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ABSTRACT

The vast majority of the simulation input uncertainty literature focuses on estimating target output quantities
that are real-valued. However, outputs of simulation models are random and real-valued targets essentially
serve only as summary statistics. In this paper, we study the input uncertainty problem from a distributional
view, namely we construct simultaneous confidence bands for the entire output distribution function. Our
approach utilizes a novel test statistic that consists of the supremum of the sum of a Brownian bridge
and a mean-zero Gaussian process whose covariance function is characterized by the influence function
of the true output distribution function, which generalizes the Kolmogorov-Smirnov statistic to account
for input uncertainty. We demonstrate how subsampling helps estimate the covariance function of the
Gaussian process, thereby leading to an implementable estimation of the quantile of the test statistic and
a statistically valid confidence band. Finally, we present some supporting numerical experiments.

1 INTRODUCTION

Stochastic simulation is widely used for operational decision-making and scientific modeling (Law et al.
2007; Banks et al. 2014). It consists of the generation of random input variates, fed into the system logic,
to produce outputs that are subsequently analyzed for downstream tasks. In many real-world settings, the
distributions that govern the input variates are unknown and need to be calibrated from external data. In
this case, proper output analysis needs to account for both the Monte Carlo noises in running the simulation
and also the input data noises that propagate to the outputs. This issue, which is beyond the handling of
only the Monte Carlo noises in traditional output analysis, is known commonly as the input uncertainty
problem in the simulation literature. For an overview on this topic, see, e.g., Henderson (2003), Barton
(2012), Song et al. (2014), Lam (2016), Corlu et al. (2020), Barton et al. (2022), and Nelson (2013)
Chapter 7.

More concretely, the goal of handling input uncertainty can often be cast as the construction of
confidence intervals that are statistically valid under both sources of noises from Monte Carlo and input
data. A closely related task is variance estimation, or the estimation of the different components of the
variance that attribute to each source of noise. There are several major methods in the literature. The first is
bootstrap resampling, which includes the variance bootstrap (Cheng and Holloand 1997; Song and Nelson
2015), quantile-based bootstrap (Barton and Schruben 1993; Barton and Schruben 2001), and enhancements
such as the metamodel-assisted bootstrap (Barton et al. 2014) and subsampling (Lam and Qian 2021).
The second line of methods uses the delta method directly which involves estimating gradient information
of the model with respect to the inputs. This includes the two-point method (Cheng and Holland 1998;
Cheng and Holland 2004), regression approach (Lin et al. 2015; Song and Nelson 2019), and subsampled
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infinitesimal jackknife (Lam and Qian 2019; Lam et al. 2022). Other recent approaches include the use
of robust optimization (Ghosh and Lam 2019) which relates to the empirical likelihood method (Lam and
Qian 2016; Lam and Qian 2017). Finally, there is also a stream of work on Bayesian approaches that rely
on posterior sampling (Chick 2001; Zouaoui and Wilson 2003; Zouaoui and Wilson 2004; Xie et al. 2014).

Despite the growing literature in input uncertainty, most, if not all, of the works have been focusing
on the estimation of target quantities that are real-valued. However, in stochastic simulation the outputs
are random (hence the Monte Carlo noise) and the real-valued target quantities often only serve as a
summary statistic. For instance, suppose the simulation model represents a queuing system and we are
interested in the waiting time or queue length at a certain time horizon. Then, in the input uncertainty
literature, existing approaches would consider a summary target such as the expected waiting time. Such
type of summary statistic is arguably convenient but, depending on our downstream decision-making tasks,
could hide valuable information (in this example this could be the quantiles or tails of the waiting time
distribution). Having an approach to understand the interplay of Monte Carlo and input uncertainty at
the distributional level would therefore address this issue. In a sense, doing so would capture both the
epistemic uncertainty, i.e., the uncertainty coming from the data noise, and aleatory uncertainty, i.e., the
intrinsic uncertainty from the randomness in the stochastic model.

