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ABSTRACT 

To improve the productivity and safety of cranes, deep reinforcement learning (DRL) has received 
widespread attention as a framework for developing automated control methods. However, the major 
challenge of DRL is sample efficiency, which is further exacerbated by the operational and kinematic 
characteristics of the crane. Our study proposes an approach to improve the sample efficiency in training 

control policies for two subtasks: horizontal transportation and sway suppression. To do this, we built a 
simulation environment and defined the state of the environment and the reward. Then, we performed 
experiments to find out whether three DRL techniques (reward shaping, curriculum learning, and generative 
adversarial imitation learning) can mitigate the sample efficiency degradation caused by operational and 
kinematic characteristics. The results show that the techniques used in our experiment are effective in the 
improvement of the sample efficiency and learning performance of the DRL model for crane operation. 

1 INTRODUCTION 

Cranes are widely used in construction sites to transport heavy materials and are one of the major causes of 
dangerous accidents (Ramli et al. 2017; Fang and Cho 2017). Many previous studies have attempted to 
develop automated crane control methods to prevent accidents caused by operator error, and deep 
reinforcement learning (DRL) framework has received widespread attention for use in developing 
automated control methods (Zhao et al. 2020; Sallab et al. 2017). This framework has an advantage in that 

the control methods learn from collected data samples through interacting with an environment without 
explicit instructions (Yu 2018). 
 One of the key challenges of the reinforcement learning process is sample efficiency. Sample efficiency 
is the degree to which samples valid for training are included among the data (Botvinick et al. 2019). Low 
sample efficiency makes it necessary to interact with a huge number of environments to obtain the number 
of samples required for training a desired policy (Yu 2018; Kiran et al. 2021). When the reinforcement 

learning framework is applied to cranes, the sample efficiency problem is further exacerbated by two issues: 
operational and kinematic characteristics of the crane. 
 First, in terms of the operational characteristic, the conditions of a crane task vary according to the 
location of the destination, type of material, and so forth (Fang and Cho 2017). In order to achieve a 
reasonable control policy, it is necessary to provide a sufficient number of task execution environments that 
a crane agent might encounter in the real world (Whiteson et al. 2011; Matsumoto et al. 2020). In addition,  
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since it takes a long time for a crane to complete a task, the number of samples constituting one task is 
large, and the rewards becomes sparse and delayed. As a result, the total number of samples required for 
training increases significantly, reducing sample efficiency. 

 Next, in terms of kinematics, cranes are underactuated systems in which the degree of freedom is greater 
than the number of manipulable actions (Sawodny et al. 2002). Due to this underactuated feature, the action 
of the crane causes a sway of the payload, making it difficult to predict the position of the payload (Yang 
et al. 2019). As a result, it complicates the distribution between the action and environment state in the 
samples and causes a decrease in sample efficiency. 
 Therefore, it is necessary to improve the sample efficiency that is degraded due to the characteristics 

of the crane. Our study aims to propose an approach to improve sample efficiency in developing crane 
automated control policies through reinforcement learning frameworks. To do this, we built a simulation 
environment in which an agent interacted with cranes. In addition, to define data samples for reinforcement 
learning, we selected the reward and state of the environment to be observed by the agent. We then proposed 
an approach using DRL assistive techniques such as reward shaping, curriculum learning (CL), and 
generative adversarial imitation learning (GAIL) to improve the sample efficiency of crane operation. We 

performed experiments to find out whether the proposed techniques (reward shaping, CL, and GAIL) can 
mitigate the learning performance degradation caused by operational and kinematic characteristics. The 
experiment results show that the DRL methods used in our experiment are effective in the improvement of 
sample efficiency and learning performance of the DRL model for crane operation. 

