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ABSTRACT

Stochastic Simulation Algorithms are widely used for simulating reaction networks in cellular biology.
Due to the stochastic nature of models and the large parameter spaces involved, many simulation runs are
frequently needed. We approach the computational challenge by expanding the hardware used for execution
by massively parallel graphical processing units (GPUs) to execute these ensembles of runs concurrently in
a form of coarse-grained parallelization. Such computing infrastructure in the form of GPUs is readily
available in desktop workstations and clusters but is not commonly exploited as part of stochastic simulation
studies. Building on the existing literature in the field, we employ state-of-the-art algorithms to study the
degree to which GPUs can augment the computation resources available for ensemble studies. Furthermore,
the challenge of efficient work assignment given the GPU’s synchronous mode of execution is explored.
There are several algorithmic tradeoffs to consider for models with different execution characteristics,
which we investigate in a performance study across four different models. To explore the limitations of the
GPU-based simulators, the performance characteristics when executing large models are compared to those
of highly optimized CPU simulators. Our results indicate that for some models adding a typical desktop
GPU has a similar effect on performance as up to 40 added CPU cores.

1 INTRODUCTION

Alongside traditional wet-lab experiments, simulation has evolved to be a core branch of scientific work in
the domain of cellular biology. One particularly successful class of models is that of (stochastic) reaction
networks (Loskot et al. 2019). For this model type, the system’s state consists of specific amounts of various
species or reactants. Only the total amount of each species is considered, not their spatial distribution as an
approximation of the well-stirred system (Gillespie 2007). The amounts are propagated through time using
a set of reactions. Each reaction updates the state vector by decreasing the amount of some species and
increasing the number of others. The likelihood of a reaction firing (or, more generally, the speed of the
reaction) is determined by the propensity. This propensity is a function of the current state of the system.
The most common way to calculate the propensity is through mass action kinetics where the propensity is
proportional to the product of the amount of the individual reactants multiplied with a reaction constant.
Reaction networks can be executed deterministically or stochastically. In the latter case, which we will
focus on for this work, instead of mapping the reaction network into a set of coupled differential equations,
a stochastic simulation algorithm (SSA) executes individual reactions stochastically as discrete events in
continuous time, and updates time and state vector accordingly. Thereby, most of the SSAs (as does our
approach) assume the time intervals between successive events to be exponentially distributed.
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step(): step():
k = select_weighted_random(propensities) k = select_weighted_random(propensities)
execute_reaction(k) execute_reaction(k)
for 1 in all_reactions: for 1 in dependent_reactions(k):
propensity[i] = calc_propensity(i) propensity[i] = calc_propensity(i)
(a) Direct method (b) Optimized method

Figure 1: Pseudocode excerpt for a simulation step in two stochastic simulation algorithms.

Stochastic simulations are computationally expensive, and due to their stochasticity require multiple
replications. Most simulation experiments also rely on the variation of parameter configurations, e.g.,
simulation-based optimization, sensitivity analysis, or general parameter scanning (Kleijnen et al. 2005),
increasing the required number of computations further. In this work, we will focus on the problem of
replications, but the concepts introduced are also suitable for parameter studies.

The computationally challenging portion of SSA consists of two parts: randomly selecting a reaction to
fire, weighted by its computed propensity, and updating the state and its propensities. The Direct Method
(DM) (Gillespie 1977) (and its equivalent formulation, the First Reaction Method (FRM) (Gillespie 1976))
compute all propensities for all reactions at every step. A far more efficient approach for larger systems
is to use a dependency graph to only update those propensities that could have changed. The difference
in pseudocode of the two approaches is shown in Fig. 1. This dependency-based approach is used in
the Optimized Direct Method (ODM) (Cao et al. 2004) for the DM and in the Next Reaction Method
(NRM) (Gibson and Bruck 2000) for the FRM.