Our main contribution of this paper is to propose an approach to construct a confidence band for the
entire output distribution that accounts for both Monte Carlo and input data noises. Our approach relies
on a novel statistic that comprises of the supremum of a sum of a Brownian bridge and a mean-zero
Gaussian process with a covariance structure governed by the so-called influence function of the target
output distribution. In this statistic, the Brownian bridge signifies the Monte Carlo noises and resembles
the limit of the Kolmogorov-Smirnov (KS) statistic. The mean-zero Gaussian process, on the other hand,
signifies the input data noises, where the influence function that controls the covariance structure can be
regarded as the derivative of the target output distribution with respect to the input parameters and carry
sensitivity information like in the standard delta method. Our approach can be viewed as a generalization of
the KS statistic, which can be used to construct confidence band under a single source of randomness from
data, to the simulation input uncertainty setting where both epistemic and aleatory uncertainties need to be
accounted for. In fact, we will illustrate that when there is input uncertainty, using the standard KS machinery
to construct confidence bands for the output distribution would lead to a systematic under-coverage. The
additional Gaussian process serves to inflate the variability to lift up the coverage by the right amount.

With the test statistic, we propose a subsampling approach to efficiently estimate the covariance
function of the Gaussian process. Note that the influence function described above, while conceptually
understandable, is difficult to use in practice because it requires computing essentially infinite-dimensional
derivatives. Thus the bootstrap is used in lieu of the direct estimation of the influence function. However,
standard variance bootstrap is inefficient because of the entanglement of the Monte Carlo and input data
noises, which necessitates washing away the Monte Carlo noises via a large amount of simulation runs. This
phenomenon has been pointed out in Lam and Qian (2021) even when only real-valued target quantities
are considered. To address this computational challenge, we generalize the idea in Lam and Qian (2021)
to devise a subsampling method where we draw a resample of smaller size than the original input data
size, at the outer layer of a nested simulation scheme used to bootstrap estimate the covariance function.

The rest of this paper is as follows. Section 2 introduces the input uncertainty problem for the stochastic
simulation output distribution. Section 3 briefly discusses the theory of the input uncertainty quantification
for the distribution function. Section 4 then explains and presents the algorithms for estimating the covariance
function of the Gaussian process and constructing the confidence bands. Finally Section 5 displays some
supporting numerical results.

2 DISTRIBUTIONAL INPUT UNCERTAINTY PROBLEM

Consider a stochastic simulation model where each run outputs a target quantity, say Y , that follows a
distribution Q. This simulation model can depend on m input distributions P := (P1, . . . ,Pm), so we may write
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Q = Q(P) which highlights that the output distribution depends on the input distributions. For example,
think of a queuing system with two input distributions where P1 denotes the inter-arrival time distribution
and P2 denotes the service time distribution. The quantity Y can be the average waiting time of the first
10 customers in a queue, which follows some distribution Q(P).

Suppose we face input uncertainty for the stochastic simulation model, i.e., the true input distributions
are unknown. Instead, we have a finite number of data points for each distribution, say {Xi, j : i= 1, . . . ,m, j =
1, . . . ,ni} where Xi, j, j = 1, . . . ,ni are i.i.d. random variables from Pi and they are independent for different
i’s. In order to obtain an approximate distribution of Y , we need to drive the simulation model using an
estimate of P. A natural choice is the empirical distribution P̂ := (P̂1, . . . , P̂m) constructed from the data

P̂i(·) =
1
ni

ni

∑
j=1

δXi, j(·),

where δx denotes the degenerate Dirac measure at x. Then, pretending that the empirical distributions are
accurate enough, we use them to drive Re simulation runs to obtain Re output samples such as the average
waiting time.

