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ABSTRACT

Accurate reliability modeling and assessment of manufacturing systems leads to lower maintenance costs
and higher profits. However, the complexity of modern Smart Manufacturing Systems poses a challenge
to traditional expert-driven reliability modeling techniques. The growing research field of data-driven
reliability modeling seeks to harness the abundance of data from such systems to improve and automate the
reliability modeling processes. In this paper, we propose the use of Process Mining techniques to support
the extraction of reliability models from event data generated in Smart Manufacturing Systems. More
specifically, we extract a stochastic Petri net which can be used to analyze the overall system reliability as
well as to test new system configurations. We demonstrate our approach with an illustrative case study of
a flow shop manufacturing system with parallel operations. The results indicate, that using Process Mining
techniques to extract accurate reliability models is feasible.

1 INTRODUCTION

The industry is currently undergoing a transformation process towards a new level of value chain organization
and control, often referred to as Industry 4.0. New technologies, such as the Internet of Things, Cloud
Computing, Big Data and Artificial Intelligence, have emerged and are making manufacturing systems
ever smarter (Zheng et al. 2018). Smart Manufacturing Systems (SMSs) enable companies to meet current
challenges, including customer demands for high product quality, short lead times, low costs and a high
degree of customization in a globalized market with demand fluctuations (Qu et al. 2019). In addition,
large amounts of data are collected from sensors and production equipment, that can be used to support
data-driven decisions.

On the flip side of the progress of SMSs is their increasing complexity which makes it more difficult
to maintain the systems and to identify possible vulnerabilities that affect their reliabilities. To this end,
reliability modeling includes a number of techniques for planning and monitoring reliable manufacturing
systems and for detecting such vulnerabilities (Blischke and Murthy 2011). However, conventional reliability
modeling relies on expert knowledge of the system under study, which can become a bottleneck as systems
become more complex (Friederich and Lazarova-Molnar 2021a). Moreover, SMSs are subject to frequent
modifications that can quickly make such static reliability models obsolete when the system topology changes
(Lugaresi and Matta 2021). Thus, there is a need to dynamically generate accurate reliability models for
manufacturing systems based on real-time data streams to ensure optimal exploitation in the shop-floors.
The emerging research field of data-driven reliability modeling aims to utilize data stemming from SMSs
to automate or at least support the development of accurate reliability models for SMSs (Friederich and
Lazarova-Molnar 2021b).

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 2534



Friederich and Lazarova-Molnar

Process mining (PM) is a process management technique that enables business processes to be recon-
structed and evaluated on the basis of digital traces in information systems. PM thus facilitates to model the
implicit and otherwise hidden process knowledge contained in data to make it tangible and transportable
(van der Aalst 2016). We can use PM to compensate for the aforementioned disadvantages of SMSs in
terms of reliability modeling. Since PM is a data-driven technique, less expert knowledge of the system
under study is required, and the extracted models are updated as the system topology changes.

In this article, we present a method for data-driven reliability modeling of SMSs using PM. More
specifically, we extract a stochastic Petri net, a modeling formalism commonly used for reliability modeling,
from event data generated in manufacturing systems. We consider the path that material takes through a
system, the frequencies of manufacturing activities, activity durations, resource capacities as well as failure
and repair times of production resources. The extracted reliability model can be simulated to analyze the
system and to compute key performance indicators, such as the system and resource reliability. In addition,
the extracted model can be used to evaluate new configurations of buffer and resource capacities or the
impact of additional production resources. We test our proposed method using an illustrative case study of
a flow shop manufacturing system with parallel operations.

The remainder of the paper is structured as follows: in Section 2, we review related work on reliability
modeling of manufacturing systems. Section 3 covers our proposed approach for data-driven reliability
modeling of SMS. We provide a case study of our proposed approach in Section 4. Finally, Section 5
concludes the paper by providing a summary and an outlook.