In addition to these algorithmic improvements, parallelization is another option to increase simulation
performance (Fujimoto 2016). However, the steps in SSA are often tightly coupled as each executed reaction
may change the propensities of many other possible reactions. Since each step is relatively fast (less than a
microsecond), efficient fine-grained parallelization (i.e., of a single replication) is challenging (Dematté
and Prandi 2010). As many replications have to be executed, a coarse-grained parallelization across large
numbers of replications (also called ensembles), provides another viable option to increase the performance
of SSA simulations, also on the GPU (Li and Petzold 2010).

Code generation is an established technique to generate an executable with minimal overhead from
generic functionality (Futamura 1999). By providing the compiler with both the simulation algorithm and
the specific model, compiler optimizations can consider the simulation as a whole. Code generation works
particularly well in the context of SSA, where a large part of the computational load lies in computing
model-specific (propensity) expressions (Koster et al. 2022).

Our aim is to study the extent to which GPU implementations following state-of-the-art principles can
augment the computational power provided by traditional CPU-based implementations in large ensemble
studies. To this end, we present detailed performance measurements of three variants of SSA on GPUs
across models with different execution characteristics and scales. Our simulator implementations, data and
experiment scripts are publicly available (https://git.informatik.uni-rostock.de/mosi/gpu-ssa-ensemble).

2 BACKGROUND AND RELATED WORK

In the following, we introduce the hardware characteristics of GPUs as well as the existing work on
GPU-based acceleration of ensembles of SSA simulations.

2.1 General-Purpose Computing on GPUs

GPUs have evolved from fixed-function hardware targeting the rendering of three-dimensional scenes
to general-purpose accelerators widely available in machines ranging from laptops to supercomputers.
Common GPU frameworks such as OpenCL (Khronos OpenCL Working Group, Beaverton, OR, USA
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2011) and NVIDIA CUDA (Cook 2012) allow developers to specify GPU programs, referred to as kernels,
on the level of individual GPU threads. Threads are grouped into sets of a hardware-specific size of 32 or
64 threads referred to as warps or wavefronts. Within a warp, threads operate in lockstep. Hence, if the
control flow of the threads within a warp diverges, all branches are taken in sequence while discarding
unneeded results. In addition, if adjacent threads access adjacent locations in memory, the accesses are
coalesced into a single memory transaction served as one.

Due to the architectural focus on executing thousands of arithmetic operations in parallel rather than on
control flow and caches, algorithms involving regular control flow and memory access patterns are a natural
fit for GPU-based parallelization. Although simulations often involve sparse and irregular computations and
thus require GPU-specific adaptations and optimizations, simulations from various domains, including cell
biology, have been shown to benefit immensely from GPU-based parallelization given suitable choices of
algorithms and data structures (Park and Fishwick 2010; Zhu et al. 2011; Xiao et al. 2019).

2.2 SSA on GPUs

The parallelization strategies for GPU-accelerated SSA simulations found in the literature can be divided
into two groups. In coarse-grained parallelization, multiple entire simulations are executed in parallel.
Fine-grained parallelization, on the other hand, also parallelizes individual simulations, in addition to
executing multiple simulations concurrently, for instance in (Sumiyoshi et al. 2015). In the Direct Method,
for example, a fine-grained approach may parallelize the updates of the population counts and propensities.
The choice between coarse-grained or fine-grained parallelization determines the amount of GPU resources
that can be dedicated to each individual simulation run. Fine-grained approaches can utilize many parallel
threads to execute a single run. Hence, coarse-grained parallelization, which is the prevalent method in the
literature, focuses on supporting particularly large numbers of replications of comparatively small model
instances.

The Direct Method is used in these implementations (Jenkins and Peterson 2010; Klingbeil et al.
2012; Sumiyoshi et al. 2015), as its relatively simple control flow makes it reasonably straightforward
to map to GPU execution. The simulator in (Li and Petzold 2010) uses the Logarithmic Direct Method.
Dependency graph-based methods perform better for larger models, but are more difficult to implement and
less prevalent in the literature. In (Klingbeil et al. 2011), the Next Reaction Method and the Logarithmic
Direct Method are implemented in addition to the Direct Method. The closest existing work to ours presents
an implementation of the Optimized Direct Method (Komarov and D’Souza 2012). To enable additional
fine-grained parallelization, propensity values and their respective sums are updated in parallel using a
prefix sum algorithm.