The output estimator we just mentioned contains statistical noises coming from both the external data
used to calibrate the input distributions, and the Monte Carlo noise in running the simulation model. To
conduct statistically valid inference for Y , we need to quantify both sources of noises. Existing literature
mainly focuses on inferring a real-value performance measure, e.g., the expected value E[Y ]. In this paper,
we are interested in the inference of the entire output distribution which, depending on the downstream
decision-making tasks, could give more complete and useful information about the aleatory uncertainty of
the output.

More precisely, our goal is to construct simultaneous confidence bands for the output distribution
function. For convenience, let Q(t,P) = PP(Y ≤ t) denote the true output distribution function where the
subscript P makes clear that Y is the output generated using the true unknown input distributions P. We
would like to find two functions L(t) and U(t) such that

P(L(t)≤ Q(t,P)≤U(t) ∀t ∈ R)→ 1−α, (1)

where 1−α is a pre-specified confidence level, e.g., 95%, where the limit is taken as ni and Re get large.
To get a sense of how one can construct these L(t) and U(t), note that when we do not have noises

in calibrating the input distribution (i.e., suppose we know the input distributions completely), the only
uncertainty is from the Monte Carlo runs, and in this case we can use, for instance, the KS statistic. Suppose
the true distribution function Q(t,P) is continuous in t. Let Q̂(t,P) be the output empirical distribution
constructed from Re simulation runs driven by the input distribution P, i.e.,

Q̂(t,P) =
1
Re

Re

∑
r=1

I(Yr ≤ t),

where Yr,r = 1, . . . ,Re denote i.i.d. Monte Carlo outputs from the simulation model. Then the confidence
band (1) is accomplished with

L(t) = Q̂(t,P)− q1−α√
Re

, U(t) = Q̂(t,P)+
q1−α√

Re
,

where q1−α is the (1−α)-quantile of the asymptotic of the KS statistic, namely sups∈[0,1] |BB(s)| where
BB(·) is a standard Brownian bridge. The above L and U are piece-wise constant and can be computed
readily. Thus, when there is no input uncertainty, the problem straightforwardly reduces to the classical
goodness-of-fit problem.

However, when the input distributions need to be calibrated from external data, the above L and U
would under-cover the true output distribution Q(t,P), because they have ignored this additional source of
input noise. To remedy this, we need to properly inflate the variability of the considered statistic. This is
discussed next.
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3 A STATISTIC TO QUANTIFY DISTRIBUTIONAL INPUT UNCERTAINTY

We describe our procedure to construct confidence band for the entire output distribution. Along the way,
we explain the statistical underpinnings and briefly discuss the mathematical theory.

Let n = (1/m)∑
m
i=1 ni be the average data size. We assume the data sizes are balanced, i.e.,

lim
n→∞

ni/n = βi > 0,∀i = 1, . . . ,m. (2)

Then we have the following approximation results when n and Re are large:

Q̂(t, P̂)−Q(t,P) = [Q(t, P̂)−Q(t,P)]+ [Q̂(t, P̂)−Q(t, P̂)]
d
≈ G(t)√

n
+

BB(Q(t,P))√
Re

, (3)

and consequently

sup
t∈R

|Q̂(t, P̂)−Q(t,P)| d≈ sup
t∈R

∣∣∣∣G(t)√
n

+
BB(Q(t,P))√

Re

∣∣∣∣ , (4)

where G(t)/
√

n is an approximation of Q(t, P̂)−Q(t,P) and BB(Q(t,P))/
√

Re is an approximation of
Q̂(t, P̂)−Q(t, P̂). Here, BB(Q(t,P)) is a Brownian bridge with changed time scale Q(t,P), t ∈R, and G(t)
is a Gaussian process independent of BB(Q(t,P)) with domain on R, mean zero, and covariance structure
given by

Cov(G(t),G(s)) =
m

∑
i=1

1
βi

Cov(IFi(t,Xi;P), IFi(s,Xi;P)),

where Xi follows the distribution Pi and IFi(t,x;P) is the so-called influence function of Q(t,P) for the i-th
input distribution defined as

IFi(t,x;P) = lim
ε↓0

Q(t,P1, . . . ,Pi−1,(1− ε)Pi + εδx,Pi+1, . . . ,Pm)−Q(t,P)
ε

.

