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ABSTRACT 

The construction industry is struggling with low productivity rates because of a low level of digitalization, 
dynamic interactions, and uncontrollable circumstances on sites, which make the planning process complex. 
Usage of the digital twin construction paradigm enables to facilitate construction management and leverage 
the sector’s unexploited potential. This research addresses current shortcomings by real-time discrete event 
simulation. During crane operations, kinematic data were collected, which were classified by machine 
learning algorithms for activity recognition and duration extraction. Based on the identified durations, 
Goodness-of-Fit techniques determined suitable probability density functions. The resulting probability 
density functions were used as input parameters in stochastic discrete event simulations. It was shown that 
with enriched data collection, probability density functions have to be updated. The data-driven discrete 
event simulation facilitates decision-making processes by providing more reliable real-time information for 
the planning of upcoming construction works. Thus, data-based instead of experience-based management 
can be enabled.  

 

1 INTRODUCTION 

The construction field is one of the least digitalized sectors with flat or even falling productivity rates, 
although it is one of the biggest industries (Patteri and Stolton 2019). Heavy equipment especially suffers 
from low productivity (Slaton et al. 2020). Hence, analysis of construction equipment operations and 
determining activity durations is expedient for increasing overall productivity. Planning and scheduling of 
activities and availability of materials are the most influential attributes for construction labor productivity 
(Dixit and Sharma 2020). In general, a construction project consists of interconnected activities aimed at 
constructing a building within a specific time period. Thus far, it is common practice to use rigid methods 
like the Critical Path Method, which are unsuitable for daily construction management (Seppänen et al. 
2014). Construction works are risk-sensitive and planning of sequences is complex as works are executed 
outdoors under uncontrollable conditions. Deviations from initial construction planning occur regularly and 
schedules have to be adjusted accordingly (Vahdatikhaki and Hammad 2014). 

Digital technologies can simplify ongoing construction site management. Discrete event simulation 
(DES) is a method capable of modeling dynamic interactions with stochastics. The effects of different 
management decisions can be analyzed in a virtual environment. Probability density functions (PDFs) 
modeling is one of the most influential issues in these simulation studies, as the simulation model’s 
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reliability depends on input parameters (Song and Eldin 2012). Hitherto, static experience-based input 
parameters dating from the pre-construction phase are used and represent the major barrier for widespread 
usage of simulation in the architecture, engineering, and construction (AEC) field (Behzadan et al. 2015; 
Abbasi et al. 2020). However, advances in technology enable the collection of real-time performance data 
during construction execution and facilitate automatic activity recognition. Activity durations can be 
extracted for data-driven stochastic DES. Research for real-time data collection and its automated linkage 
to DES is required (Alvanchi et al. 2021). This can enable superior construction site management and 
decision-making in (near) real-time (Sherafat et al. 2020). 

To provide the demonstration of DES’s potential for dynamic planning of ongoing construction 
processes, collected kinematic real-time data of crane operations were analyzed for determining operation 
durations as input parameters. Machine learning (ML) algorithms were used for data classification to 
recognize operations automatically and extract operation durations. Goodness-of-Fit methods were applied 
for finding suitable PDFs as input parameters for stochastic DES. By collecting real-time data continuously, 
the PDFs need to be updated. Thus, the decision-making within construction planning and scheduling can 
be improved by real-time DES. The paper is structured as follows: Chapter two outlines the literature 
background. Afterwards, the framework for collecting real-time performance data and their data mining for 
stochastic DES is introduced. The applicability of the approach is demonstrated by collecting kinematic 
data during crane operations for concrete works on a construction site in Barcelona, Spain. Finally, the 
results are discussed and future research directions are summarized. 

