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ABSTRACT

Simulation models start as conceptual models, which list relevant factors and their relationships. In
complex socio-environmental problems, these conceptual models are routinely created with participants,
via a ‘participatory modeling’ approach. Transparency is a tenet of participatory modeling: participants
should easily provide their input into the model-building process and see how that input is utilized. Although
several elicitation methods are transparent, the resulting conceptual model can become too large and difficult
to interpret. Usability studies have shown that participants struggle to interact with such large conceptual
models, even if they contributed to creating parts of it. In this paper, we propose to automatically transform
these large conceptual models into a more familiar format for participants: textual reports. We designed
and implemented a process combining Natural Language Generation (via the deep learning GPT-3 model)
and Network Science. Two case studies demonstrate that our prototype generates sentences that perform
satisfactorily on several metrics.

1 INTRODUCTION

The process of developing a simulation model starts with a conceptual model, which identifies relevant
factors and relationships for the problem domain. These conceptual models can be small and well-known,
for example as SIR or SEIR models in the context of infectious diseases. However, for complex socio-
environmental problems, models can encompass dozens to hundreds of factors, and many more relationships.
For instance, suicide (Chung 2016; Giabbanelli et al. 2021) or obesity conceptual models (McPherson et al.
2007; Drasic and Giabbanelli 2015) involve a very large number of protective or risk factors, across several
domains (e.g., mental health, physical health, financial) and at several levels (e.g., individual, community,
society). As they cross domain boundaries, such problems often involve teams of experts who work with
modelers to arrive at a conceptual model. For example, participatory modeling approaches (Voinov et al.
2018) can elicit the knowledge of each expert in the form of a causal map (Bryson et al. 2004). This
semi-quantitative approach externalizes the experts’ perspectives as directed and signed graphs (Figure 1)
and constitutes the starting point of expert-driven models (Kininmonth et al. 2021). Each causal map can
be transparently elicited from an expert, either in person via a modeler trained as a facilitator (Kiekens
et al. 2022), or online via software such as MentalModeler or automated procedures.

A problem happens as the individual perspectives of experts are combined into one conceptual model
for the domain. These models tend to become very large and/or present complicated topologies (Giabbanelli
and Baniukiewicz 2018), manifested by an abundance of loops and alternative paths (Figure 1). Although
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individual causal maps are transparently elicited from experts, the aggregate model of the system is no
longer transparent due to its sheer size and structure. Individuals often lack the systems thinking skills to
work with the structure of these aggregate models (Gray et al. 2019; Giabbanelli and Tawfik 2020). Studies
have shown that even custom network visualizations for node-link diagrams did not suffice in efficiently
helping domain experts to navigate such unwieldy models (Giabbanelli et al. 2016). These large conceptual
models are portrayed by domain experts (Siokou et al. 2014) as overly complex (emphasis added):

“With 100 or so causal factors, and 300 or more connections linking each cause to
one or more of the others, the [model] is a complicated, almost incomprehensible web of
interconnectedness that depicts the drivers of obesity prevalence and the ways in which they
depend on each other. The diagram is brilliantly useful in demonstrating the complexity
of factors driving the current obesity trend, but the scale and number of interactions in the
diagram make it difficult to see how one might use it in any practical way [...]”

Figure 1: Two suicide experts provide a causal map on Adverse Childhood Experiences (ACEs). Each
map is small and transparently obtained from an elicitation process. However, the final map aggregated
the perspectives of all experts is larger and much more complicated (e.g., in feedback loops or alternative
paths) than the sum of its individual maps, which prevents experts from navigating the model.