2 REALTED WORK 

Previous studies on crane automation with the DRL framework have focused on the sample efficiency 

problem. Ding (2018) used reward shaping and CL to improve the sample efficiency of reinforcement 
learning in set down tasks of an offshore crane. Reward shaping is a commonly used method to improve 
sample efficiency in reinforcement learning. Reward shaping guides agents through the learning process in 
a way that provides more frequent reward signals for appropriate actions (Grzes 2017). This type of reward 
is called dense reward, and th e study showed that reward shaping is useful in a domain in which reward is 
sparse due to the working environment of cranes. Next, CL is an assistive technique  of DRL that gradually 

increases the difficulty of a problem. The agent transfers the experience gained from an easy problem to 
learning a more difficult task, thereby speeding up performance convergence (Narvekar et al. 2020). In this 
study, the problem difficulty was adjusted by increasing the dimensions of the environment, which is related 
to the state of the environment to be observed and the number of manipulable actions from one-dimension 
(1D) to two-dimension (2D). The results of the study showed that CL is particularly useful when the 
dimension of the environment is large and reward is sparse and delayed. 

 Matsumoto et al. (2020) applied reinforcement learning to the operation of two machines to reduce the 
sway of a load suspended on a mobile boom crane and to load soil into an excavator bucket. In the study , 
reward shaping, frame skipping, and imitation learning (IL) were used and evaluated to improve the sample 
efficiency of reinforcement learning. Frame skipping is a method in which the agent maintains the same 
action for several time steps, thereby reducing the combination of state and action space. It is useful for 
reducing the total number of samples but prevents fine grained action. IL uses a supervised learning scheme 

that mimics expert demonstrations using algorithms such as behavior cloning (Kober and Peters 2010). 
However, in the unseen episodes in the demonstration data, a serious distribution shift problem occurs, and 
the agent does not know which action to choose (Kiran et al. 2021). Therefore, in this study, the policy 
trained with IL was used only as the initial policy of the RL model to increase the training efficiency.  
 It is noted that studies on crane automation deploy DRL assistive techniques such as reward shaping, 
IL, or CL to resolve sample efficiency problems. However, discussion on how to apply the techniques for 

different tasks of cranes is still lacking. Operational and kinematic characteristics of cranes lower sample 
efficiency in different ways. Therefore, it requires approaches appropriate to the main causes of low sample 
efficiency on each subtask of cranes. In addition, there were insufficient training episodes for tasks to train 
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a robust agent. Work conditions of tasks should be generated so as not to be limited to specific work through 
environment randomization. 

3 DRL MODEL DEVELOPMENT 

DRL is a machine learning field that develops sequential decision-making processes so that an agent 
observes the current state of an environment and takes an action that maximizes the reward. The policy 
chooses the action from a list of all options. At each step, the agent is in a certain state and the reward is 
assigned after completing an action and moving to the next state (Sutton and Barto 2018). Until the episode 
reaches the termination condition, the agent continues to interact with the environment. 
 This section describes the process of building an environment for the agent to explore, including the 

crane model that the agent will control, the action space, and the observation space. Then, we configured 
the training episode and designed the reward function to train the control policy networks for crane tasks. 
We used Unity 3D  to create the simulated environments with which the crane agent interacted (Juliani et 
al. 2018). 

3.1 Scope of the Method 

Several types of cranes, such as overhead, gantry, and rotary, are widely used in many industrial sectors 

(Ramli et al. 2017). In our work, we chose a gantry crane operating in a precast concrete field yard in which 
there were a few factors that can affect learning performance. At the field yard, a gantry crane transports 
produced material into the yard and releases stocked material onto a truck. 
 The control of transportation is the most difficult task in a crane operation cycle and comprises three 
phases: payload lifting, horizontal transportation, and sway suppression (Wu and Xia 2014). Our work 
focused on two successive subtasks: horizontal transportation (Task 1) and payload  suppression (Task 2). 

Task 1, which moved the load near the destination without excessive sway, is greatly affected by the 
characteristics of the operational environment (e.g., long time to complete the task and various conditions 
of a crane task). On the other hand, Task 2, which positioned the load accurately on the destination and 
removed payload sway for rigging works, is affected by the kinematics characteristics of the crane. 
Therefore, an approach to improve the sample efficiency of DRL should be presented considering the 
characteristics that mainly affect each task. 

3.2 Agent Crane Modeling and Action Space 

Figure 1(a) shows the layout of the workplace and task-related parameters. The crane agent had six discrete 
actions with three behaviors (i.e., backward, forward, and idle) in each action branch of gantry and trolley. 
The length of the cable was 5 m. The maximum speed of gantry and trolley motion were 20 and 30 m/min, 
respectively. Also, our agent controlled a gantry crane  with two actuators in horizontal and single pendulum 
motion, as illustrated in Figure 1(b). We implemented the pendulum motion based on the joint distance 

constraint. A rope consisting of small segments and the joints that connected the small segments  was used 
to imitate the physical behavior of the payload.  