2 LITERATURE BACKGROUND 

2.1 Real-Time Data and Digital Twins 

Within the simulation field, the collection of data is the most important aspect and one of the biggest 
challenges for solving real-world situations (Banks et al. 2010). On construction sites, conventional manual 
data collection strategies are still prevalent, although these methods are error-prone, labor-intensive, and 
time-consuming (Xue et al. 2021). Thus far, gathered data are handled too late and information about 
present situations on construction sites reaches project managers delayed. This impedes the quality of 
construction planning and execution (Cheng and Teizer 2013). With advancements in digitalization and 
automation, such as the Internet of Things (IoT), it is possible to collect data more simply and get access in 
real-time (Boje et al. 2020). Nowadays, there are several technologies available for real-time data 
collection, such as location or movement tracking, computer vision or audio. 

Real-time data collection of construction equipment’s movements enables to build a digital twin (DT) 
during the construction phase. There is no commonly agreed definition for the DT concept in the AEC 
industry yet. According to Brilakis et al. (2019), it is essential to state the intended purpose before the 
creation of a DT. The most existing definition approaches identify three integral parts for a DT: a physical 
part (a construction site or building), a digital part (the digital representation of the physical part), and 
bidirectional information exchange. Data are collected at the physical part to gain project status information 
and knowledge of the current situation. Thus, the digital part can be updated and processed accordingly. 
Inversely, the digital part enables improved management of the physical part by investigating management 
decisions in a virtual environment due to simulation. IoT technology facilitates continuous data and 
information exchange. On the one hand, real-time data collection eases construction sequence control by 
comparing as-performed process and as-built product information with as-planned process and as-designed 
product status. On the other hand, real-time data and gained knowledge enable improved project 
management of future construction works in a timely manner. The method for using a DT as a means for 
data-based holistic management of ongoing works is defined as digital twin construction (DTC). The DT 
concept is still in its early development stage in the AEC industry and efforts regarding real-time data 
collection for creating a DT are rarely applied, especially within the construction phase (Sacks et al. 2020), 
although research has shown the effectiveness of using real-time data for decision support (Makarov et al. 
2021).  
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2.2 Machine Learning Classification for Activity Recognition 

In the construction sector, an activity consists of several operations aimed at completing a physical 
component or at performing support services with resources (Halpin and Riggs 1992). As performance 
monitoring by location tracking of resources’ operations helps to improve productivity on construction 
sites, the advent of automated activity recognition methods can be detected in recent years (Sherafat et al. 
2020). For automated activity recognition, ML classifiers are used for analyzing collected data to categorize 
data points into different classes. ML algorithms can be grouped into supervised and unsupervised. Within 
supervised ML, data are labeled and algorithms look for patterns according to the labeling. For unsupervised 
ML, data are not labeled in advance and algorithms look automatically for patterns to distinguish between 
classes. Supervised algorithms lead to improved performance in equipment activity recognition (Golparvar-
Fard et al. 2013). Nowadays, deep learning algorithms are applied to reach higher accuracies in different 
domains where feature extraction is complex. But for the application of deep learning, much larger and 
more comprehensive data sets (Langroodi et al. 2021) and high-performance computers are required (Li et 
al. 2018), which are rarely available on construction sites. Additionally, ML algorithms work well with 
structured data, such as tabulated data collected by movement sensors, and even outperformed deep learning 
algorithms in activity recognition studies (Baldominos et al. 2019; Lee et al. 2020). 

In general, three possibilities for activity recognition of construction equipment can be distinguished 
based on different data collection technologies. The kinematic method works by collecting movement data 
with sensors (e.g. accelerometers, gyroscopes, etc.) mounted on construction equipment. The visual 
approach (e.g. 2D/3D cameras) records construction processes as images or videos. Audio-based methods 
(e.g. microphones) depend on the sound patterns of equipment during construction execution. In particular, 
the latter two methods are sensitive to external factors such as adjacent construction equipment or weather 
conditions, which can influence the data collection process and its quality. 