GPUs achieve highest performance when executing programs with largely homogeneous control flow
and memory access patterns, which runs counter to the sparsity and heterogeneity of the computations
involved when executing various parametrizations and replications of stochastic simulations in parallel.
Thus, GPU-based SSA implementations require careful consideration of the GPU’s execution model and
hardware properties. A frequently employed means of optimizing execution speed is the efficient usage of
the GPU’s memory hierarchy. For instance, (Klingbeil et al. 2012) analyzes different data structures to store
model parametrizations in fast read-only regions of GPU memory. Consideration is also given to dense and
compressed storage of data (Komarov and D’Souza 2012). In our work, we generate specialized simulators
using partial evaluation via code generation (Futamura 1999), in which full knowledge of the considered
model is available during compilation, allowing the compiler to generate optimized model-specific machine
code. We previously demonstrated the benefits of code generation for CPU-based SSA (Koster et al.
2022). In the GPU context, code generation avoids the need for individual threads to traverse complex
data structures at simulation runtime and thus reduces the need for manual optimization of memory access
patterns.

The issue of thread divergence can be addressed by sorting the computations involved in different
simulation replications so that adjacent threads execute the same control flow (Kunz et al. 2012). We
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present detailed measurements assessing the performance benefits and overhead when sorting impending
reactions of SSA replications.

3 OUR APPROACH
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Figure 2: An illustration of the methods we use for efficient execution. On the CPU, different threads
do not interact and run independently (2a). When running on the GPU, different simulation steps of the
different replications in the ensemble diverge, leading to serialization (2b). An added initial sorting step
reduces divergence during execution (2c).

This section will give an overview of our approach to executing ensembles of SSA runs to GPU
execution, noting where we differ from and expand the state of the art. In contrast to most of the related
work, our approach uses the Optimized Direct Method (ODM) (Cao et al. 2004) in conjunction with code
generation. The ODM has known good scaling behavior. The used data structures are simpler than in the
NRM and thus lend themselves more to mapping to GPUs.

We considered three different approaches, all of which use coarse-grained parallelization, i.e., paral-
lelization across multiple simulations. In preliminary experiments with a fine-grained parallelization, we
observed no performance benefits for the models considered in this paper.

3.1 Code Generation

Traditionally, SSA simulators adhere to a strict separation between the simulator and the model comprised of
production rules and initial populations. In this approach, generic simulator procedures handle functionalities
such as the updating of propensities during a reaction, with dynamic concrete control flow and memory
accesses according to the model data. We have previously shown that the performance of CPU-based SSA
simulations can benefit immensely from code generation (Koster et al. 2020), which produces specialized
simulation code combining a simulator and a specific model. Code generation offers the opportunity for
compiler optimizations based on full knowledge of the simulator and the model. For instance, knowledge
of the dependencies among the reactions reveals the number of propensity updates per reaction type and the
affected propensities. In the GPU context, static optimizations of the memory access patterns may increase
the opportunities for memory access coalescing, at the potential cost of increased divergence given the
separation of update procedures by reaction type.
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3.2 Propensity Sorting

The selection of the next reaction to occur involves a weighted sampling from the list of propensities. By
sorting the propensities based on values gathered from previous simulation runs, as originally described
in the context of the ODM (Cao et al. 2004), more efficient sampling can be achieved. The goal of the
propensity sorting is to speed up the linear reaction selection by moving frequently firing reaction to
the beginning of the array to be searched. The sorting occurs only once as a preprocessing step. Initial
simulation runs are executed to count how often each reaction fires in the course of a simulation. The
propensity list is then sorted using these reaction counts as estimates for future simulations.