2 RELATED WORK

Reliability modeling and assessment of manufacturing systems has a long history (Chlebus and Werbińska-
Wojciechowska 2016). Many modeling formalisms, such as reliability block diagrams (RBDs), fault tree
analysis (FTA) and Petri nets (PNs), have been applied to the manufacturing domain. (Tont et al. 2008)
present a method for availability and reliability assessment of complex manufacturing systems using RBDs
and Monte-Carlo simulation. A method for mission reliability modeling of discrete manufacturing processes
and systems for the domestic weapons industry using RBDs is proposed by (Liu et al. 2013). (Fazlollahtabar
and Niaki 2018) use both FTA and RBDs to evaluate the reliability of a manufacturing system consisting of
multiple industrial robots. An application of FTA to a printed circuit board assembly system is provided by
(Shu et al. 2006). (Yan et al. 2017) compare FTA and PNs for mission reliability modeling of an automated
guided vehicle. (Adamyan and He 2004) perform failure and reliability analysis of manufacturing systems
using counters in PNs.

All of the aforementioned contributions manually model the system under study, which requires extensive
knowledge of the system. In addition, such models become obsolete as soon as the configuration of the
system changes and must therefore be adapted to the new configuration. Data-driven reliability assessment
of SMS seeks to utilize the abundance of data provided by such systems to automate the processes of
reliability modeling and analysis either completely or at least partially (Lazarova-Molnar and Mohamed
2019). To the best of our knowledge, there exist only a handful of contributions addressing this novel and
promising research field. (Rodseth et al. 2018) present a framework for a reliability-based cyber-physical
system and discuss how it could be implemented in the manufacturing industry. In particular, the authors
examine and demonstrate the balance between reliability engineering and machine learning in big data
analytics. (Lazarova-Molnar et al. 2020) propose a concrete method for data-driven FTA that extracts fault
trees from time series data of a system. Furthermore, the authors simulated the extracted fault trees to
estimate reliability measures of systems under study. A method to extract RBDs from data generated in a
manufacturing system is proposed by (Friederich and Lazarova-Molnar 2021a).

Data-driven reliability assessment of SMS requires a comprehensive understanding of the underlying
system structure and processes. (Friederich et al. 2022) present a framework for data-driven digital twins
of SMS in which the use of PM and machine learning to obtain such a comprehensive understanding is
proposed. (Lugaresi and Matta 2021) propose a method that generates digital twins based on event logs
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generated in manufacturing systems. Based on the generated digital twin, system performance indicators,
such as resource throughput and production time, can be estimated.

We have identified a lack of data-driven methods to extract accurate reliability models of manufacturing
systems. Therefore, in this paper, we propose a method to extract such models based on data generated
in SMS using PM techniques. The main novelty of our method is an end-to-end pipeline for extracting
reliability models of SMS using stochastic Petri nets as modeling formalism.

3 PROPOSED APPROACH FOR DATA-DRIVEN RELIABILITY MODELING

In this section, we describe our proposed approach for data-driven reliability modeling of SMS, and Figure
1 outlines the corresponding framework. Starting from a manufacturing system, the system’s data is col-
lected and distributed to the company’s information systems. Several information systems in the company
may collect information about the physical system, such as Supervisory Control and Data Acquisition
(SCADA), Programmable Logic Controller (PLC), Manufacturing Execution System (MES), or Enterprise
Resource Planning (ERP) (Friederich et al. 2022). The data captured by such systems is then aggregated
and synthesized in event logs and state logs.

Figure 1: Data-driven reliability modeling using process mining and Petri nets.

A manufacturing system event log captures data from processes inherent to a manufacturing system.
Data in event logs can be acquired by MES or ERP systems. We adopt the general assumptions about
a process as stated by van der Aalst (van der Aalst 2016). However, we adjust them slightly to fit the
manufacturing domain:

• A manufacturing process is triggered by production orders.
• An order is characterized by a sequence of activities which are begun and ended by events.
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• Each event has a corresponding timestamp and resource that is seized and released.

Considering the above mentioned assumptions, we define an event log EL as a set of event entries in
the following way:

EL = {E0,Ei, ...,Em}, i = 1, ...,m.