Figure 1: Parameters of the training environment and the crane model. 
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3.3 Observation Space 

We investigated an observation space that facilitated training a policy network through a preliminary test 

before the experiments. In the preliminary test, each observation vector and reward criterion were applied 
to train the policy for at least 1 million time steps, and they were selected based on the learning speed of 
the policy. The agent directly observed the Cartesian position under the assumption that an external 
perception system (e.g., odometry and computer vision) would measure the state of the environment (e.g., 
the location of a destination and the status of a crane). 
 Table 1 describes the selected observation space, which consisted of the current state of each component 

of the crane in terms of the information of the location (e.g., location of the destination and distance) and 
the payload (e.g., angle, direction, and angular velocity). We separated sway information into Pe as location 
information, and θsd and θsa as sway information for both tasks. In addition, the relative coordinates were 
suitable for Task 2.  

Table 1: Observation space and reward function of Tasks 1 and 2. 
Observation space Reward function (value) 

Task 1 Task 2 Type Task 1 Task 2 

Trolley position (Pt), 
equilibrium position 

(Pe), destination 
position (Pd), sway 
direction (θsd), and 
sway angle (θsa) 

Relative position 
between (Pe) and 

(Pd), relative position 
between (Pe) and 
(Ph), sway direction 
(θsd), sway angle 
(θsa), and angular 
velocity (dθsa/dt) 

Goal-
related 

Reach to destination 
(+1.0), sway angle 

over (-3.0/maxstep) 

Under both thresholds 
of distance and energy 

(+1.0), distance over 
Rd1 (-1.0) 

Dense The closest distance 
to the current step in 
1D (0.5/maxstep, + 

closer, - far) 

Distance under Rd2 
(+0.15), distance over 
Rd2 (-0.2) 

Encour-
aging 

Small deduction  
(-1.0/maxstep) 

Small deduction  
(-1.0/maxstep)  

 

3.4 Training Environment 

Since the policy network for the two tasks required separate learning environments, we describe the process 
of building the environment and defining the reward function for each task. 

3.4.1 Training Environment for Task 1 

Training episode: In the traveling task environment, the gantry crane agent was trained to maneuver the 
hook horizontally to the desired position (Pd1) without exceeding the allowable sway angle (θallow) in the 

workplace (Ltrack = 85m, Ltrolley = 15 m). Figure 1 shows the layout and parameters of the worksite. Rd1 was 
the threshold distance at which a reward was given when the hook reached the destination (Pd2). We 
randomized the positioning parameters to train a robust policy. After the position of the trolley (Pt) was 
assigned in the workspace, the destination (Pd1) was created at a distance more than Rr from the position of 
the hook (Ph) to prevent the crane from colliding with an obstacle or completing the task as soon as an 
episode started. The maximum time step of an episode for the task (maxstep0 was set to 8,000 to prevent 

infinite exploration. 
Reward function: For the purpose of the task, when the distance between Ph and Pd1 was less than the 

threshold (Rd1), the agent received a high-sparse reward for achieving a long-term goal. However, the 
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reward could be dedicated to unlimited exploration with sparse feedback for the agent to learn from, 
especially in an environment in which countless steps are expected to complete a task. Therefore, we 
defined dense rewards using the following criteria: (1) event criteria: a closure far from the destination; (2) 

distance criteria: the distance at the current step, the minimum distance so far; (3) dimension criteria: 1D 
and 2D; and (4) distance measurement object: hook and equilibrium point. Through the preliminary test, 
the dense reward was given to the agent when the 1D distance from the current step was closer or farther 
than the minimum distance so far. The distance was measured by the position of the equilibrium point. 
The payload sway reward, a larger value than the distance-related dense reward, was deducted whenever 
the payload angle exceeded θallow. Although the rewards depend on the type of task, a small negative reward 

was given to the agents at every time step to encourage early achievement of the task objective. Table 1 
gives the list of reward functions. 

