, by transforming the stage-based due date in a date-time format, i.e., by multiplying the number of
stages by the duration of one stage. Note that reducing the duration of one stage, while maintaining the total
length of due dates, would reduce the misalignment between the discrete-event and stage-based simulation
models, although it could increase the computational burden of the simulation.

5 EXPERIMENTS

In this section, we present the numerical results of our experiments. First, we provide the experimental
settings and parameters both for the training of the RL algorithm and for the port simulation. Then, Section
5.1 compares the performance of the RL algorithm to different assignment heuristics, while Section 5.2
analyzes the impact of the RL approach in combination with an EAV fleet in the simulation model of
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the PoM. The experiments were executed on a computer equipped with a 1.90 GHz Intel(R) Core(TM)
i7-8665U, 16 GB of RAM, and running Windows 10 in 64-bit mode.

Regarding the training of the RL algorithm, the MDP settings considered in the instance of Section 5.1
are defined by 96 stages (T ), 3 location types (D), a maximum length of 4 release periods (R), a maximum
time-window length of 6 periods (K), 9 battery levels, 1 charging level per stage, 12 EAV (V ), 9 charging
stations (Q), a container arrival rate of 12 per hour (λ ), and 1 cost unit per delayed container (CL). The RL
algorithm converges to a relatively stable estimate of the costs in 1000 iterations, and within reasonable
computational times.

Regarding the PoM simulation, we provide additional information on the location of the PS, the time
to (de)couple containers at the PS, and the time to process a container at the LCs. We locate the PS in
the south-west corner of the port area, close to the highway entrance, which leads to more trucks entering
the port from the south-west entrance. For the (de)coupling time, we consider ten minutes for EAVs and
four minutes for trucks, which also includes the time to drive through the PS to the selected container.
These values were obtained by a preliminary study of the PS concept. For container processing time, we
use triangular distributions ranging between 30 and 90 minutes with a mode of 60 for warehouses, and
between 15 and 60 minutes with a mode of 20 for terminals. The data were obtained by experts at the main
LCs of the PoM, considering both variability and a difference in operations: warehouses usually unload
containers, while terminals mostly perform transshipment to other modes. Due to some LCs operating 24/7,
i.e., the terminals, and to the truck arrivals varying over the day, we have a non-terminating simulation
with steady-state cycles over the day. However, if no major disruptions occur during the day, the new day
begins without any serious backlog. Therefore, we run a simulation of 11 days for both scenarios, where
the first day is regarded as warm-up, and the next ten days of data are treated as independent replications.
The MDP settings studied in the simulation of Section 5.2 differ from the RL training instance in the
number of stages, which are 48, the maximum time-window length of 10 periods, 10 battery levels, full
charging per stage, 100 EAVs, 25 charging stations, and a container arrival rate at the PS ranging between
1 and 60 per hour depending on the hour of the day. In addition to these instance parameters, the recurring
EAV dispatch and charge described in Section 4 occurs every 30 minutes, achieving the 48 stages per day.

We perform two sets of experiments. The first set is presented in Section 5.1 and compares the value-
iteration RL algorithm with four assignment heuristics with the purpose of validating the performance of
our RL approach. The second set of experiments is presented in Section 5.2 and shows the combined
performance of a PS, an EAV fleet, and the RL dispatching algorithm in a detailed simulation model of
the Port of Moerdijk. The main goal is to evaluate the impact on the freight flows as well as the effective
management of EAVs.

5.1 Comparison of the Reinforcement Learning Algorithm and the Heuristics

This set of experiments compares the performance of our RL approach with four different operational
strategies, which we implement and test as heuristics in C++. The first heuristic algorithm chooses a
random decision at every stage. The second is a risky heuristic that always prioritizes the transport of
containers and sends EAVs to charge the battery only when they run out of power, or need to wait. The
third is a conservative heuristic that always prioritizes charging the battery of the EAVs and sends them to
transport containers only when the battery stations are occupied or the batteries are already full. The last
algorithm is a flexible heuristic that charges a predefined percentage of EAVs based on the average battery
of the fleet, then the rest of the vehicles are sent to deliver containers, if possible. The metrics upon which
we compare the different approaches are costs (late containers), standard deviations in costs, and running
time, as shown in Table 1. Costs and running times are averaged over 2000 replications.

Results show that the RL algorithm outperforms the benchmark heuristics. For the whole set of
algorithms, we see a standard deviation smaller than or equal to 6.97, corresponding to the random
selection algorithm, while the RL algorithm results in the smallest standard deviation of 5.62. This shows
that the dispersion of the RL algorithm’s performance with respect to its objective value is stable. On the
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Table 1: Comparison of algorithmic performance.

Algorithm Final Cost Std. Deviation Running time
Random selection 542 +/- 6.97 5.81 s
Risky heuristic 484 +/- 6.28 4.08 s
Conservative heuristic 518 +/- 6.55 3.04 s
Flexible heuristic 459 +/- 5.79 3.59 s
RL algorithm 435 +/- 5.62 58.26 s

other hand, the running times of the heuristic algorithms do not exceed 6 seconds, whereas the running time
of the RL algorithm is up to 58.26 seconds. Consequently, for this set of experiments, we conclude that
the RL algorithm is able to outperform the heuristic policies by exploring the solution space and learning
from the addressed scenarios in computational times under 60 seconds.