3.3 Computation Sorting

As a first approach, we implemented an ODM simulation step in a single kernel that updates the populations
and propensities affected by a reaction. ODM employs a dependency graph to avoid unnecessary updates.
Thus, in a given simulation step, the different replications may execute different reactions which causes
GPU threads within a warp to diverge both in the execution and the update step (Fig. 1b). The resulting
serialization within warps is illustrated in Figure 2b. In this first approach, we do not mitigate the effects of
divergence.

This can be contrasted with the Direct Method, which recalculates all propensities (Fig. 1a) after every
reaction and thus does not scale well to large reaction counts. However, since the Direct Method lends
itself to straightforward implementation targeting GPUs, we will use it as a baseline in our experiments.

Our second approach aims to minimize divergence by sorting the replications by the reaction they
choose in each simulation step. The basic simulation algorithm and its implementation remains unchanged.
However, simulation replications are allocated to the threads in a sorted fashion according to the selected
reactions. This increases the likelihood that identical reactions occur in adjacent threads, reducing divergence.
The sorting introduces additional computational as well as memory access overhead. It should, however,
decrease thread divergence, because most consecutive threads execute the same reactions, as long as the
number of possible reactions in the system is significantly smaller than the number of threads times the
number of replications. Figure 2c visualizes how the sorting takes additional execution time, but increases
the effective parallelism. For contrast, we also show the execution on a CPU (cf. Fig. 2a): since CPU
threads work largely independently of each other, the individual simulations can progress independently.

We implemented two different variants of sorting. In the logical sorting method, only an index map
is sorted based on the next reaction indices. The simulation variables are then accessed according to the
sorted map so that most consecutive threads execute the same reaction. The physical sorting method, on
the other hand, rearranges all simulation state variables based on the chosen next reactions in memory. The
main difference between these sorting methods lies in the resulting access patterns to the simulation state
memory. Since only an index map is sorted within the logical sorting method, the memory accesses made
by adjacent threads are still scattered to different portions of the simulation state, limiting the opportunities
for memory access coalescing (cf. Section 2.2).

A more favorable memory access pattern is achieved by the physical sorting method, in which the n-th
thread processes the simulation variables at the n-th index. On the other hand, the physical sorting method
incurs a higher memory access overhead during the sorting step.

3.4 Implementation

Our GPU simulators are written in C++ and use NVIDIA CUDA together with the high-level library Thrust (Bell
et al. 2017), which provides data parallel primitives such as scans, sorts and reductions. The simulator code
and our plotting scripts are available at https://git.informatik.uni-rostock.de/mosi/gpu-ssa-ensemble.

We reused the model parsing source code from our previous work targeting CPUs (Koster et al. 2020)
but created a new GPU compatible simulator template. Code generation comes with a higher one-time cost
of compiling the generated code, but in our scenario of interest, this is of minor concern, as we are interested
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Table 1: Overview of the evaluated models, together with their respective amounts of species and reactions.
The model degree describes the average number of propensities (based on the dependency graph) that must
be updated after executing a single model reaction.

Model Species Reactions Degree
SIR with N regions 3N ~4N ~6
Decay dimerization 3 4 3
Multistate 9 18 7
Multisite 66 288 55

in many replications where these one-time costs amortize. Compilation times for small to medium-sized
models were similar to a larger CUDA program (On the order of 10 to 100 seconds for the models tested).

The next reaction indices for each replication are chosen through linear weighted random sampling. An
alternative would have been a binary search as described for the LDM (Li et al. 2006). We chose the linear
search for our implementation because it was originally described for the ODM (Cao et al. 2004), and in
our experience works well for many models of practical relevance when used in conjunction with propensity
sorting. For comparability, we use the linear search mode in both the GPU and the CPU simulators. The
ODM uses two random numbers in each simulation step for each replication. Those random numbers are
generated using the CUDA’s default XORWOW pseudo-random generator.