3.4.2  Training Environment for Task 2 

Training Episode: The purpose of the crane agent in Task 2 was to lower the residual sway and learn how 
to minimize the worktime to maneuver the hook accurately to the destination (Pd2) after Task 1. To provide 
the agent with various scenarios, sway angle (θsa) was set to within 15° and sway direction (θsd) was set in 

all directions at the start of an episode. Pd2 was created in the shape of a torus. The major radius of the torus 
was Rd1 and the minor radius was Rs to prevent immediate task completion. We set the maximum time step      
for the task episode to 2,000. 

Reward function: To achieve the goal of the task, the payload must be located at Pd2 within a distance 
threshold (Rd2), and the mechanical energy (𝐸𝑡𝑜𝑡) of a single pendulum should be lower than a certain 
energy threshold. 𝐸𝑡𝑜𝑡 is the sum of kinetic energy (𝐸𝑘) and potential energy (𝐸𝑝). 

 

𝐸𝑝 = 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠 𝜃𝑠𝑎 ), 𝐸𝑘 =  𝑚𝑙2 (
𝑑𝜃𝑠𝑎

𝑑𝑡
)

2
, 𝐸𝑡𝑜𝑡 =  𝐸𝑝 + 𝐸𝑘. 

  
 When the agent satisfied the two thresholds, a high-sparse and goal-related reward were obtained, and 
the episode ended. However, successful policy training is difficult when the sparse reward is used alone. 

Thus, we granted dense rewards to guide the agent to reach and stay inside Pd2. In this method, a small 
reward was given when the distance between the hook and Pd2 was less than the distance threshold (Rd2), 
and a reward was lost when it departed from Pd2 after obtaining the reward. On the other hand, as a failure 
condition, if the hook was farther from Pd2 than Rd1, it was considered that the task had failed and the 
episode was terminated with a negative reward. Those rewards are summarized in Table 1. 

4 EXPERIMENTS 

4.1 Experimental Settings 

In the interactive environment developed for this study, we trained the feed-forward neural networks based 
on data observed in the environment during crane operation. To find out how to efficiently train policies in 
terms of the required number of samples and performance of the policy, we conducted experiments with 
DRL assistive techniques, which are reward functions, CL, and GAIL.  
 Each training session was executed for at least 40 million time steps. The simulation time step per 

second was set to 50. Agents’ policies are represented by a feed-forward neural network and optimized 
using Proximal Policy Optimization (PPO) algorithms (Schulman et al. 2017).  

4.2 Experiments for the Transportation Task (Task 1) 

Task 1 took a long time to complete because it moved the load over a long distance. Thus, in reinforcement 
learning frameworks, the sample efficiency decreases as rewards become delayed and sparse due to the 
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scale of the workspace. In the experiments for Task 1, to figure out the effects of dense reward and CL on 
the reward sparseness problem, the training process and results were compared in four baselines according 
to whether dense rewards are added and whether CL is used: Default; Dense; CL; and Dense and CL. The 

CL adjusted the difficulty of lessons by gradually increasing Ltrack and decreasing Rd, as given in Table 2. 
Ltrack and Rd contributed to the sample efficiency with time-step and completion probability, respectively. 
When the agent gets a reward above the threshold, it moves on to the next lesson. 

Table 2: Curriculum adaptation. 
Lesson Length of Ltrack 

(m) 

Radius of Rd1 (m) Reward 

Threshold 

1 From 49 to 25 From 1.9 to 2.5 0.60 

2 From 69 to 45 From 1.4 to 2.0 0.65 

3 From 85 to 65 From 1.0 to 1.5 0.70 

4 85 1.0 - 

4.3 Experiments for the Transportation Task (Task 2) 

In Task 2, the sample efficiency was lowered by the state of the payload, which is complicated by the 

pendulum motion. In the experiment, GAIL was used to alleviate the problem. GAIL is a technique that 
rewards agents for imitating a series of demonstrations using an adversarial approach (Ho and Ermon 2016). 
In GAIL, the discriminator allocates rewards in proportion to the degree to which the agent’s observations 
and behaviors are similar to those of the demonstration. 

The training process was compared in three baselines according to the use of GAIL and the value of 
strength: Default; GAIL with the strength of 0.1 (GAIL 0.1); and GAIL with the strength of 0.9 (GAIL 0.9). 