The influence function IFi(t,x;P) signifies the functional gradient or the Gateaux derivative of Q(t,P)
with respect to the i-th input distribution Pi (see Wasserman (2006) Section 2.3 and Serfling (2009)
Chapter 6). It has mean zero under Pi, i.e., EPi [IFi(t,Xi;P)] = 0. Now we briefly explain why the
approximation in (3) holds. For the Brownian bridge part, when n is large, we have P̂ ≈ P. Therefore,

Q̂(t, P̂)−Q(t, P̂) ≈ Q̂(t,P)−Q(t,P)
d
≈ BB(Q(t,P))/

√
Re where the second approximation is due to the

Donsker Theorem (see, e.g., Van der Vaart (2000) Theorem 19.3). Then we explain how to obtain the
Gaussian process G(t), especially how we obtain the form of its covariance function. Since the influence
function can serve as the first order Taylor expansion of the statistical functional, we can obtain

Q(t, P̂)−Q(t,P)≈
m

∑
i=1

∫
IFi(t,x;P)d(P̂i(x)−Pi(x)) =

m

∑
i=1

1
ni

ni

∑
j=1

IFi(t,Xi, j;P),

where the equality follows from the mean zero property of IFi(t,x;P) under Pi. Now using the independence
among Xi, j’s, balanced data assumption in (2) and multivariate central limit theorem, we can easily show
that

√
n

(
m

∑
i=1

1
ni

ni

∑
j=1

IFi(t,Xi, j;P)

)
f .d.→ G(t), t ∈ R,

where
f .d.→ means any finite dimensional distribution of the left hand side (LHS) process converges in

distribution to the corresponding finite dimensional distribution of the right hand side process. The
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argument is rigorized via proper checking of tightness, control of remainder terms in the linearization, and
asymptotic independence between the components elicited by the Monte Carlo and input data noises.

Based on the approximation in (4), if we can estimate the (1−α)-quantile of

sup
t∈R

∣∣∣∣G(t)√
n

+
BB(Q(t,P))√

Re

∣∣∣∣
say q̃1−α , then a statistically valid pair of confidence bands is given by

L(t) = Q̂(t, P̂)− q̃1−α , U(t) = Q̂(t, P̂)+ q̃1−α , (5)

which are readily computable since they are piece-wise constant.

4 CONFIDENCE BAND CONSTRUCTION

In view of the approximation (4), in order to construct a (1−α)-level confidence band for Q(t,P), the key
is to estimate the (1−α)-quantile of the random variable

sup
t∈R

∣∣∣∣G(t)√
n

+
BB(Q(t,P))√

Re

∣∣∣∣
Exact simulation is hard to implement since it contains the supremum over the whole real line. To this
end, we discretize t on a grid over the real line, say t1, . . . , tk and replace the supremum over t ∈ R with
the maximum over t ∈ {t1, . . . , tk}, i.e.,

max
i=1,...,k

∣∣∣∣G(ti)√
n

+
BB(Q(ti,P))√

Re

∣∣∣∣ d
≈ sup

t∈R

∣∣∣∣G(t)√
n

+
BB(Q(t,P))√

Re

∣∣∣∣ . (6)

If we simulate the quantile of the LHS random variable in (6) and construct the confidence band like (5),
we actually end up giving a statistically valid confidence band only at these discrete values. But when the
discretization scale is refined enough, this discretized confidence band becomes an accurate approximation
and its natural extrapolation should cover the true distribution function in R with probability close to
the nominal level. Therefore, we next aim at estimating the quantile of the LHS random variable in (6).
BB(Q(ti,P)) can be easily approximated by BB(Q̂(ti, P̂)). But approximating G(ti) or equivalently G(ti)/

√
n

is more complicated. Note that G(t) is a mean-zero Gaussian process. In order to simulate G(t), it suffices
to know its covariance function. However, the covariance function is hard to obtain since it involves the
influence function which is not easy to compute in general. In this paper, we resort to the bootstrap to
estimate the covariance function. In particular we will use subsampling to relieve the computation burden.