Each event log entry is defined as a tuple Ei = (t,o,r,e), where t is the timestamp, o is the order
identifier, r is the resource identifier and e is the event identifier. Order identifiers are unique numbers
and represent individual production orders, resource identifiers are unique strings and represent production
resources such as Automated Guided Vehicles (AGVs) or assembly cells. Event identifiers are unique
strings and mark the beginning of activities such as transport or assembly operations.

A resource state log captures state changes of the resources of a manufacturing system. Data for such
logs can be acquired by PLCs or SCADA systems. For our approach, we define a state log SL as a set of
state change entries as follows:

SL = {S0,Si, ...,Sn}, i = 1, ...,n

Each state log entry is defined as a tuple Si = (t,r,s), where t is the timestamp, r is the identifier for
the resource that changes its state and s ∈ {busy, idle, f ailed} is the new state the resource transitioned to.
Figure 2 displays a possible operational state changes of resources, as captured by the state log.

Figure 2: Possible operational state changes.

The manufacturing process model is extracted from an event log and a resource state log (Subsection
3.1). Subsequently, the manufacturing process model is enriched with resource fault models that capture
probability distributions describing failures and repairs of resources, estimated from the resource state
log (Subsection 3.2). We use stochastic Petri nets (SPNs) for describing manufacturing process models.
Formally, the class of SPNs that is considered in this paper can be described in the following way:

SPN = (P,T,A,m0)

where:

• P = {P1,P2, ..,Pp} is the set of places, drawn as circles
• T = {T1,T2, ..,Tq} is the set of transitions along with their distribution functions or weights, drawn

as bars
• A = AI ∪AO∪AH is the set of arcs, where AO is the set of output arcs, AI is the set of input arcs

and AH is the set of inhibitor arcs and each of the arcs has a multiplicity assigned to it,
• m0 is the initial marking of the Petri net.

Each transition is defined as Ti = (e,r,n, f , type) and corresponds to an event {E.e}, ∀E ∈ EL in
the event log. Thus, we use the name of the event e to label the transition Ti. r is the resource, n is
the frequency (number of times the transition fired) and f is a probability distribution function if the
corresponding transition is timed and a firing weight if it is immediate. type is the type of the transition
where type ∈ {timed, immediate}. The set of arcs are defined such that

2537



Friederich and Lazarova-Molnar

AO = {ao
1,a

o
2, ...,a

o
k}, AI = {ai

1,a
i
2, ...,a

i
j} and AH = {ah

1,a
h
2, ...,a

h
i }

where:

AH ,AO ⊆ P× (T ∪ I)×N, AI ⊆ (T ∪ I)×P×N.

3.1 Extraction of the Manufacturing Process Model

We extract the manufacturing process model in six steps, with each step increasing the model detail (Figure
3). The material flow process represents the path that production orders follow through the system. From a
SPN modeling perspective, such a process might consist of several timed and immediate transitions. Timed
transitions may represent activities such as the transport of material or the operation of an assembly cell.
Immediate transitions may represent routing decisions in case of parallel operations or other events without
activities. Each transition may be annotated with the frequency of the corresponding events. Furthermore,
the activity durations of timed transitions can be described by probability distribution functions. The
manufacturing process might contain resources with capacities such as buffers or assembly cells. Such
characteristics are commonly modeled using inhibitor arcs preventing a transition from firing. Figure 4
provides an overview of the mentioned concepts and how we will model them using data provided by a
manufacturing system.

In the following sections (Sections 3.1.1 - 3.1.5), we describe each of the mentioned steps in detail.

Figure 3: Extraction of the manufacturing process model.

Figure 4: SPN modeling concepts for manufacturing processes. a) Timed transition to represent an operation
activity, b) immediate transitions to represent routing decisions, c) use of inhibitor arcs to represent resource
capacities.

3.1.1 Extraction of the Material Flow Process

The material flow process represents the path that production orders follow through the manufacturing
system. Based on the event log, we apply the α-miner (van der Aalst et al. 2004) to extract the SPN
that is representing the material flow process of the system. The α-miner is a popular process discovery
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algorithm capable of extracting Petri nets consisting of an initial marking describing the initial state of a
model, the actual process model, and a final marker describing the final state of a model. However, the
algorithm is not able to detect loops and to distinguish between implicit and required places which might
result in additional non-required places in a discovered Petri net.