Strength is one parameter of GAIL that determines how much of the demonstration data to imitate. We used 
it as one of the baselines because the expert demo can be suboptimal. We collected expert demonstrations 
for 100,000 steps in 180 episodes (550 steps per task). Four display screens were provided to the experts  
to collect the most optimal demonstration as possible, as shown in Figure 2. 

4.4 Results and Discussion 

This section demonstrates the training progress of the agents and compares the performance of the presented 
training methods in terms of cumulative reward and training speed. 
 Figure 3 describes the progress of learning policies in terms of the cumulative rewards of the baselines 
on Task 1:  Default, Dense, CL and Dense and CL. In the case of the default policy, the agent failed to find 

Figure 2:  Figure 2: Training environment to collect experts’ demonstrations. 
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an appropriate behavior in a given number of training steps (Figure 3(a)). This is due to the sparseness of 
the goal-achievement reward. The experimental results also show that there was a steady increase in dense. 
However, even if the maximum step of the session was increased, it did not converge to the task goal in the 

end (Figure 3(b)). The agent was focused on obtaining rewards from the dense reward. 
 On the other hand, in two cases: CL; and Dense and CL, the agents successfully learned the optimal 
policy with the reward increasing sharply after a certain threshold. This implies that once the optimal 
behavior is found, learning proceeds dramatically since the task is relatively easy. In our cases, dense and 
CL showed superior performance in finding the optimal policy with significantly fewer steps required for 
training. Although there is a policy loss in the section in which the lesson is passed, the agent adapted well 

to the changing work environment and found the optimal immediately. 

Figure 4 shows the progress of different learning policies in Task 2: Default, GAIL 0.1, and GAIL 0.9. 
The training process of Task 2 was stable at the beginning, but the agents failed to reach the performance 

of the expert, in which the average reward was 0.61 and the average of the steps was 550. There are vast 
fluctuations in the whole process. This means that the agent is still looking for an optimal policy network. 
Meanwhile, GAIL 0.9 had a higher success rate while copying the demonstration at the beginning. Although 
the performance of the agents is not enough, we found that GAIL is effective for training when compared 
with default. 

5 CONCLUSION 

This research examined adopting a DRL framework to train control policies for two subtasks of a gantry 
crane and proposed an approach to improve sample efficiency while taking the characteristics of crane 
operation into account. We built interactive simulated environments for two subtasks of the crane and 

Figure 4: Task 2 (a) learning curves and (b) episode length of each baseline. 

Figure 3: Learning curves of each baseline at Task 1: (a) 5M steps and (b) 30M steps. 
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defined the data sample that facilitates learning through preliminary experiment. We then performed 
experiments to find out whether three DRL technology techniques (reward shaping, curriculum learning, 
and generative adversarial imitation learning) can improve the learning performance degradation caused by 

operational and kinematic characteristics. Considering the characteristics that the task is affected by, we 
proposed an approach to apply CL to Task 1 and GAIL to Task 2. The results of the experiments show that 
the proposed approach applying the DRL assistive methods (reward function, CL, and GAIL) are effective 
in training for crane control policy. Namely, the agent is trained quickly and the performance of the policy 
is higher. Specifically, the methods are adopted considering the cause of low sample efficiency: the 
operational and kinematic properties of cranes. The number of samples required for learning in Task 1 

increased due to the characteristics of the crane’s work environment, and CL that adjusts the work space 
and threshold distance was found to be effective. In Task 2, it was found that GAIL using expert 
demonstration data was effective for the agent to learn the complexity of crane operation. 

The limitations of this study and recommendations for future research are as follows. The proposed 
approach is highly likely to be effective for overhead cranes and bridge cranes with similar operating 
systems to gantry cranes, but its effectiveness will be limited for rotary cranes with slewing motion. In the 

DRL framework for the rotary crane, it is required  to newly define most of the observation space, reward 
function, and lessons in CL. Besides, we simplified the states of the crane and the environment by limiting 
obstacles and the crane's dynamic motion (e.g., length of the wire rope and motion speed). In future 
research, it would be necessary to develop a crane control policy in a higher dimension of the states.  
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