The potential of activity recognition in the AEC industry is not fully exploited yet (Akhavian and 
Behzadan 2015). It is necessary to use automated activity recognition approaches to gain incremental 
knowledge about the construction sequence and to use this information for real-time decision-making 
(Sherafat et al. 2020).Construction worker activity recognition has been explored, but there are still 
challenges for construction equipment activity recognition (Slaton et al. 2020). Although cranes play a 
crucial role in construction execution regarding safety, costs, and durations by moving components on site, 
in a current state-of-the-art review (Sherafat et al. 2021) and in an overview (Langroodi et al. 2021) for 
activity recognition methods of construction resources, none of the listed past studies focused on cranes. 
Existing research focuses on crane handling for safety and maintenance, but not on crane usage and how to 
support construction management (Nakanishi et al. 2022). 

2.3 Discrete Event Simulation 

DES consists of interconnected activities as a sequence of events. The state of the system changes according 
to the occurrence of events. DES can be used to mimic construction operation logic and resource allocations 
through statistical analysis (Liu et al. 2015). Durations of activities can be provided as stochastic values, 
i.e. PDFs, and variate input values are generated accordingly. Thus, DES is capable of modeling dynamic 
interactions, uncertainties, and risks. As construction site conditions are changing continuously, DES has 
to be modified and applied according to current situations on site. To address this issue, collecting real-time 
data during construction works and gaining continuous knowledge regarding activity durations for DES 
input is needed (Alvanchi et al. 2021). 

2.4 Research Gap  

In recent years, many studies regarding automated activity recognition of construction equipment have been 
conducted, but a focus on progress monitoring and usage of the gained information for decision-making 
has been neglected (Nakanishi et al. 2022). There is a shortage of studies, which determined activity 
durations based on real-time performance data and used this knowledge to plan ongoing construction works 
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according to DTC. Song and Eldin (2012) tracked real-time global positioning system (GPS) data of 
delivery trucks to gather information about truck delivery times for DES. To distinguish between different 
operations, Akhavian and Behzadan (2013) applied a multimodal data gathering approach in laboratory 
experiments. Activity durations are stated by mean and standard deviation. Vahdatikhaki and Hammad 
(2014) proposed a framework for near real-time simulation by analyzing location-tracked data. The 
collected data are averaged over time to determine parameters for normal distributions. Akhavian and 
Behzadan (2015) investigated the performance of a front-end loader by mounting inertial measurement 
units (IMUs) onto it and derived activity durations for DES. Kim et al. (2019) used vision-based analysis 
during earthmoving operations to determine productivity rates for simulation input. Wu and AbouRizk 
(2021) tested the update of simulation inputs but included expert opinions to determine PDFs and were 
limited to three conventional distributions, such as the uniform one. These data-based approaches showed 
improved quality in comparison to conventional, static methods. But, none of the studies updated suitable 
PDFs according to an increasing amount of real-time data for simulation of construction equipment 
operations according to the DT concept. As always only sample data can be used for determining activity 
durations, it is expedient to collect movement data continuously to cover the dynamic and uncertain nature 
of construction activities and update the PDFs accordingly. Hence, by having more reliable activity 
durations as input parameters, the model becomes more meaningful. Therefore, this research addresses the 
intersection of real-time data and DTs, machine learning for activity recognition, and stochastic DES to 
apply DTC. 

3 METHOD 

The developed framework for updating activity durations by kinematic real-time data for DES input can be 
retraced in Figure 1. At first, real-time raw data have to be collected during construction execution by 
mounting sensors on equipment. The collected data are send to an IoT platform, which construction 
managers can access. The data have to be prepared for further analysis. Duplicated or close timestamps 
have to be removed and missing instances have to be interpolated to get a continuous data set. The data are 
normalized to create a common scale among different data sources. The prepared raw data are used to 
calculate features by overlapping sliding windows. Sliding windows summarize data by calculating features 
for a certain number of instances. The sliding windows have to be labelled based on observed information 
for supervised learning. In the following, a principal component analysis (PCA) is applied to the feature 
data set. PCA is a process of calculating eigenvectors by feature inputs to reduce the extent of the data set. 
The eigenvectors are based on features’ data. The variance can be set, i.e. the cumulative information 
content of the original data set, by calculating the axle variance of the eigenvectors. 