This is a significant communication obstacle, as it means that experts can contribute to a modeling
project but are then unable to get information back from it. To promote a participatory approach to
modeling complex socio-environmental problems and ensure a high level of involvement throughout the
process (Hedelin et al. 2021), it is thus necessary to remove the obstacles that prevent domain experts
from accessing the information encoded in the conceptual model. In this paper, we seek to make large
conceptual maps transparent and accessible once again to experts. Specifically, we transform these maps
into a more familiar and universal representation: text. At a high level, this objective resembles the
model-to-text transformations (Rose et al. 2012) originating from Model-Driven Engineering. These text
generation frameworks often use template-based code generators to produce application code from high
level specifications. In contrast, our objective is to transform large causal maps into textual reports, since
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domain experts are familiar with this format as the primary means of explaining a large system (Freund
and Giabbanelli 2021). We thus use Natural Language Generation (NLG) to create text from causal maps,
which involves both network analysis (to decompose the map) and deep learning (to generate text).

Our main contribution lies in the design, implementation, and evaluation of a system that effectively
generates natural language from causal maps. Two case studies are provided on fields that have regularly
yielded large maps, obesity and suicide. We briefly cover methods from text generation in Section 2, then
build on them to explain the design and implementation of our system in Section 3. Results from our
two case studies are presented in Section 4, while concluding remarks are provided in Section 5. For full
transparency, our implementation and case studies are openly accessible at https://osf.io/98kmy/.

2 BACKGROUND: NATURAL LANGUAGE GENERATION (NLG) FROM DATA

2.1 From Traditional Methods to Deep Neural Networks

Data-To-Text refers to generating text from non-linguistic input data (Reiter 2007), such as tables, knowl-
edge bases, or simulations. Significant methodological developments have happened in data-to-text gen-
eration (Puduppully and Lapata 2021). Traditional methods from the early 80’s to early 2010’s followed
a rule-based system consisting of modules for content planning, sentence planning, and surface realiza-
tion (Kukich 1983; Reiter and Dale 1997). Deep neural networks resulted in a paradigm shift in the mid
2010’s. For example, Recurrent Neural Networks (RNNs) do not have separate modules on how to generate
text that is faithful to the source material. RNNs have shown remarkable performances to generate short
and detailed texts given a small data set (Wiseman et al. 2017). However, when given larger and more
complicated inputs (such as the causal maps of interest in this work), neural network systems experience
‘hallucinations’ (i.e., reference errors), struggle to capture the relationship between sentences, and lack
faithfulness to the source input (Wiseman et al. 2017).

In a simple sequence-to-sequence architecture for neural networks, an encoder transforms input se-
quences into a fixed-sized vector (the context vector), which is passed onto a decoder to generate the target
sequence. However, the context vector in this architecture is a bottleneck when dealing with long sentences.
The technique of attention was introduced so that the decoder can consider all hidden states of the encoder
by learning to give them an attention score. The transformer architecture replaced the RNNs by attention
and feed-forward layers for encoders and decoders. Transformers introduce a concept called self-attention,
which allows to process each word in a sequence and attend to other words for better processing of the
current word (Alammar 2018). These transformers rapidly became the dominant architecture in NLG.

2.2 Generative Pretrained Transformer (GPT)

Pretrained language models (PLMs) support a variety of tasks in Natural Language Processing, for example
to classify sentiments via BERT. The purpose of PLMs is to learn language knowledge from a large corpus.
This computationally intensive task is performed in a dedicated environment, then a PLM is transferred to
another NLP task with task-specific datasets that are less computationally costly. PLMs based transformer
architectures such as GPT (Alex Radford and Karthik Narasimhan and Tim Salimans and Ilya Sutskever
2018) or T5 (Raffel et al. 2020) have achieved state-of-the-art performances because they benefit from the
vast amount of factual language knowledge in their parameters (Harkous et al. 2020; Ribeiro et al. 2019).
GPT-2 was released in November 2019 with 1.5 billion parameters, followed by the release of GPT-3 (used
in this paper) in 2020 with 175 billion parameters.