The α-miner algorithm consists essentially of two steps: (1) identify ordering relations in the log and
(2) convert those relations to a Petri net. There are four types of ordering relations that the α-miner can
detect:

• Directly-follows (a > b): if activity a is directly followed by activity b.
• Sequence (a→ b): if a > b and not b > a.
• Parallel (a ||b): if both a > b and b > a.
• Choice (a # b): if neither a > b nor b > a.

Figure 5 displays, how the identified relations are then converted into a Petri net. The left Petri net
corresponds to a sequence pattern (a→ b), the middle Petri net to a XOR-split pattern (a > b, a > c and
b#c) and the right Petri net to an AND-split pattern (a > b, a > c and b||c). A detailed description of the
algorithm is provided in (van der Aalst et al. 2004).

Figure 5: Petri net patterns that can be identified by the α-miner.

3.1.2 Determination of Transition Types

Current process discovery algorithms are not developed for the extraction of SPNs. Thus algorithms such
as the α-miner (van der Aalst et al. 2004) or the inductive miner (Leemans et al. 2013) extract Petri nets
with only one transition type (i.e., timed transitions). Therefore, in cases where it applies, we need to set
some of the extracted timed transitions to immediate transitions. We consider a transition as timed if the
activity times of the corresponding resource is known. Activity times of resources can be derived from
the operational state changes in the state log (i.e., idle, working). Thus, if the resources of transitions Ti.r
correspond to resources that appear in the state log {S.r}, ∀S ∈ SL, transitions are considered as timed
transitions. All remaining transitions are set to immediate transitions (Algorithm 1).

3.1.3 Extraction of Immediate Transition Weights

Transition weights Ti.n are the number of times each transition fired based on the information available
in the EL. Such weights provide useful quantitative information to the extracted model and can be used
to assess the systems performance and to calculate firing probabilities of immediate transitions. We can
use the previously described directly-follows relationships of activities in the EL (e.g., frequency activity
a was followed by activity b) to estimate the transition frequencies and add them to the extracted SPN.
For cases where one activity is followed by more than one other activity (e.g., activity a was followed by
activity b and c) we simply add all frequencies of the following activities (Algorithm 1).
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3.1.4 Estimation of Timed Transition Distribution Functions

As noted in Section 3.1.2, an extracted transition where the resource associated with the transition, Ti.r,
occurs in the SL is considered a timed transition (i.e. Ti.type = timed). Each timed transition has a
probability distribution function Ti. f that determines its firing times. We utilize the operational state
changes of resources in the SL to determine these functions.

The beginning of a resource activity is marked by the state change of the resource to ”busy” (Si.s = busy)
and the end of the activity is marked by the subsequent state change to ”idle” (Si.s = idle). The time
difference between these two state changes is the duration of the resource activity. Therefore, cases where
resources change state to ”failed” (Si.s = f ailed) during their ”busy” or ”idle” time are not considered
when estimating transition firing time distributions. Activity durations for each transition are stored in a
list.

Extraction of activities durations for resources that are utilized by only one timed transition in the SPN
is trivial. However, when two or more transitions utilize the same resource, we can no longer tell which
operational state changes belong to which transition just by considering the SL. For such scenarios, we
join both the SL and the EL based on the common attribute timestamp (ts) to determine which event in
the EL relates to which resource state changes in the SL (recall that transitions correspond to an event
{E.e}, ∀E ∈ EL in the event log).

To estimate the theoretical probability distributions that extracted activity durations follow, we use
the the Maximum Likelihood Estimation (MLE) method (Myung 2003). MLE estimates the parameters
of a given probability distribution by maximizing a likelihood function, such that the assumed theoretical
distribution best describes the observed data. We fit the normal and lognormal distributions to the extracted
activity durations, since these two distributions are commonly used in manufacturing to describe activity
durations. We assess the goodness of fit by using the sum of squared errors (SSE) between the data and the
fitted distributions. The probability distribution with the lowest SSE is set to be the probability distribution
function of the corresponding transition Ti. f . Algorithm 1 shows the process of determining transitions types
(Section 3.1.2), adding firing frequencies (Section 3.1.3) and the estimation of timed transition distribution
functions.