4.1 Subsampling to Estimate Covariance Function

Recall that we have ni data points Xi, j, j = 1, . . . ,ni for the i-th input distribution Pi. We specifiy a subsample
ratio θ ∈ (0,1], and compute si = ⌊θni⌋,∀i = 1, . . . ,m as the subsample sizes. Based on the approximation
(3), we have

nCov(Q(t, P̂),Q(s, P̂))≈ Cov(G(t),G(s)). (7)

At this point, we could consider using the bootstrap to approximate the LHS. However, note that the
bootstrap requires a nested simulation where in the outer layer, we resample the input distributions and, in
the inner layer, we use the resample distribtuions to drive simulation runs to obtain the output distributions.
The issue with a naive use of the bootstrap in this context is that the total required simulation effort can be
huge (see Lam and Qian (2021) Section 2.3), essentially an amount that can wash away the Monte Carlo
noises. More concretely, as shown in Lam and Qian (2021), this amount is of larger order than the data
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size itself. To remedy this computational demand, we utilize a generalization of Lam and Qian (2021)
to devise a subsampling procedure. This procedure aims to exploit the form of the covariance in (7) that
scales with the data size n and turns out to reduce the computational demand from a larger order than n
to an order that is independent of n.

To explain our procedure, let X∗
i,1, . . . ,X

∗
i,si

be random resamples uniformly drawn with replacement
from Xi,1, . . . ,Xi,ni and let P̂∗

i,si
= (1/si)∑

si
j=1 δX∗

i, j
be the corresponding subsample empirical distribution.

Denote P̂∗
θ = (P̂∗

1,s1
, . . . , P̂∗

m,sm
). Using the rationale of the bootstrap, we can approximate the LHS of (7) as

follows
θnCov∗(Q(t, P̂∗

θ ),Q(s, P̂∗
θ ))≈ nCov(Q(t, P̂),Q(s, P̂))≈ Cov(G(t),G(s)),

and consequently we obtain

θCov∗(Q(t, P̂∗
θ ),Q(s, P̂∗

θ ))≈ Cov
(
G(t)√

n
,
G(s)√

n

)
, (8)

where Cov∗ denotes the covariance conditional on the input data. Note that we rescale the covariance in
the LHS of (8) by θ because we are estimating a quantity of order 1/n. When we use the smaller average
data size s = (1/m)∑

m
i=1 si in our subsampling, the estimated quantity we get is of order 1/s = 1/θn. The

rescaling factor θ thus helps us retain correct estimation for the original quantity of interest.
To implement the approximation in (8), for b = 1, . . . ,B, we uniformly sample with replacement

from Xi,1, . . . ,Xi,ni si times to obtain X∗b
i,1 , . . . ,X

∗b
i,si

. Then we construct the subsample empirical distribution

P̂∗b
i,si

= (1/si)∑
si
j=1 δX∗b

i, j
and let P̂∗b

θ = (P̂∗b
1,s1

, . . . , P̂∗b
m,sm

). We use P̂∗b
θ to drive R independent simulation runs

to obtain R outputs Y ∗b
r ,r = 1, . . . ,R and then construct the empirical output distribution as follows

Q̂(t, P̂∗b
θ ) =

1
R

R

∑
r=1

I(Y ∗b
r ≤ t).