PLMs do have limitations: they may generate texts that are not supported by the source input (Wang
et al. 2021), or reproduce some of the typos on which they have been trained. It is thus necessary to
thoroughly evaluate the performances of the system. Three metrics are commonly used to evaluate natural
language generation outputs: BLEU (Papineni et al. 2002), METEOR (Denkowski and Lavie 2014), and
chrF (Popović 2015). BLEU uses the notion of n-gram, that is, a contiguous subsequence of n words
(e.g., for n=2 we have a ‘bigram’ consisting of a pair of words occurring next to each other). The BLEU
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score is calculated by comparing the n-grams of the generated sentence with the n-grams of the reference
sentence and counting the number of matches. METEOR scores generated sentences by aligning them with
a reference sentence on the basis of exact, stem, synonym, and paraphrase matches (Denkowski and Lavie
2014). chrF, or character n-gram F-score, is calculated by comparing the character-level n-grams of the
generated sentence with the character-level n-grams of the reference sentence. Each of these three scores
is on a scale of 0 to 1, where 1 is a perfect match and 0 is a perfect mismatch. Automatic metrics are
often criticized for only weakly reflecting human judgments (e.g., “BLEU–human correlations are poor for
NLG” per Reiter 2018) hence they are commonly supplemented by a human evaluation of some generated
texts. Three criteria are commonly applied: faithfulness (the extent to which the text preserve the facts in
the input), fluency (quality of written text, including lexical skills, syntactic skills, and grammar skills),
and coverage (the degree to which the knowledge in the input has been preserved); these measures are
detailed in (Gatt and Krahmer 2018; Li et al. 2022).

Figure 2: Our overall architecture to transform conceptual models (causal maps) into text.

3 METHODS

3.1 Overview

Our approach is summarized in Figure 2. In short, we start with a causal map that can contain a large
number of factors on various topics, as well as complex structures such as loops. The ultimate goal of the
system is to better understand the map it represents through text. If we convert the entire map into text by
going through its parts in any order, there is a high chance that the theme of a sentence will be unrelated
to the themes of adjacent sentences. Through community detection, we can take a large map and break it
apart into smaller subsets that can be studied separately (Newman 2018, p. 551), each representing a single
theme. In addition, smoothly connecting paragraphs requires that they have some elements in common,
hence we focused on overlapping community detection algorithms. Each community is further decomposed
into smaller fragments and linearized (Section 3.2). That is, there may be loops in a causal map but a text
is only read left-to-right so any loop needs to be decomposed into fragments which can individually be
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converted to text and, together, capture the content of the loop. Linearized representations are commonplace
in recent works on graph-to-text representations (Ribeiro et al. 2020; Mager et al. 2020). Based on these
representations, we prepare a corpus of well-formed and relevant sentences which serve to train and evaluate
GPT-3 (Section 3.3). Once GPT-3 is fine-tuned, linearized representations are provided as inputs and the
output is evaluated (Section 2.2) both automatically and manually, resulting in six performance indicators.

3.2 Map Transformation: Communities, Sub-parts, and Linearization

Algorithm 1 starts by using the Core Expansion method (Choumane et al. 2020) provided by CD-
LIB (Rossetti et al. 2019) to create overlapping communities. Each community is then decomposed into
a set of acyclic directed graphs, through a process akin to an iterated parametrized Breadth-First Search
(BFS), which starts at a node and then explores its children in successive ‘layers’. We start a modified BFS
at the node with the most outgoing edges (i.e., in decreasing order of out-degree centrality), if it has not
been visited too many times already. The modified BFS (Algorithm 2) has three parameters: a depth limit
d, a width limit w, and a reuse threshold τ . The depth and width limits impact the length and eventually
the complexity of the sentence. The depth limit prevents the search from going too many layers away,
hence avoiding sentences that may appear to go on a tangent. The width limit prevents too many children
of a node from being included, thus forbidding sentences formed of long lists (e.g., “an increase in A will
increase B, C, . . ., X”). Due to these two limits, a single run of the BFS can miss nodes in the input graph.
Since Algorithm 1 repeatedly runs a BFS, nodes that were missing in one search would be included in
another. Using the same nodes a few times is tolerable, for example to support the flow between sentences.
However, an excessive level of reuse would result in an abnormal level of repetition in the sentences, hence
a reuse threshold prevents a BFS from exceedingly re-visiting nodes. When the BFS algorithm adds a node
to the output tree it increments a counter that is stored as an attribute of the node in the input graph. This
is preserved between iterations of the search. If the search finds a node that has a counter exceeding the
threshold, it does not include it in the output tree. Through experimentation, we set all three parameters
to 3 as it mostly produced short, simple sentences, with adequate flow.