Figure 1: Framework for real-time DES. 
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The resulting data set by the PCA has to be used in a cross validation for supervised learning by different 
ML classifiers. Generally, there is no best ML classifier and it has to be tested which classifier performs 
best for the respective situation. The ML classifiers categorize the instances into different activities. The 
performance of different classifiers has to be compared and the classifier with the highest accuracy can be 
used for calculating the durations of each repetition of every operation. Each classified instance stands for 
one window. As the windows contain several data points from the original data set, the duration for each 
window is known according to the number of data points. The duration of each repetition of the operations 
can be calculated by the equation: duration (seconds) = n * wl * ol, with n = number of windows, wl = 
window length in seconds, and ol = percentage of overlap. 

Heuristics are applied to exclude outliers such as singular windows, which do not represent reasonable 
classified data points. The different durations of each execution of every operation are used for applying 
Goodness-of-Fit techniques to determine suitable PDFs. Goodness-of-Fit is a statistical measure to test how 
closely the data can be represented. It can be distinguished between hypothesis tests and information 
criteria. Hypothesis tests calculate the difference between a data-based cumulative function and a possible 
PDF. Information criteria calculate the information loss of a possible PDF in comparison to input data. No 
PDF will exactly reproduce the input durations. It is advisable to apply several Goodness-of-Fit measures 
to a data set, as each Goodness-of-Fit approach has shortcomings and can be unreliable in some cases 
(Vincent 1998). If all tests prefer the same PDF, this PDF can be chosen as input. If there are different 
preferences among the tests, the results of each Goodness-of-Fit test are ranked and the PDF with the best 
overall ranking has to be chosen. When a PDF is determined by the Goodness-of-Fit methods, a null 
hypothesis test according to a certain significance level has to be applied to investigate whether the assumed 
PDF can be kept or whether the hypothesis has to be rejected. Therefore, a p value is calculated for each 
hypothesis test, which must lie over the in advanced determined significance level for not rejecting the null 
hypothesis. 

Afterwards, the whole construction process has to be modeled within stochastic DES and the data-
based PDFs resulting from Goodness-of-Fit analyses are used as activity duration inputs. Calibration has 
to be done by comparing DES’s output with the real duration to validate the model. If the model is valid, 
the results of the DES enable decision-making regarding upcoming construction site activities. When the 
construction starts, further real-time data are collected and the whole procedure reruns. By enrichment of 
real-time data, the PDFs have to be updated. 

4 APPLICATION 

4.1 Demonstration Site 

The applicability of the approach was demonstrated on a construction site in Barcelona, Spain, during shell 
construction by reinforced concrete for an office building. The walls and columns were poured by concrete 
buckets moved by a tower crane. The activity concrete works consisted of four iterative operations after the 
arrival and preparing of a concrete mixer truck: Lifting a bucket down by crane, filling the bucket, lifting 
the bucket up by crane, and pouring concrete into the formwork (Figure 2). If the truck was empty, it left 
and the next truck could take its position. The duration between leaving a concrete mixing plant and starting 
a curing process should not exceed a duration of 1.5 hours, as the quality of concrete decreases afterwards 
and it will become unusable (Lin et al. 2010). Therefore, an appropriate coordination of trucks’ arrival times 
is needed. The trucks had a capacity of around 7,200 liters of concrete and the bucket of around 800 liters 
of concrete. Sensors were mounted on the crane hook during concrete works on the 7th floor. The data were 
collected in the afternoon of December 16th, 2021, on the construction site during two ready-mixed concrete 
truck deliveries. In total, around 13,600 liters of concrete were poured. The weather was sunny with hardly 
any wind with a maximum of 2 m/s during measurements according to a closely located weather station. 
The Euclidean distance between the concrete truck and the working area was around 40 meters. 
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4.2 Data Collection 