Algorithm 1: Extraction of transition types, firing frequencies and timed transition probability
distributions

Input: event log EL, state log SL, material flow Petri net SPN
Output: SPN with identified transition types, firing frequencies and distributions
R←{S.r}, ∀S ∈ SL ; // complete set of resources from the SL
for Ti in SPN do

Ti.n← getDirectlyFollowsFrequency(Ti,Tf ollowing)
if Ti.r /∈ R then

Ti.type← immediate
else

Ti.type← timed
activityDurations← getActivityDurations(Ti,EL,SL)
distributions← f itDistributions(activityDurations)
Ti. f ← bestDistribution(distributions)

end
end

3.1.5 Extraction of Resource Capacities

We use inhibitor arcs to model capacities of resources in the SPN (Figure 4). To determine locations
of inhibitor arcs, we consider transitions where the resource associated with the transition, Ti.r, is, for
example, a buffer or an assembly cell as resources with capacities.
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Algorithm 2 shows the calculation of resource capacities. For each entry Ei in the EL, currentLoad
stores the current load of a resource as time passes. Whenever the event of an event log entry Ei.e indicates
that a production order is entering the resource, the current load is increased by one and added to the time
series array loadT S. When an event indicates that a production order is exiting the resource, the current
load is reduced by one. The resource capacity is the maximum load over time recorded in loadT S. Finally,
the extracted resource capacity is set as the cardinality of the corresponding inhibitor arc in the SPN.

Algorithm 2: Extraction of resource capacities
Input: SPN, EL
Output: SPN with resource capacities
R←{T.r}, ∀T ∈ SPN, r = bu f f er ∨ assembly cell ; // resources with capacity
for resource ∈ R do

currentLoad← 0
loadT S← [ ] ; // time series of resource capacities
for Ei ∈ EL do

if ”enter resource” ∈ Ei.e then
currentLoad← currentLoad +1
loadT S.add(currentLoad)

end
if ”exit resource” ∈ Ei.e then

currentLoad← currentLoad−1
end

end
resourceCapacity← max(loadT S)
SPN.addResourceCapacity(resourceCapacity) ; // add resurce capactiy to
corresponding inhibitor arc in SPN

end

3.2 Extraction of Resource Fault Models

Based on the state log, we extract fault models for each resource. Figure 6 shows an exemplary Petri net
for such a model. The initial marking in the Resource OK place represents a fully operational resource. A
timed transition represents a failure after a random amount of time sampled from a probability distribution.
Once a token is created in the Resource failed place, the resource is defect and needs to be repaired. By
using an inhibitor arc to block the operation of the corresponding resource during repair, the model can
be integrated into a manufacturing process model. In case the same resource is executing more than one
operation, we add inhibitor arcs from the failed place to the corresponding operation transitions. The repair
is represented by another timed transition which also has a probability distribution function that describes
the repair duration.

We extract the fault models in two steps (Figure 7, Algorithm 3). First, the two necessary places
(”Resource OK” and ”Resource failed”) and transitions (”Fail” and ”Repair”) are generated for each
resource in the state log {S.r}, ∀S ∈ SL. The fault models are then integrated in the manufacturing process
model. This is done by connecting them with transitions that utilize the corresponding resource Ti.r using
inhibitor arcs.

Second, similarly to the estimation of timed transition probability distribution functions of the man-
ufacturing process model (Section 3.1.4), we estimate the probability distribution functions in the fault
models using the operational state changes in the SL. The failure of a resource is marked by the transition
of the resource to the ”failed” state (Si.s = f ailed) and the repair by the subsequent transition to the ”idle”
state (Si.s = idle). The time difference between the change from a busy or idle to the failed state is the
time to failure and the time difference between the failed and the subsequent idle state is the time to repair.
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Figure 6: Exemplary fault models for a resource conducting one (left) and two (right) operations.

Figure 7: Extraction of resource fault models.