Algorithm 1 Decomposition of Causal Maps
Input: Causal graph (labeled nodes, directed typed edges); τ: maximum number of times that a node

can be reused; d and w: depth and width of the breadth-first search
Output: Set of communities decomposed into smaller acyclic graphs

1: Find community subgraphs by the Core Expansion method
2: Determine and mark the out-degree centrality of nodes
3: Create an empty set S for results
4: for each community subgraph
5: Create an empty set C for the decomposition of this community
6: Set every nodes use counter to 0
7: for each node i in subgraph in order of centrality
8: if the node’s use count < τ then
9: Run BFS(d,w,i) and increment the counter of each visited node

10: Add the graph from the BFS to C
11: Add results C for the community to the overall results S
12: Return S

3.3 Evaluating and Fine-Tuning GPT-3

In order to evaluate performances (i.e., testing), it is common practice to compare the output of an NLG
system with human-authored narratives (Ahn et al. 2016). In addition, a pretrained language model
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Algorithm 2 Parameterized Breadth First Search
Input: Same as Algorithm 1 (causal graph, τ , d and w)
Output: One acyclic graph

1: start node ▷ Pick a start node chosen according to order from centrality index
2: start node.depth = -1
3: search queue.push(start node) ▷ Initialize search queue with the start node
4: start node.parent = start node ▷ Initialize itself as the parent
5: start node.use counter += 1
6: while search queue is not empty
7: node = search queue.pop()
8: node.depth = node.parent.depth + 1 ▷ Set the node’s depth to one more than its parent
9: if node.depth > d then break

10: for the first w neighbors of the node
11: if neighbor.parent is null and neighbor.use counter < τ then
12: neighbor.parent = node ▷ Mark the current node as its parent
13: neighbor.use counter += 1 ▷ Increment the neighbor’s use counter
14: outgraph.add edge(node, neighbor)
15: search queue.push(neighbor)

(Section 2.2) such as GPT-3 can be fine-tuned with such narratives to capture domain specific knowledge.
Note that fine-tuning differs from re-training in two ways: creating enough human-authored narratives for
training can be extremely time consuming and the training itself is computationally intensive; in contrast,
fine-tuning requires fewer instances and much less computations. In the case of GPT-3, a few hundred
examples suffice, as the model is efficient on low-shot learning (Chintagunta et al. 2021). Our approach
thus includes the creation of a few hundred human-authored narratives for the dual purpose of evaluating
and fine-tuning the generator. This process is performed in several steps, starting from the linearized
aggregates (Figure 2 top-right) obtained in the previous section.

Figure 3: Each acyclic graph is coded by stringing RDF (Resource Description Framework) triples, which
are used in datasets for natural language generation such as WebNLG (Gardent et al. 2017). <H>, <T>,
<NEG>, and <POS> tags encode the source (head), destination (tail), negative, and positive causality.

For a given conceptual model, we first transform it into a set of linearized aggregates, represented as RDF
triples (Figure 3). Human annotators write a sentence for each of the linearized aggregates, such that every
aggregate is handled by at least two independent annotators. This produces pairs of linearized representations
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and target sentences, such as {”prompt”:”<S><H> Mental well-being <POS><T> Physical well-being
<E>”,”completion”:” Mental well-being promotes physical well-being.<end>”}. OpenAI recommends
using special tokens to start and end prompts (linearized representations) and completions (target sentences),
hence our sentences always start with a space and end with <end>.