Our implementation deviates from the original descriptions from our CPU-based simulator (K&ster
et al. 2022) with respect to the updates of the sum of all propensities, which is required in each simulation
step. While those updated the propensity sum incrementally based on the change in the current step, our
preliminary experiments showed that in the GPU context, it is typically more efficient to sum all propensities
in each step instead.

4 EXPERIMENTS

We consider four models to test the suitability of the different simulators and to obtain a comparison to
the sequential implementation. Table 1 gives an overview of the models. To provide a comprehensive
comparison to a CPU-based execution, we include model instances larger than typically encountered in the
literature, where models with less than 10 reactions are prevalent.

The SIR (Susceptible, Infected, Recovered) model with regions is a variant of the classic SIR
model (Kendall 1956). The regular SIR model describes the course of a disease in a closed population.
Viewed as a reaction network, the model includes three species — Susceptible, Infected and Recovered —
which can react in the following two ways:

S+I—1+1 I—R.

The first reaction describes an infection and the second one a recovery. The SIR model with regions arranges
multiple of these SIR models in a circle. An example of our SIR region model with four regions is visualized
in Figure 3. The simulation is initialized with a single infected individual present in the overall system.

The decay dimerization model (Gillespie 2001) is based on the following four reactions that describe
the possible interactions between three species:

ST —0 S1+851 =85 S —S1+5; So — 83 .

We parametrized the model using the reaction rates and initial populations from (Gillespie 2001). All
simulations were executed up to a simulation time of 10. Simulation time here is the virtual time within the
model, measured in the model’s internal unit system.

The Multistate and the Multisite model (Blinov et al. 2004) represent typical biochemical networks.
Both were designed for the illustration of biochemical reaction networks and deal with the phosphorylation

2575



Koster, Herrmann, Andelfinger, and Uhrmacher

Region 1

~ @ @ @
\\

g

Figure 3: Structure of the SIR model with four regions.

as either different states of the molecules or at different sites of the molecules. They were simulated up to a
time of 10 and 4 respectively. The models have been used previously in a performance review (Gupta and
Mendes 2018) as well as for the evaluation of the CPU simulator (Koster et al. 2022) used as a baseline in
our performance evaluation.

4.1 Reference Simulators and Environment

We compare the performance of our GPU implementations to our CPU-based simulator (Koster et al. 2020).
This simulator implements a variant of the ODM and uses code generation in combination with partial
evaluation to create specialized simulators for different stochastic models. We previously showed that for
the Multistate and the Multisite model, this CPU-based simulator outperforms both the simulator integrated
into BioNetGen as well as the simulators evaluated in a recent performance review (Gupta and Mendes
2018; Koster et al. 2022).

In addition to our GPU simulator variants based on ODM, we implemented a baseline GPU simulator
using the original Direct Method without reaction sorting and code generation. While we expect the Direct
Method’s performance to be comparatively low for large models, this simulator variant provides an indication
of the performance of a basic SSA implementation on a GPU. The experiments with this simulator serve to
gain a better understanding on how the use of ODM, computation sorting, and code generation affects
the performance. The simulations were run on a Windows 10 system with an i7-8700K Intel CPU with
frequency scaling enabled, and an NVIDIA GeForce GTX 1070 GPU. The CPU simulator was evaluated
running in Debian 10.5 on the Windows Subsystem for Linux (WSL2). This simulator was compiled using
gce version 8.3.0. The CPU simulator was executed using a single CPU thread. The C++ compiler version
for the GPU simulators is 19.28.29912.0 (Visual Studio 16 2019) with CUDA version 10.2.

4.2 Results

In Figure 4, we give an overview of the different methods compared in our performance evaluation. The
results of the performance evaluation can be found in Figure 5. As a performance metric, we use the
wall-clock execution time in us per step, which makes simulation results easily comparable across simulators
and models. Five simulation runs consisting of many individual replications were executed to calculate the
average performance values for the GPU simulators. The CPU performance is calculated as the average of
ten measurements with 100 replications. All performance values are measured without code generation,
compilation, or initialization times. The initialization time includes initial memory allocation as well as
the transfer of initial simulation states to graphics memory. These costs amortize when running many
replications. To better understand the impact of sorting, we measured the time taken to sort explicitly.