5.2 Simulation of the Port of Moerdijk

Here, we compare two scenarios for inbound logistics at the PoM: the as-is scenario of direct truck access
and the decoupled scenario of the PS plus EAV fleet with the RL dispatcher. In the first, the inbound trucks
drive directly to their destination, without information on the situation at the LC. In the second, the trucks
drive to the PS, drop their containers, and leave the port area, while the EAVs pick up the containers and
transport them to their destination. In relation to the scenarios, we mention here the percentage of trucks
decoupling. Not all trucks (and shipping companies) may accept to stop at the PS and let an EAV transport
their shipment. In addition, servicing all trucks entering the port would require both a large PS and a
large EAV fleet. Therefore, for this study, we simulate the decoupling of one-third of the trucks, while the
remaining two-thirds drive directly to the LCs, creating a mixed-traffic environment for our study.

We show results for the freight flows and for the port as a whole in Table 2 and Table 3, respectively.
We compare throughput times and waiting times, both for containers and inbound trucks, as well as the
number of late containers and the average speed and total distance traveled in the port for trucks and EAVs.
The simulation of the as-is scenario took 415 seconds whereas the simulation of the decoupled scenario
took 2304 seconds, for the whole set of replications.

Table 2: Comparison of freight flows impacts for the two scenarios.

Scenario Freight Flow Throughput Time Waiting Time LC Waiting Time PS
Direct Trucks 02:09:33 +/- 00:03:48 01:23:51 +/- 00:20:48 -

Containers 02:03:05 +/- 00:03:54 01:23:51 +/- 00:20:48 -
Decoupled Trucks to LC 02:08:16 +/- 00:03:34 00:56:46 +/- 00:21:30 -

Trucks to PS 00:17:13 +/- 00:00:05 - 00:00:00 +/- 00:00:00
Containers 02:24:30 +/- 00:02:44 00:56:46 +/- 00:21:30 01:35:55 +/- 00:07:50

From the results in Table 2, we see that the freight flows are both positively and negatively affected by
the new operational scenario. On the one hand, decoupling reduces the waiting time of the trucks driving
directly to the LCs and the total time that the decoupling trucks spend in the port. This makes the stay in
the PoM more efficient for truck drivers and improves the valuation of the port by logistics partners. Also,
containers spend less time waiting at LCs, smoothing operations and reducing congestion at the latter. On
the other hand, containers now take longer to be delivered and processed, due to the time to decouple and
the slightly longer waiting time at the PS. Last, our model is further validated by (i) the difference between
the throughput times of trucks and containers in the as-is scenario, which corresponds to the additional
time for trucks to leave the port; and (ii) the matching waiting times for trucks and containers when waiting
at the LCs, as the containers waiting at the LCs are coupled to the truck and, in the decoupling scenario,
did not stop at the PS.
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Table 3: Comparison of port-wide impacts for the two scenarios.

Scenario Vehicle Type Late Containers Std. Dev. Traffic Speed Distance
Direct Trucks 39.25 (0.94%) +/- 10.58 (0.2%) 9.10 m/s 2.84*107 km
Decoupled Total 57.13 (1.38%) +/- 12.19 (0.28%) 6.56 m/s 3.04*107 km

Trucks 39.75 (0.96%) +/- 11.11 (0.28%) 7.48 m/s 1.79*107 km
EAVs 17.38 (0.42%) +/- 5.83 (0.26%) 4.69 m/s 1.25*107 km

From the results in Table 3, we see that decoupling slightly increases the number of late containers,
as a result of the longer throughput and waiting times. In addition, we see that the total average traffic
speed is reduced by almost 28%, due to the EAVs performing part of the trips and also slowing down the
trucks on the road, as our micro-traffic simulation does not allow overtaking. The slower traffic speed also
contributes to the longer container throughput time. However, a lower traffic speed may improve traffic
safety in the port. Finally, we see that the total distance traveled increased slightly and that 41% of those
kilometers are performed by an EAV, potentially reducing CO2 emissions.

To conclude, decoupling inbound trucks and internal logistics by means of a PS and an EAV fleet, even
though it is used by only one-third of the arrivals, could lead to many benefits with regards to improving
traffic flows, the valuation of the logistics area by external logistics partners, and the sustainability of
logistics at the port, while reducing congestion at LCs. However, the current process design and RL
dispatcher slightly increase the length of stay of containers at the port, potentially resulting in lateness.

6 CONCLUSIONS AND FUTURE WORK

We created a detailed simulation model of the Port of Moerdijk, the Netherlands, to evaluate the benefits
of a fleet of electric automated vehicles (EAVs) transporting containers from a parking site to their
corresponding logistics companies, while meeting time-window and battery constraints. The dispatching
of EAVs is introduced as the Internal Electric Fleet Dispatching Problem (IEFDP).

We addressed the IEFDP by providing a Markov decision problem formulation and developing an
approximate value iteration-based reinforcement learning (RL) algorithm in a simplified environment.
After training the RL algorithm, we used it as a decision-making tool in the detailed simulation of internal
logistics at the Port of Moerdijk. Here, travel times are stochastic due to an accurate representation of
traffic flows, and operational constraints at logistics companies make the environment more dynamic and
uncertain. We validated the effectiveness of our RL dispatcher against different human-like strategies,
which our dispatcher outperforms. Then, in the detailed simulation, the RL-assisted fleet together with a
pre-gate parking site leads to reductions in truck waiting times and traffic congestion, as well as a range
of potential benefits, e.g., sustainability. However, the total length of stay of containers increases slightly,
due to inefficiencies in the (de)coupling process.

Regarding future research, our aim is to extend the integration of the RL algorithm into the discrete
event simulation environment. First, we want to shift from a hybrid stage-based horizon to a complete
event-driven horizon, reducing the information mismatch. Second, we aim to speed up the RL dispatcher
by considering situational information from the simulation, e.g., by discarding supposedly sub-optimal
actions. Finally, we aim to test other RL approaches, e.g., based on policy iteration or the use of neural
networks, which could perform better than value iteration in a realistic environment.
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