As mentioned above, some of this data will fine-tune the model and the rest serves to evaluate the
output. In machine learning, most of the data goes toward building the model and a lesser amount is devoted
to evaluating it. The data for model building is further subdivided into ‘training’ and ‘validating’ sets; a
‘validation’ set serves to adjust hyper-parameter values and should not be misinterpreted as evaluation data
for the final model, which is accomplished by the ‘testing’ set. This approach is known as a ‘training-
validation-test split’ and constitutes standard practice in machine learning (Duan et al. 2022). In our work,
we use a ratio of 80:12:8 for training, validating, and testing respectively.

OpenAI offers four models of different sizes and capabilities for training GPT-3, namely Davinci,
Curie, Babbage, and Ada (OpenAI 2021). To fine-tune, we compared performances between the largest
model (Davinci) and the second largest (Curie); due to space limitation, our comparisons (3 pages) are
provided as a supplementary online table on the Open Science Framework at https://osf.io/98kmy/. Curie
offered similar performances when training on the same dataset at an approximately 8 fold reduced price,
hence all our case studies employ the Curie model. In deep learning, training is specified in epochs, which
are the number of times that the entire dataset has been used. To determine a sufficient number of epochs,
we identify when the training performance outcome (i.e., training loss) reaches a steady state. In our case
studies, Curie was trained for five epochs, which is when the training loss starts plateauing.

3.4 Evaluation Metric

We used NLTK 3.6.5 to perform the three automatic comparisons (BLEU, chrF, METEOR) between
generated sentences and the testing. Human evaluation was performed independently by two annotators
in two steps. First, they independently evaluated each sentence with respect to each metric (faithfulness,
fluency, and coverage) on a 5-point Likert scale, from (1) poor to (5) excellent. Second, the scores were
compared and all discrepancies were discussed to arrive at a consensual score. This final score is reported
in our case studies below and, for full disclosure, our repository at https://osf.io/98kmy/ offers the scores
of each annotators together with their notes on identifying and addressing discrepancies.

4 CASE STUDIES

We evaluated our system on two studies that created an open-access conceptual model: an obesity conceptual
model of 98 nodes and 177 edges (Drasic and Giabbanelli 2015), and a conceptual model of youth suicide
with 361 nodes and 948 edges (Giabbanelli et al. 2021). Both studies had several subject-matter experts,
each producing a map that is small and interpretable, but the aggregate map is large and complex. This
situation suffers from a lack of transparency and motivates our work in transforming models to text.

The conceptual models are first decomposed into linearized aggregates (Section 3.2), then we wrote
target sentences for each aggregate and performed the training-validation-test split (Section 3.3). For
obesity, this created a total of 625 sentences, of which 521 sentences were for training, 58 sentences on
validation, and 46 sentences on testing. For suicide, we had 494 sentences for training, 48 sentences for
validation, 46 sentences for testing, hence a total of 588 sentences. We then evaluated our system (Section
3.4) with respect to automatic and manual metrics, yielding the results in Table 1 and Table 2 respectively.
The P45 metric is the ratio of human scores that are 4 or 5 (on a scale of 1−5) out of the total number of
scores (Mager et al. 2020). For instance, if three evaluators scored the fluency, coverage, and faithfulness
as {3,4,4}, {3,3,2}, and {4,5,3} then the P45 would be 4 out of 9.

Scores for BLEU are similar to previous studies where few ground-truth sentences are available for
each sample (Qader et al. 2018), since BLEU is driven by n-gram matches between the candidate and
reference sentences. In contrast, METEOR is more tolerant of variation in language, as it aligns words
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between the candidate and reference sentences by allowing for exact matching, synonymy, and stemming.
Scores for METEOR match or exceed previous studies on neural text generation (Qader et al. 2019).
Similarly, the chrF score also indicates a decent performance.