For data collection, a three-axis IMU and location tracking sensors were mounted on a crane hook during 
concrete works, which could collect accelerometer, gyroscope, GPS, and height data. Thus far, a 
shortcoming was that data collection was rather done in an isolated manner by focusing on one technology 
source (Sacks et al. 2020; Kim et al. 2021). For this study, ten different raw data types were gathered and 
fused (X/Y/Z acceleration by IMU, X/Y/Z angular velocity by IMU, longitude/latitude/altitude by GPS 
tracker, and altitude by barometer). The device was connected to an ESP32 to gather sensor data and send 
it to an IoT platform. Each data point was saved with a related timestamp. As the second truck arrived 
delayed, around one hour of idle time occurred. This period was excluded in this study. A low sample rate 
was chosen for data collection in comparison to other equipment activity recognition studies with 50 to 100 
Hz (Sherafat et al. 2020). If applying the DT concept in the future holistically by observing all resources 
on site and collecting data for each resource, an enormous amount of data will have to be handled. Thus, a 
focus on efficient usage of collected data is preferable. In human activity recognition, it has already been 
proven that a sampling rate of 1 Hz can save energy and still achieve high accuracy (Zheng et al. 2017). In 
total, 98:52 minutes of activity time were collected with 27,335 data points. The whole construction process 
was recorded on video for labeling data and validation.  

4.3 Data Preparation 

R 4.1.0 software was used for the study. The dataset was reduced to 4 Hz by deleting duplicated data points 
and interpolating missing ones. In the following, windows of a size of two seconds, including eight data 
points, were calculated with a 50 % overlap. The following time-domain features were extracted by 
statistical analysis of the raw data: minimum, maximum, mean, interquartile range (IQR), variance, and 
root-mean-square error. This resulted in 60 features in total. The windows were labelled manually by 
comparing the recorded video with the timestamps of the data points. Considering the PCA, a variance of 
90 % was chosen, which resulted in a reduction down to 15 dimensions. 

4.4 Classification  

The performance of the following classifiers was compared according to a 10-fold cross validation on the 
whole data set for activity recognition: Naïve Bayes, Decision Tree, k-nearest neighbor (KNN), support 
vector machine (SVM), and Random Forest. The first four approaches are different basic ML techniques. 
Naïve Bayes is a probabilistic classifier based on the Bayes theorem and assigns data points to labels 
according to probability. Decision Tree uses simple decision rules to distinguish between labels at nodes 
and can be understood as a tree. KNN calculates the distance between data points and categorizes instances 
according to their neighbors. Within SVM, the instances are mapped into more-dimensional space 

Figure 2: Work process pattern for concrete works. 
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according to the number of features and lines are used for splitting the data set for classification. Random 
Forest is an advanced version of the Decision Tree, as it consists of several uncorrelated Decision Trees 
and therefore reduces the possibility of overfitting. It has been proven that Random Forest is a suitable 
ensemble classifier for multi-dimensional data and complex problems (Ahmad et al. 2017) and performed 
best in several comparison studies of different classifiers for activity recognition (Baldominos et al. 2019; 
Lee et al. 2020). 

For 10-fold cross validation, the folds were fixed so that all classifiers applied simulations with the 
same folds, although this would not be necessary for the Random Forest classifier. However, for the sake 
of comparison, cross validations for each classifier were executed in the same way. It could be detected that 
Random Forest achieved the highest accuracy among the investigated classifiers with 93.27 % (Table 1). 
This is an improvement of almost 20 % in comparison to Naïve Bayes and Decision Tree, 10 % better than 
KNN, and 7 % better than SVM. These results are plausible as the Random Forest algorithm is an 
enhancement of the Decision Tree algorithm, Considering the duration calculation and the fact that one 
window is equal to one second, the accuracy of Random Forest seems to be a suitable result.  