To estimate the theoretical probability distributions of the extracted time to failures and time to repairs,
we again use the MLE method. For the failures, we fit distributions such as lognormal, Weibull and
exponential and for the repairs distributions such as lognormal, normal and exponential. We evaluate the
goodness of fit using SSE between the empirical data and the fitted probability distributions.

Algorithm 3: Extraction of resource fault models
Input: SPN, SL
Output: SPN with fault models
R←{S.r}, ∀S ∈ SL
for resource in R do

f aultModel← generateFaultModels(resource)
integrateToSPN(SPN, f aultModel)
estimateFailureAndRepairDistributions(resource,SL,SPN)

end

4 CASE STUDY

The case study that we use to demonstrate our approach to data-driven reliability modeling is a simple flow
line found in many factory floors. It consists of four physical resources (i.e., Warehouse, AGV, Cell 1, Cell
2) and a Manufacturing Execution System (MES) that controls the production process. The warehouse
stores raw material and finished products. Both Cell 1 and Cell 2 conduct the same assembly operation
and operate in parallel. Thus, the flow line can still operate even if one of the two cells fails. The AGV
transports raw material for a new order to one of the assembly cells. After the assembly operation, the
finished products are automatically stored in the warehouse. Both, Cell 1 and Cell 2 have a buffer. In
case the AGV fails, Cell 1 and Cell 2 use raw material from their buffers until they drain. The production
sequence can be summarized as follows:

1. A new production order arrives - MES initiates the production process
2. AGV transports the raw material to one of the assembly cells
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3. Assembly cell conducts assembly operation
4. Finished product is automatically stored in the warehouse
5. The MES is informed about the end of the production process

The arrival times of new orders and the operating times of the AGV and both assembly cells are
stochastic. Furthermore, the maintenance policy is reactive, i.e., resources are repaired when they fail.
Failure and repair times are only recorded for the AGV, Cell 1 and Cell 2. For this case study, the warehouse,
the MES and other auxiliary systems do not fail. Figure 8 displays the block diagram of the described case
study used in this paper.

Figure 8: Block diagram of the case study.

We generated data using a simulation model of the described case study. We ran the simulation for
150 hours which resulted in 2338 completed orders. Table 1 and 2 show an excerpt of the recorded event
and resource state log.

We applied our proposed approach to the generated data (Friederich 2022). To do so, we implemented
the approach in Python using mainly the process mining library pm4py (Berti et al. 2019) and the
library fitter (Cokelaer 2021) for distribution fitting. pm4py provides implementations for several process
discovery algorithms such as the α-miner and a comprehensive Petri net implementation. fitter provides
an implementation of the MLE algorithms for fitting of several distributions to empirical data. To export
the model, we can use the Petri Net Markup Language (PNML) defined by the standard ISO/IEC 15909.
Figure 4 displays the extracted SPN and an excerpt of the corresponding PNML file.

Table 1: Generated event log.

timestamp order ID resource event

... ... ...
00:24:41 454 MES new order
00:24:41 454 MES direct to line 2
00:24:41 454 AGV transport to cell 2 buffer
00:25:31 455 MES new order
00:25:31 455 MES direct to line 1
00:26:01 451 MES order completed
00:27:11 453 Cell 1 buffer enter cell 1
00:27:11 453 Cell 1 operation
... ... ... ...

Table 2: Generated resource state log.

timestamp resource state

... ... ...
00:22:59 AGV idle
00:24:41 AGV busy
00:25:55 Cell 2 failure
00:27:11 Cell 1 idle
00:27:11 Cell 1 busy
00:27:52 AGV idle
00:27:52 AGV busy
00:31:16 Cell 1 idle
... ... ...

5 SUMMARY, CONCLUSION AND OUTLOOK

In this article, we proposed a method for data-driven reliability modeling of Smart Manufacturing Systems.
The data requirements for the proposed method are an event log that captures the flow of material through
a system and a state log that captures state changes of resources. The method consists of two steps,
i.e., the extraction of the manufacturing process model and the extraction of resource fault models. For
the former, a Petri net representing the material flow using a process discovery algorithm is extracted.
Furthermore, transition types are determined, transition weights are added, transition distribution functions
are estimated and resource capacities are extracted. For the latter, resource fault models are generated and
the corresponding failure and repair distributions are estimated. We applied our method to an illustrative
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Figure 9: Extracted reliability model.

case study of a flow shop manufacturing system. We were able to extract the reliability model from data
generated in the system.