Since there is evidence that the size of the input graph (in number of nodes) impacts the quality and
length of the sentence generated (Ribeiro et al. 2020), we detailed the results of the human evaluation
based on three sizes: small (2–3 nodes), medium (4–5 nodes), or large (6 nodes and above). We note that
faithfulness and coverage decrease as the size of the input increases, which means that GPT-3 is best able
at capturing the whole content (coverage) and preserving its meaning (faithfulness) when the conceptual
model has been decomposed into small subsets. Fluency is only affected in larger graphs, as the longer
sentences generated are more at risk of accumulating errors. Overall, our approach can create texts that
are as comprehensive and factual as the initial conceptual model, if it is finely divided into small parts.

Table 1: Average automatic evaluation scores (BLEU, METEOR, chrF) for text generation two conceptual
models. Each score ranges from 0 (mismatch) to 1 (match).

Case study BLEU METEOR chrF
Obesity 0.028 0.601 0.633
Suicide 0.023 0.662 0.683

Table 2: Average human evaluation scores and ratio of sentences evaluated 4 and 5 (P45) for text generation
from two conceptual models. Each score ranges from 1 (bad) to 5 (excellent).

Case study Nodes Faithful Fluency Coverage P45
(2,3) 4.84 4.72 4.92

Obesity (4,5) 4.57 4.76 4.78 0.94
6+ 3.67 4.00 3.67
(2,3) 4.78 4.47 5.00

Suicide (4,5) 4.42 4.50 5.00 0.93
6+ 3.86 4.57 3.71

To better characterize the sentences generated by GPT-3 in both case studies, Table 3 provides several
examples of correct and incorrect sentences, for each of the two case studies. On the positive side, we
observe that the fine-tuned GPT-3 model can aptly rename concepts (e.g., 1st example: breast feeding),
learn commas in sentences (e.g., 2nd example), creates a variety of causal connectors (e.g., increase,
improve, higher, more), and even simplifies causality (e.g., two negatives make a positive) to create fluid
sentences. On the negative side, the data used for pre-training of GPT-3 contained typos which resurface in
generated sentences (e.g., corrisponds, suicidial), subtlety can be lost (e.g., 6th example), causal branches
can be an issue (Figure 4), and some modeling features cannot currently be translated. That is, some
modeling features can be binary such as whether an agent has a given ethnicity, or whether the agent’s
social norm is the main one. Since most of the map deals with an increase in source concepts rather than
the presence of certain concepts, binary and other categorical features are currently a limitation (e.g., last
example). Although the problem of ‘hallucination’ (i.e., outputting ideas that are nowhere in the input) is
often discussed in natural language generation (Wang et al. 2021; Wiseman et al. 2017), we only observed
this issue in one out of 84 cases. It happened in the obesity case study, where GPT-3 added a clause
(emphasis added): “Physical activity is an important factor for good health, however it can not give anyone
superhuman powers.” Although such ‘silly mistakes’ can receive more than their fair share of attention,
this rare hallucination is a lesser concern than limitations on modeling features at present.

The strength of our results partly relies on the latest version of GPT, called GPT-3. We performed
complementary analyses by contrasting our current results with those obtained from GPT-2; the difference
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Table 3: Examples of correct and incorrect sentences. All sentences are provided on our repository.

Case study Input (part of the conceptual model) Text Generated

Obesity:
Correct

<S><H>Quality & Quantity of breast
feeding <POS><T>Appropriateness of
child growth <H>Quality & Quantity of
breast feeding <POS><T>Appropriateness
of nutrient partitioning <E>

Breast feeding of higher quality and
more quantity leads to more
appropriate child growth and nutrient
partitioning.

<S><H>calories <POS><T>obesity <E>
Higher the calorie intake, the more
obese a person gets.

<S><H>promote safe routes to encourage
walking <NEG><T>unsafe neighborhoods
<E>

Increasing safe routes to encourage
walking reduces unsafe
neighborhoods.

Obesity:
Incorrect

<S><H>weight <POS><T>BMI <E>
Increase in weight corrisponds to
increase in BMI.

<S><H>Unhealthy weight control practices
<NEG><T>Obesity <H>Obesity <POS>
<T>Weight bias <H>Obesity <NEG><T>
Access to health professionals <H>Weight
bias <NEG><T>Positive experience of
sports <E>

Increasing unhealthy weight control
practices reducings obesity, thereby
increasing weight bias and reduces
access to health professionals. This
increase to weight bias reduces the
positive experience of sports.