Table 1: Classifier accuracy for 10-fold cross validation. 

 Naïve Bayes Decision Tree KNN SVM Random Forest 
Accuracy (%) 74.16 75.66 83.05 86.01 93.27 

 
Another approach for evaluating the performance of classifiers is the use of confusion matrices by 

comparison of actual with predicted operation instances. The confusion matrix for the Random Forest as 
the classifier with the highest accuracy can be seen in Table 2 and it can be detected that there are no wrong 
classifications among the operations Concrete Pouring and Filling. This is due to the different altitudes of 
these operations. The wrong predictions occurred in relation to the operations Lifting Up and Lifting Down. 
The transition between these two operations was fluently, as, for instance, the concrete was poured into the 
formwork while the bucket was still lifted up by the crane. Thus, a clear distinction is challenging for the 
classifier. 

Table 2: Confusion matrix for Random Forest. 

  
                  
  
  

Prediction 

 Total 
  

 Concrete 
pouring  Filling  Lifting down  Lifting up 

A
ct

ua
l  

 

 Concrete Pouring              1,333 0 30 76 1,439 (24.26 %) 
 Filling                          0 1,250 30 28 1,278 (21.54 %) 
 Lifting Down                 31 58 1,420 30 1,539 (25.94%) 
 Lifting Up                      76 17 23 1,560 1,676 (28.25%) 

   Total 1,440  1,295 1,503 1,694 5,932 
 
Precision and recall, which can be calculated by the confusion matrix, are performance metrics and 

were investigated to evaluate the quality of the classification approach. Precision is the fraction of relevant 
predicted instances among the positive predicted instances. Recall is the fraction of relevant predicted 
instances among all relevant instances in the data set. Precision and recall were calculated for each of the 
four operations for the Random Forest classifier (Table 3). The Lifting Down operation has the lowest value 
at 91.81 %, but there is no significant difference between recall and precision for each of the different 
operations. As the data set is balanced with ratios of 24.26 %, 21.54 %, 25.94 %, and 28.25 % for the 
respective operations (Table 2), these classifications can be seen as suitable. Overall, it can be detected that 
the results present a good balance between precision and recall. 

The classifications of Random Forest were edited heuristically before calculating durations. For 
instance, if 15 windows were classified as Concrete Pouring, then two instances of Lifting Up occurred, 
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followed by 23 instances of Concrete Pouring, they were merged to 40 instances of Concrete pouring. As 
the windows have a size of two seconds with 50 % overlap, the number of windows is multiplied by one 
second. By this approach, the duration of each repetition of every operation was calculated. 

Table 3: Precision and recall for Random Forest. 

Operation Precision (%) Recall (%) 
Concrete pouring 92.70 92.63 
Filling 93.75 95.07 
Lifting down 94.33 91.81 
Lifting up 92.00 93.32 

4.5 Determining Probability Density Functions 

To determine suitable PDFs, the following Goodness-of-Fit statistics were calculated: three hypothesis tests 
- Kolmogorov-Smirnov-Test (KS-Test), Cramér-von-Mises-Test (CvM-Test), and Anderson-Darling Test 
(AD-Test) - and two information criterion - Akaike information criterion (AIC) and Bayesian information 
criterion (BIC). The most frequently used Goodness-of-Fit methods are the KS-Test and the chi-square test, 
but the KS-Test leads to more precise results for continuous probability distributions (Massey 1951). The 
CvM-Test and AD-Test are calculated similarly, differing only by a different multiplier, and both are often 
more powerful than the KS-Test (Stephens 1986). In comparison to the KS-Test, the AD-Test emphasizes 
more risks by equal weighting of the body and tails of distributions. CvM-Test can be seen as a balanced 
approach between KS-Test and AD-Test. AIC and BIC are based on the Log-likelihood and are especially 
functional to prevent overfitting (Delignette-Muller and Dutang 2015). 