Besides providing detailed insights to the current state of a manufacturing system, the extracted model
can be used for decision support in several ways: (1) test new configurations (e.g, add another cell/AGV),
(2) support purchase decisions (e.g., investing in new resources) or (3) test new maintenance strategies
(e.g., corrective vs. preventive maintenance). To inform decisions about the previously described changes
to the system, the changes are first applied to the model and then the model is simulated to estimate the
reliability gain or loss.

In future work, we aim to extend our proposed method to be able to detect reworks and other common
manufacturing patterns. Furthermore, we want to define methods to properly validate an extracted model.
We also want to look into data-driven identification of race age or enable policies for timed transitions.
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Chlebus, M., and S. Werbińska-Wojciechowska. 2016. “Issues on Production Process Reliability Assessment – Review”. Research

in Logistics & Production 6(6):481–497.
Cokelaer, Thomas 2021. “Fitter: Fit Data to Many Distributions”. https://github.com/cokelaer/fitter, accessed 4th March 2022.
Fazlollahtabar, H., and S. T. A. Niaki. 2018, March. “Fault Tree Analysis for Reliability Evaluation of an Advanced Complex

Manufacturing System”. Journal of Advanced Manufacturing Systems 17(1):107–118.
Friederich, Jonas 2022, April. “Implementation of the Presented Approach for Data-Driven Reliability Modeling”. https:

//github.com/jo-chr/data-driven-reliability-modeling, accessed 14th September 2022.
Friederich, J., D. P. Francis, S. Lazarova-Molnar, and N. Mohamed. 2022, April. “A Framework for Data-Driven Digital Twins

of Smart Manufacturing Systems”. Computers in Industry 136:103586.

2544

https://github.com/cokelaer/fitter
https://github.com/jo-chr/data-driven-reliability-modeling
https://github.com/jo-chr/data-driven-reliability-modeling


Friederich and Lazarova-Molnar

Friederich, J., and S. Lazarova-Molnar. 2021a. “Process Mining for Reliability Modeling of Manufacturing Systems with Limited
Data Availability”. In 2021 8th International Conference on Internet of Things: Systems, Management and Security, 1–7.
Gandia, Spain.

Friederich, J., and S. Lazarova-Molnar. 2021b. “Towards Data-Driven Reliability Modeling for Cyber-Physical Production
Systems”. Procedia Computer Science 184C:589–596.

Friederich, J., G. Lugaresi, S. Lazarova-Molnar, and A. Matta. 2022. “Process Mining for Dynamic Modeling of Smart
Manufacturing Systems: Data Requirements”. In International Conference on Manufacturing Systems 2022, 546–551.
Lugano, Switzerland.

Lazarova-Molnar, S., and N. Mohamed. 2019. “Reliability Assessment in the Context of Industry 4.0: Data as a Game Changer”.
Procedia Computer Science 151:691–698.

Lazarova-Molnar, S., P. Niloofar, and G. K. Barta. 2020. “Data-Driven Fault Tree Modeling For Reliability Assessment Of
Cyber-Physical Systems”. In Proceedings of the 2020 Winter Simulation Conference, edited by K.–H. Bae, B. Feng,
S. Kim, S. Lazarova–Molnar, Z. Zheng, T. Roeder, and R. Thiesing. 2719–2730. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Leemans, S. J. J., D. Fahland, and W. M. P. van der Aalst. 2013. “Discovering Block-Structured Process Models from Event
Logs - A Constructive Approach”. In Application and Theory of Petri Nets and Concurrency, edited by J.-M. Colom and
J. Desel, Lecture Notes in Computer Science, 311–329. Berlin, Heidelberg: Springer.

Liu, Y. C., W. J. Zhang, G. C. Fu, and N. Li. 2013. “Mission Reliability Modeling of Manufacturing Processes and System”.
Applied Mechanics and Materials 248:450–455.