To verify correctness, we configured the GPU simulators to output the entire system trajectory, which
involves substantial overhead. However, in real-world applications, the number of relevant observables
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Figure 4: Hierarchy and relation of methods used for evaluation. Colors correspond to those used in Fig. 5.
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can be assumed to be small, introducing only little overhead. We therefore performed the measurements
without output or storage of observations.

4.2.1 SIR Model with Regions

Figures 5a and 5b show the results for the performance measurements of two different model configurations
of the SIR model with regions. The results shown in Fig. 5a originate from simulations with 2! (= 32768)
replications and with a maximum simulation time of 20. Fig. 5b on the other hand, is based on simulations
with 229 (a2 10%) replications which run up to a simulation time of 10. The results show that the performance
of all simulators decreases with an increasing number of regions, which is to be expected as the reaction
selection becomes more computationally expensive with larger models. Apart from the possibility of
increased thread divergence due to larger numbers of reactions, the cost of the population and propensity
updates should be unaffected by different sizes of the SIR region model, since each reaction updates two
populations and at most six propensities.

However, in our GPU implementation, the cost of updating of the total propensity varies with different
model sizes as all individual propensities are traversed. Compared to any of the GPU simulators, the
performance of the sequential simulator is not as strongly affected by the varying model sizes. This can be
seen both in Figures 5a and 5b. We attribute the more significant influence of the model size on the GPU
simulators to the reaction selection and the recalculation of the total propensity. Linearly selecting the next
reactions for all threads within a warp delays the progress of all threads until the slowest selection has
completed. When the model instances grow in size and therefore have more possible reactions, it becomes
more likely that one thread takes longer to choose a reaction and in turn, slows down all threads in the
same warp. In addition, our implementation of the recalculation of the total propensities has to iterate over
all propensities and consequently slows down for instances with more reactions.

Overall, the non-sorting method has the highest execution speed. The CPU simulator performs best
only for large instances with relatively few replications. The GPU Direct Method performs well for small
instances of the SIR region model, but slows down with larger instances, because it lacks the optimizations
of the other simulators. Both sorting methods perform worse than the non-sorting method for this model. To
understand the trade-off between the sorting overhead and its benefit during the execution of a simulation
step, we also show results when subtracting the time spent on sorting. When disregarding the sorting
overhead, the execution speed of the physical sorting method exceeds that of the non-sorting method. This
shows that the additional sorting step has the potential to speed up the execution of the simulation steps.
Still, the overhead introduced by this method far outweighs the performance gain.
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Figure 5: Performance graphs for different models and simulators.

The logical sorting method has a lower memory access overhead since only the index map is sorted. In
contrast to the physical sorting method, subtracting the sorting overhead does not improve the performance
significantly. For low numbers of replications (Figure 5a), the performance without the overhead is
comparable to the non-sorting method. However, sorting only the indices when simulating many replications
(Figure 5b) lowers the performance significantly. This is because rearranging the indices results in a
non-optimal memory access pattern for the replication variables, which in turn provides fewer opportunities
for memory access coalescing. This effect worsens with more replications.

4.2.2 Decay Dimerization Model

The Figure 5c shows that the execution speed of the decay dimerization model on a GPU increases with
the number of replications. Overall, the execution speeds are higher than those of the SIR model, even
though the regular SIR model with only a single region has only two reactions and a model degree of two,
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compared to four decay dimerization reactions and a degree of three. This is because the SIR model may
terminate after just one simulation step if the single initially infected entity heals before infecting other
entities. The large variance in the simulation durations lowers the utilization of the GPU’s resources. In
contrast, the simulation durations of the decay dimerization model are more consistent, allowing for higher
GPU utilization.