The classified durations for the first concrete delivery and for both deliveries were used in Goodness-
of-Fit analyses to investigate the update of PDFs. Hence, for each of the four operations, PDFs according 
to two different input sources were investigated. Each operation was repeated nine times for the first 
concrete delivery. For the second delivery, the operations were executed eight times, besides the operation 
Lifting Down, which was executed only seven times because the bucket was cleaned on the fifth floor after 
finishing execution for the working day. An example for the Lifting Down operation based on the classified 
durations for the whole data set is presented in Table 4 for a comparison of different, but not all investigated 
distributions. The Weibull distribution fits best according to the input data for all five Goodness-of-Fit 
methods. 

Table 4: Comparison of Goodness-of-Fit results for Lifting Down. 

 Normal Log-normal Logistic Cauchy Weibull 
KS-Test 0.186 0.196 0.179 0.178 0.151 
CvM-Test 0.064 0.077 0.061 0.110 0.053 
AD-Test 0.356 0.432 0.351 0.677 0.306 
AIC 123.32 124.15 123.86 129.22 122.91 
BIC 124.87 125.70 125.41 130.76 124.46 

 
A significance level of 0.05 was chosen and the calculated p values for each of the three hypothesis 

tests are above the significance level. Thus, the null hypothesis for the Weibull distribution was not rejected 
and the distribution can be used. The resulting PDFs for the operations according to Goodness-of-Fit 
analyses can be seen in Table 5. The execution of the construction works was done a bit faster during the 
second concrete delivery in comparison to the first truck, although it was getting darker as the second truck 
arrived around 06:00 pm. The shorter durations can be detected in the identified PDFs. It can be determined 
that it is possible to infer useful information from a small amount of data. This can aid in determining a 
suitable updating interval for the PDFs. 
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Table 5: Resulting PDFs. 

Operation Data set: First truck Data set: Both trucks 
Filling Cauchy (87.04, 5.64) Logistic (80.42, 10.34) 
Lifting Up Logistic(98.68, 9.80) Logistic (96.28, 8.29) 
Concrete Pouring Log-normal (4.30, 0.49) Log-normal (4.17, 0.69) 
Lifting Down Weibull (10.71, 93.93) Weibull (10.54, 95.54) 

4.6 Data-Driven Discrete Event Simulation 

In the following, the whole construction process was simulated by DES and the total construction duration 
was calculated. The only deviation from the real procedure was a just-in-time delivery of concrete instead 
of consideration of idle time. The results of the data-driven DES for the first truck and for both trucks were 
compared. To get reliable results, a Monte-Carlo simulation was applied and the DES was repeated 2,000 
times. Before evaluating the results of the DES, outliers were removed by the boxplot approach: 

Lower outliers < Q25 -1.5 * IQR 
Upper outliers > Q75 +1.5 * IQR. 

According to the boxplot outlier search, for the data-driven DES based on the first truck 147 outliers, 
7.4 %, were detected and there were only 26 outliers for the data-driven DES based on two trucks. Finally, 
this results in the total construction durations in Table 6 and the density plots in Figure 3. The green density 
curve presents the durations based on the classified data set of the first truck and the blue curve shows the 
data-driven model based on the whole data set. The dotted red line displays the construction process’s real 
duration of 5,932 seconds.  

Table 6: Resulting durations from data-driven DES. 