Lugaresi, G., and A. Matta. 2021, April. “Automated Manufacturing System Discovery and Digital Twin Generation”. Journal
of Manufacturing Systems 59:51–66.

Myung, I. J. 2003, February. “Tutorial on Maximum Likelihood Estimation”. Journal of Mathematical Psychology 47(1):90–100.
Qu, Y. J., X. G. Ming, Z. W. Liu, X. Y. Zhang, and Z. T. Hou. 2019, August. “Smart Manufacturing Systems: State of the

Art and Future Trends”. The International Journal of Advanced Manufacturing Technology 103(9):3751–3768.
Rodseth, H., P. Schjolberg, R. Eleftheriadis, and O. Myklebust. 2018. “Reliability-Based Cyber Plant”. In Safety and Reliability

– Safe Societies in a Changing World, Proceedings of ESREL 2018. Leiden: CRC Press.
Shu, M.-H., C.-H. Cheng, and J.-R. Chang. 2006, December. “Using Intuitionistic Fuzzy Sets for Fault-Tree Analysis on Printed

Circuit Board Assembly”. Microelectronics Reliability 46(12):2139–2148.
Tont, G., M. Iliescu, and D. George. 2008, June. “A Methodology of Availability Assessment for Complex Manufacturing

Systems”. WSEAS Transactions on Systems 7:822–832.
van der Aalst, W. 2016. “Data Science in Action”. In Process Mining: Data Science in Action, edited by W. van der Aalst,

3–23. Berlin, Heidelberg: Springer.
van der Aalst, W., T. Weijters, and L. Maruster. 2004, September. “Workflow Mining: Discovering Process Models from Event

Logs”. IEEE Transactions on Knowledge and Data Engineering 16(9):1128–1142.
Yan, R., L. M. Jackson, and S. J. Dunnett. 2017, September. “Automated Guided Vehicle Mission Reliability Modelling Using a

Combined Fault Tree and Petri Net Approach”. The International Journal of Advanced Manufacturing Technology 92(5):1825–
1837.

Zheng, P., H. wang, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, K. Mubarok, S. Yu, and X. Xu. 2018, June. “Smart Manufac-
turing Systems for Industry 4.0: Conceptual Framework, Scenarios, and Future Perspectives”. Frontiers of Mechanical
Engineering 13(2):137–150.

AUTHOR BIOGRAPHIES
JONAS FRIEDERICH is a PhD student at the Mærsk Mc-Kinney Møller Institute, University of Southern Denmark. In
2020, he obtained his Diplom in Information Systems from the Technical University of Dresden, Germany. The aim of Jonas’
doctoral project is to design and develop tools and methods that can be used to learn reliability models from data generated
in cyber-physical production systems. His research interests cover modeling and simulation, process mining, machine learning
and computer vision. His email address is jofr@mmmi.sdu.dk.

SANJA LAZAROVA-MOLNAR is a Professor at the Institute of Applied Informatics and Formal Description Methods,
Karlsruhe Institute of Technology. She is also a Professor at the University of Southern Denmark, where she leads the research
group Modelling, Simulation and Data Analytics. She is a Senior Member of The Institute of Electrical and Electronics
Engineers (IEEE), and currently serving as Director-at-Large on the Board of Directors of The Society for Modeling &
Simulation International (SCS). Furthermore, she is Chair of IEEE Denmark and Vice-Chair of IEEE Denmark Women in
Engineering Affinity Group. Her email address is sanja.lazarova-molnar@kit.edu.

2545

mailto://jofr@mmmi.sdu.dk
mailto://sanja.lazarova-molnar@kit.edu

	INTRODUCTION
	RELATED WORK
	PROPOSED APPROACH FOR DATA-DRIVEN RELIABILITY MODELING
	Extraction of the Manufacturing Process Model
	  Extraction of the Material Flow Process
	  Determination of Transition Types
	  Extraction of Immediate Transition Weights
	  Estimation of Timed Transition Distribution Functions
	  Extraction of Resource Capacities

	Extraction of Resource Fault Models

	CASE STUDY
	SUMMARY, CONCLUSION AND OUTLOOK