<S><H>Effort to increase efficiency of
consumption <POS><T>Demand for
convenience <E>

Effort to increase efficiency of
consumption increases the
convenience.

Suicide:
Correct

<S><H>Low socio-economic status of the
neighbourhood <NEG><T>Access to
healthcare <H>Low socio-economic status
of the neighbourhood <POS><T>
Involvement in violence <E>

Socio-economic status of the
neighbourhood can have a direct
impact on access to healthcare and
also involvement in violence.

<S><H>Policies on responsible suicide
awareness <NEG><T>Imitating a suicidal
behavior <E>

Improving policies on responsible
suicide awareness decreases the
tendency to imitate a suicidal
behavior.

<S><H>Engaging in externalizing behaviors
<POS><T>Getting labeled at school <E>

Engaging in externalizing
behaviors gets one labeled at school.

Suicide:
Incorrect

<S><H>Suicide ideation <POS><T>Visit
of ER <H>Visit of ER <POS><T>Receive
care at home <H>Visit of ER <POS><T>
Hospitalized <H>Hospitalized <POS><T>
Treatment success <E>

Increase in suicidial ideation
increases the visit of ER which further
increases the chance of receiving care
at home and hargens hospitalized.
This increase to hospitalized increases
treatment success.

<S><H>Identity is outside the socially
accepted norm in the community <POS>
<T>Bullying <H>Bullying <POS><T>
Abusive relationships with peers <H>
Bullying <POS><T>ACEs <H>Bullying
<POS><T>Emotional breakup and
rejection <H>ACEs <POS><T>Shame <E>

Increasing the identity of outsiders
increases bullying, thereby increasing
abusive relationships with peers, ACEs,
emotional breakup and rejection, and
shame.
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is available on our repository at https://osf.io/98kmy/. GPT-2 was about two points lower on faithfulness
and coverage than GPT-3, while automatic scores were about half of those obtained on GPT-3.

Figure 4: Some oversimplifications are associated with specific input structures.

5 DISCUSSION AND CONCLUSION

We proposed a process to transform a large conceptual model (in the form of a causal map) into sentences,
by decomposing it into smaller parts and then performing Natural Language Generation (NLG) via a
fine-tuned GPT-3 (Figure 2). Automatic metrics that tolerate variations in language show encouraging
performances on two case studies (Table 1). Manual evaluation emphasizes the strong relationship between
the decomposition algorithm and the ensuing NLG step, as the best sentences are obtained when the
conceptual model is decomposed into small parts. By examining the sentences (Table 3), we noted several
strengths. For example, the variety of causal connectors helps to avoid boring, repetitive structures. This
follows the recommendations of Ahn, Morbini, and Gordon (2016): “when serializing and realizing a causal
graph structure as natural language text, some care must be taken to avoid the generation of cumbersome
sentences with repetitive syntactic structure, e.g. as a long chain of ‘because’ clauses.” We also noted several
shortcomings. Some of them can be addressed by avoiding certain input structures in the decomposition
algorithm (Figure 4), and some may be handled by an additional autocorrect filter on the output.

Two avenues are of particular interest for future work. First, it was necessary to create a ground-truth
dataset for evaluation by handcrafting sentences, which also serve to fine-tune the model. However, when
we focus on deployment, the process should be entirely automatized. Natural Language Processing will
thus be needed to automatically creating sentences for fine-tuning. Second, by deploying the prototype,
participants can provide feedback on the text. This feedback can identify errors, which can be used to
improve the model. In particular, information can be injected by editing the prompt for each input graph,
thus helping the model to make corrections without needing either re-training or fine-tuning. This notion
of ‘prompt engineering’ (Liu et al. 2021) was successfully used with GPT-3 in (Madaan et al. 2022) and
is particularly promising to improve products once they are deployed.
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