 Min (s) Q25 (s) Median (s) Mean (s) Q75 (s) Max (s) 
Data set: First 
truck (green) 

5,416 5,999 6,162 6,181 6,336 6,979 

Data set: Both 
trucks (blue) 

5,215 5,755 5,931 5,950 6,120 6,713 

Figure 3 shows that the blue curve surrounds the real duration much better than the green curve. It can 
clearly be detected that the results based on the whole data set are closer to the real value. The median is 

Figure 3: Density plots for total construction durations. 
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only one second lower than the real duration, as the median based on the data set of the first truck is 230 
seconds higher. The reason for this is that the execution of the operations during the second truck was a bit 
faster. This could be detected in the respective PDFs and in the results of the DES. The green curve is based 
only on a sample of the whole population and, thus, the results of the DES are inaccurate in comparison to 
the DES based on the whole data set. This emphasizes the need for DTC to update PDFs to model more 
reliable simulations. 

4.7 Calibration 

For calibration of the model, the Wilcoxon signed-rank test was applied to test for validity. The Wilcoxon 
signed-rank test is a hypothesis test that can compare a known value – the real duration – to the median of 
a data set – the results of the Monte-Carlo method – by ranking the results of the Monte-Carlo method in 
relation to the median. The Wilcoxon signed-rank test has greater statistical power in comparison to the 
widespread Student’s t-test, as proven in several simulation studies (Blair and Higgins 1980). Within the 
Wilcoxon signed-rank test, a p-value is calculated. If the resulting p value is above the advanced determined 
significance level of 0.05, the null hypothesis cannot be rejected and the model is valid. The p value for the 
data set of one truck is 0.0 and for the data set of both trucks 0.14. Thus, it can be observed that only the 
DES model based on the whole data set is valid, as the model that used data only from the first truck has to 
be rejected according to the calibration.  

5 CONCLUSION 

The proposed framework helps to control construction activities and further improve decision-making 
based on real-time data-driven DES. For instance, the delivery period of upcoming concrete truck supplies 
can be adjusted or different construction activities can be coordinated to reduce idle times for resources. 
Hence, the developed approach helps to overcome the two most affecting attributes regarding construction 
productivity: planning and scheduling of activities and material deliveries (Dixit and Sharma 2020).  

This research promotes the usage of real-time data during construction equipment’s usage by advanced 
analytics technologies for leveraging digitalization and the DT concept in the AEC field. The proposed 
approach successfully shows how to apply the DT concept in the construction phase. Collected data are 
used for gaining project status information and knowledge about the current situation. Thus, an information 
exchange regarding as-built product and as-performed process can be achieved in real-time. As proven by 
the calibration, real-time data-driven DES enables more reliable results by updating PDFs continuously. 
The former approaches, by using static values or only simplified data-based activity durations, neglect the 
dynamics during construction execution. According to the central limit theorem, the results of the Monte-
Carlo approach tend to a normal distribution, which can be used for planning similar projects in the future. 
Hence, to determine the most suitable final distribution, it is essential to combine the different distributions. 
From a practical point of view, the saving of collected DT data on a database will offer valuable knowledge 
for the planning of future construction projects. The different distributions can be adapted to the equipment, 
such as buckets with a higher capacity, if needed. After construction starts, further real-time data can be 
collected to update the PDFs according to the respective situations on site. 

The resulting accuracies of the ML classifiers are consistent in comparison to other kinematic 
equipment activity studies, which have a higher sample rate during data collection and did not apply a PCA 
(Akhavian and Behzadan 2015; Kim et al. 2018; Rashid and Louis 2019). The accuracy of this approach 
can still be improved by hypertuning of the algorithms in future studies, but the scope of this research lies 
in presenting the whole procedure and the validity of the model was proven by calibration. On the basis of 
this study, the usage of data-driven DES offers the possibility to improve aspects such as safety, costs, and 
resource efficiency. An in-depth investigation of different key performance indicators within DES is needed 
in the future. This would allow for addressing the decision-making process by considering the effects of 
management decisions more comprehensively. A limitation of this research is that data were collected only 
during optimal weather conditions. DES enables stochastic simulation of processes and consideration of 
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uncertainties and risks. Thus, a deeper investigation of risk factors such as changing weather conditions or 
congestion during material deliveries would be expedient in future research.  
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