Similar to the SIR model results, the performance of the GPU simulator without sorting increases
with the number of replications. Since the dimerization model is comparatively small and simple, the
execution speed of the GPU Direct Method is roughly within 20% of the non-sorting ODM across all
tested numbers of replications. Both sorting ODM simulators have similar execution characteristics up
to about 2'® (= 65536) replications. Beyond that point, the performance of the physical sorting method
increases further, whereas the speed of the logical sorting method stabilizes. When comparing the results to
those of the SIR model, the performance of the physical sorting ODM is approximately equal or greater
than that of the non-sorting ODM, but only when excluding the sorting overhead. The performance of the
non-sorting GPU simulator, as well as the GPU Direct Method, scales almost linearly with the number of
replications up to a certain number of replications, beyond which the experiment approaches full saturation
of the GPU resources. The performance of the GPU simulator without sorting increases linearly up to
about 2'* (= 16384) replications and saturates at a value of about 952 million simulation steps per second
(1.05 ns per step). This throughput is the highest one of all simulators and models that were evaluated as
part of this work. That means that the individual steps in this model are the cheapest to calculate compared
to the other models. The sequential simulator reached an average execution time of about 24.5 million steps
per second. The overall maximum speedup of the non-sorting GPU implementation is therefore about 39.

4.2.3 Multistate and Multisite Model

For the Multistate model, we find that the non-sorting method has, similar to the previous measurements,
the highest overall execution speed when simulating large numbers of replications. Both sorting methods
behave similarly when increasing the replication count. However, the sorting overhead of the physical
sorting simulator is significantly higher than for the dimerization model because the Multistate model has
more species, as well as more propensities to be sorted.

In general, the numbers of simulation steps per second are lower for all GPU simulators compared to
the decay dimerization model. This can be attributed to the higher complexity, due to the larger number of
reactions, and the higher numbers of species and reactions of the Multistate model. The Multistate model
has 288 different reactions that update 55 propensities on average. We also observe an earlier diminishing
of performance gains with more replications. The performance of the CPU simulator, on the other hand, is
barely affected by the different structure of the Multistate model at 20.6 million steps per second compared
to 24.5 million simulation steps per second for the dimerization model.

For the Multisite model, simulations were run up to a maximum simulation time of 4. The data shows
that the implemented GPU methods are not well suited for this model. The performance of the CPU
simulator running on two CPU cores would be better than that of all GPU simulators for all tested numbers
of replications. One notable result, however, is that for this model, the logical sorting performs slightly better
than the non-sorting approach for replication counts up to about 2'> (= 4096). The higher performance of
the sorting approach can be attributed to the smaller computational and memory access overhead of the
sorting step for fewer replications and its performance improvements due to minimizing branching for the
propensity and population updates. Due to the large number of reactions and propensities to be updated in
the Multisite model, the runtime overhead for the reaction selection and population and propensity updates
caused by branching is higher than for the previously mentioned models. Measurements for the GPU Direct
Method are not included in Fig. Se, because of its poor performance for large and complex model instances.
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5 CONCLUSION

This paper presented a detailed performance comparison of three variants of the Optimized Direct Method
for simulating large ensembles of reaction networks on a GPU. A state-of-the-art CPU implementation
and a basic GPU implementation served as baselines. The simulators were evaluated on the example of
three models from the literature across a wide range of replication counts. Generally, we observed that full
utilization of a modern GPU’s computational resources is achieved only at large replication counts between
100 and 1000, depending on model size. In the best case, a GPU provided the equivalent of around 40
CPU cores executing an optimized CPU implementation.

In addition to the use of code generation, we introduced a sorting step to make a more homogeneous
control flow across simulations. We find that for some problems, the sorting reduces the execution time
of the simulation step substantially. However, this speedup does not outweigh the overhead introduced
by the sorting. Future work could explore a localized sorting that would reduce control flow divergence
while inducing lower overhead. A basic GPU implementation of the Direct Method performed well for
very small model instances but did not scale with increasing instance size. An attractive avenue for future
work is the exploration of improved memory layouts using thread-local storage, which exhibited promising
results in our initial experiments.
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