Then we use the ANOVA-based estimator to estimate the covariance in (8):

θ

(
1

B−1

B

∑
b=1

(Q̂(t, P̂∗b
θ )− Q̄(t))(Q̂(s, P̂∗b

θ )− Q̄(s))

− 1
BR(R−1)

B

∑
b=1

R

∑
r=1

(I(Y ∗b
r ≤ t)− Q̂(t, P̂∗b

θ ))(I(Y ∗b
r ≤ s)− Q̂(s, P̂∗b

θ ))

)
,

where Q̄(·) = (1/B)∑
B
b=1 Q̂(·, P̂∗b

θ ) is the sample mean of Q̂(·, P̂∗b
θ ). We can show this estimator is unbiased

for estimating the LHS of (8) conditional on the input data. Algorithm 1 summarizes the procedure to
estimate the covariance matrix of G(t)/

√
n for t = t1, . . . , tk. Importantly, this estimator allows to use less

simulation effort than the standard bootstrap by choosing s to be much smaller than n, while still retaining
meaningful statistical consistency.

4.2 Confidence Band Construction for the Output Distribution Function

Once we obtain the estimated covariance matrix V returned by Algorithm 1, we can simulate a k-dimensional
Gaussian vector (Z1, . . . ,Zk)∼ N(0,V ) as the estimator for (G(t1)/

√
n, . . . ,G(tk)/

√
n). We can also simu-

late (W1, . . . ,Wk)
d
= (BB(Q̂(t1, P̂)), . . . ,BB(Q̂(tk, P̂))) as the estimator for (BB(Q(t1,P)), . . . ,BB(Q(tk,P))).

Since the processes G(t) and BB(Q(t,P)) are independent, the simulation procedures of (Z1, . . . ,Zk) and
(W1, . . . ,Wk) should also be independent, conditional on the input data. Now in view of the approximation
(6), we can deduce that

max
j=1,...,k

∣∣∣∣Z j +
Wj√

Re

∣∣∣∣ d
≈ sup

t∈R

∣∣∣∣G(t)√
n

+
BB(Q(t,P))√

Re

∣∣∣∣ . (9)
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Algorithm 1 Subsampling to Estimate Covariance Matrix
Inputs: B, R, observed inputs {Xi, j : i = 1, . . . ,m, j = 1, . . . ,ni}, subsample ratio θ , a grid {tl : l =
1, . . . ,k}

Compute si = ⌊θni⌋, i = 1, . . . ,m
for b = 1, . . . ,B do

For each i = 1, . . . ,m draw a subsample X∗b
i = {X∗b

i,1 , . . . ,X
∗b
i,si
} uniformly with replacement from the

input {Xi,1, . . . ,Xi,ni}. Form resample empirical distribution P̂∗b
i,si

Let P̂∗b
θ = (P̂∗b

1,s1
, . . . , P̂∗b

m,sm
)

for r = 1 . . .R do
Simulate Ŷ ∗b

r = f (P̂∗b
θ ) from the stochastic simulation model f

end for
Form empirical distribution for Q̂(·, P̂∗b

θ ) at points {tl : l = 1, . . . ,k}:
Q̂(tl, P̂

∗b
θ ) = 1

R ∑
R
r=1 I(Y ∗b

r ≤ tl), l = 1, . . . ,k
end for
Q̄(tl) = 1

B ∑
B
b=1 Q̂(tl, P̂

∗b
θ ), where l = 1, . . . ,k

Compute the estimated covariance matrix V ∈ Rk×k at points {tl : l = 1, . . . ,k} from B empirical distri-
butions constructed from the subsampled runs:

Vi, j = θ

(
1

B−1

B

∑
b=1

(Q̂(ti, P̂
∗b
θ )− Q̄(ti))(Q̂(t j, P̂

∗b
θ )− Q̄(t j))

− 1
BR(R−1)

B

∑
b=1

R

∑
r=1

(I(Y ∗b
r ≤ ti)− Q̂(ti, P̂

∗b
θ ))(I(Y ∗b

r ≤ t j)− Q̂(t j, P̂
∗b
θ )

)

return V

Thus, the quantile of the LHS distribution in (9) can be taken as the approximation of the quantile of the
RHS distribution in (9).

To estimate the quantile of the LHS distribution in (9), we independently repeat the above Rq times
and output the (1−α)-quantile of

max
j=1,...,k

∣∣∣∣∣Zi
j +

W i
j√

Re

∣∣∣∣∣ , i = 1, . . . ,Rq

as q̃1−α . Based on (4), a statistically valid pair of confidence bands on the discretized time grid is given by

L(tl) = Q̂(tl, P̂)− q̃1−α , U(tl) = Q̂(tl, P̂)+ q̃1−α , ∀l = 1, . . . ,k,

where Q̂(tl, P̂) = (1/Re)∑
Re
r=1 I(Yr ≤ tl) and Yr,r = 1, . . . ,Re are i.i.d. outputs of the simulation model

driven by the empirical input distribution P̂. We summarize our confidence band construction procedure
in Algorithm 2.

5 NUMERICAL EXPERIMENTS

We conduct experiments on an M/M/1 queue and report our experimental findings. This system has 2 input
distributions P = (P1,P2) where P1 denotes the inter-arrival time distribution and P2 denotes the service
time distribution, for which we have n1 and n2 i.i.d. data points available respectively. We consider two
ground truths, one with arrival rate 0.5 and service rate 1, and another with arrival rate 0.9 and service
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Algorithm 2 Construction of Confidence Band for the Output Distribution Function
Inputs: Re, Rq, α , observed inputs {Xi, j : i = 1, . . . ,m, j = 1, . . . ,ni}, a grid {tl : l = 1, . . . ,k}, estimated
covariance matrix V

for r = 1, . . . ,Re do
Yr = f (P̂) from the stochastic simulation model f

end for
Form empirical distribution for Q̂(·, P̂) at points {tl : l = 1, . . . ,k}:
Q̂(tl, P̂) = 1

Re
∑

Re
r=1 I(Yr ≤ tl), l = 1, . . . ,k

for i = 1, . . . ,Rq do
Simulate Zi = (Zi

1, . . . ,Z
i
k) from the k-dimensional Gaussian random vector N(0,V )

Simulate W i = (W i
1, . . . ,W

i
k) as a time transformed discretized brownian bridge BB(Q̂(tl, P̂)), l = 1, . . . ,k

ei = max
j=1,...,k

∣∣∣Zi
j +

W i
j√

Re

∣∣∣
end for
Find q̃1−α = (1−α)-quantile of e1, . . . ,eRq

return L(·) = Q̂(·, P̂)− q̃1−α and U(·) = Q̂(·, P̂)+ q̃1−α

rate 1. To satisfy the balanced data condition (2), we choose n2 = 2n1 in both settings and we only report
mini ni for convenience. Our goal is to estimate the entire distribution of the average waiting time of the
first 10 customers entering the system, more precisely the 95%-level confidence band for the distribution
of W̄10, the average waiting time of the first 10 customers. i.e., Q(t,P) = EP[1{W̄10 ≤ t}].

In the experiments, we validate the performance of our procedure and investigate the impact of procedural
parameters: subsample ratio θ , subsampling split between outer loop B and inner loop R when estimating
the covariance matrix by Algorithm 1, and provide practical guidelines for choosing these parameters.
Moreover, we investigate the budget split between Algorithms 1 and 2. Note that Algorithm 1 consists of
Rv = BR simulation model runs for the estimation of the covariance matrix while Algorithm 2 consists of
Re simulation model runs for the estimation of Q̂(·, P̂). Suppose we are given a total budget of N simulation
runs (the total number of times we can run the stochastic simulation model) and we allocate Rv to estimate
the covariance matrix V and Re = N−Rv to compute the CDF estimator Q̂(·, P̂). We investigate the optimal
split between Rv and Re. Here we do not take into account the Rq runs in Algorithm 2 because it does
not require running the simulation model, but rather just the generation of normal vectors and thus the
runtime is relatively negligible. The performances of different configurations are measured by the coverage
probability as well as the width of the confidence band.

5.1 Performance Validation and Guidelines for Algorithmic Configuration

We validate and examine the performance of a wide range of selections of θ ,B,R. For each exam-
ple and for input data size ranging from 300 to 2000, we test different combinations of θ ,B,R. The
subsample size θ mini ni ∈ {5,30,60,90} and the budge allocation (B,R) ∈ {(10,100),(12,80),(16,60),
(25,40),(40,25),(200,5)} when Rv = 1000 and B = ⌊Rv/R⌋. We also consider the case when we have
a smaller budget Rv = 500 and test the corresponding budget allocation (B,R) ∈ {(5,100),(6,80),(8,60),
(12,40),(20,25),(100,5)}.

To calculate the coverage probability of the estimated confidence band, we first run the simulation model
with the true input distributions (exponential distributions in the M/M/1 case) 100000 times to approximate
the true output distribution. When the number of simulation runs is large enough, the empirical output
distribution we constructed with the true input distributions is a good enough approximation of the true output
distribution. We then perform 200 independent runs of the confidence band construction procedure and
report the percentage of runs in which the constructed confidence band covers the true output distribution.
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We first establish a guideline for choosing the optimal allocation between B and R given a subsample size
θ mini ni. As shown in Figures 1-3, for different θ mini ni, the optimal R is generally between (2/3)θ mini ni
and θ mini ni since larger R results in undercoverage while smaller R produces a much wider confidence
band which is less informative and leads to overcoverage. As observed from Figures 1-3, when R is below
(2/3)θ mini ni, most of the experiments have 100% coverage probability and thus these confidence bands
are too conservative. To verify that this selection of R is independent of the simulation budget Rv, we also
take a look at Rv = 500 in Figure 4 and observe a similar optimal choice of R. We therefore conclude that
R ∈ [(2/3)θ mini ni,θ mini ni] is recommended as a practical choice in budget allocation.
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Figure 1: Coverage probability and confidence band width for different R with Rv = 1000 and θ mini ni = 30.
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Figure 2: Coverage probability and confidence band width for different R with Rv = 1000 and θ mini ni = 60.
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Figure 3: Coverage probability and confidence band width for different R with Rv = 1000 and θ mini ni = 90.

We then investigate the optimal subsample size. We compare the performance as θ mini ni varies with
optimally tuned R = θ mini ni. In Figure 5, we see that almost all cases have a good coverage probability
close to the nominal level 95%. A small subsample size such as 5 gives us a slightly wider confidence band
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and lower coverage probability in most cases compared to moderately larger subsample size. Choosing a
moderate subsample size such as 30 gives us a fairly accurate coverage with narrower confidence band.
Increasing the subsample size from 30 results in a wider confidence band. We therefore recommend
choosing subsample size θ mini ni ≈ 30.
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Figure 4: Coverage probability and confidence band width for different R with Rv = 500 and θ mini ni = 60.
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Figure 5: Coverage probability and confidence band width for different θ mini ni with optimally tuned R.

5.2 Budget Split between Covariance Matrix Estimation and Distribution Function Construction

We also investigate the optimal split between Rv and Re given a total budget N. Assume that we have total
budget N = 1000 to be allocated to Rv and Re. Based on the practical guidelines for choosing R and θ mini ni
in Section 5.1, we fix the optimal subsample size θ mini ni = 30 and optimal R = θ mini ni = 30 in all cases
and only vary Rv. We try six different splits Rv = 90,180,300,510,690,900 (accordingly, Re = 1000−Rv).
From Figure 6, we see that Rv = 180 or Rv = 300 is generally a good choice of budget assigned to covariance
matrix estimation in all cases. Such an allocation gives us the tightest confidence band while having the
proper coverage probability. Therefore, we suggest that given a fixed total budget N, we assign 20%-30%
to the estimation of covariance matrix and allocate the rest to estimate the output distribution function.
This practical guideline is also verified when the total budget is increased to N = 1500, from which we
observe that the optimal Rv is around 300-500 (we do not present a figure for N = 1500 due to page limit) .
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