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ABSTRACT

This research compares two methods of choosing a distribution to match sample data: Kullback-Leibler
(KL) divergence and the Kolmogorov-Smirnoff (KS) statistic. We generate sample data from a known
distribution (we used the gamma, log-normal, and Weibull distributions), find best matches to the data for
each candidate distribution using maximum likelihood parameter estimation, then use KL divergence and
the KS statistic to choose a best fit for the data. Using Monte-Carlo simulation, we estimate a probability
of correct selection for KL divergence and the KS statistic by determining how frequently each method
correctly selects the known underlying distribution. Results vary based on the data-generating distribution
type, parameters, and sample size, but we find that KL divergence generally outperforms the KS statistic
except in a few rare instances. This is an important result, as the two measures are not directly comparable,
and are competing methods for measuring the distance between two distributions.

1 INTRODUCTION

1.1 Purpose

In modeling, selecting the distribution that most accurately reflects a real-world process is essential. But
how essential? For some logistics applications, incorrect selection leads to poor life cycle scheduling,
and increased operations and maintenance costs in best-case scenarios. In worst-case scenarios, incorrect
selection can yield catastrophic results. To examine the impacts of poor distribution selection, this paper
explores two methods of quantifying the difference between a forecast distribution and actual system
performance when the underlying distribution of the system is not known. We will answer the question of
quantifying these differences for varying sample sizes.

1.2 Motivation

Extensive research comparing any combination of two probability distributions is readily available. Eval-
uating the probability of correct selection among pairs of distributions leaves potential gaps in reliability
analysis when considering the possibility that there may be other underlying distributions. Additionally,
some research has also investigated variations in the KS statistic and KL divergence resulting from the
probability of correct selection. However, this paper takes these evaluations further by analyzing three
distributions commonly encountered in real-world applications. The two theoretical models applied in this
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study are Kullback-Leibler divergence and the Kolmogorov-Smirnoff statistic test. Although both models
are used to evaluate the best fit between sample and reference distributions, they are computationally
significantly different. The KS statistic is a measure of the most significant distance between the two
distributions when presented as cumulative distribution functions, whereas KL divergence measures the
probability that the observed data represents the specified theoretical model. The KL divergence has also
been termed relative entropy. It takes a more holistic measure of the difference in information between the
proposed theoretical probability distribution and the sample distribution.

Further motivating this research is the consideration that using an incorrect distribution to model behavior
may have significant ramifications. One such case involves reliability behavior for circuits, as described
by Basavalingappa et al. (2017). Electromigration failure tests are used to determine expected lifetimes of
integrated circuits, and log-normal or Weibull distributions are typically used to model circuit reliability.
Because circuit life is generally quite long, reliability studies are typically conducted at accelerated conditions,
with high current and temperatures, and the results are then extrapolated and scaled to reflect actual intended
use conditions. After scaling and extrapolation, the Weibull- and log-normal-derived predictions differ
from each other dramatically, so the choice of distribution is important to best characterize actual circuit
behavior.

Another application where the correct distribution matters involves modeling reliability of bridges
repaired or reinforced with fiber-reinforced polymer (FRP), described by Atedero et al. (2004). FRP
composites are often used to repair or strengthen deteriorating bridges. Due to field conditions and the
“wet layup process” used to apply FRP, there is a potential for vast variability in FRP strength and, thus,
the reinforced bridge’s reliability. Atedero et al. (2004) use multiple distributions (gamma, Gaussian,
log-normal, and Weibull) to model the strength of FRP panels fabricated under field conditions and analyze
the goodness-of-fit of the distributions using Pearson’s Chi-square test. Overall, the Weibull best modeled
the FRP data for strength and thickness, but the log-normal best modeled the tensile modulus data. The
authors find that a reasonable estimate for each of these characteristics is the distribution mean plus or
minus two standard deviations, so the choice of distributions significantly impacts repaired bridge reliability
estimates.

Finally, in a third application, Basu et al. (2009) explore using the gamma, Gaussian, generalized
exponential log-normal, and Weibull distributions to model strength reliability for brittle materials. While
the Weibull distribution has been most commonly used for this purpose, the authors find that the gamma
and log-normal distributions may better model strength data in some circumstances. They find the MLE
for the gamma, Gaussian, generalized exponential log-normal, and Weibull distributions to fit known brittle
material strength data and discuss different measures to select the best distribution, including maximum
likelihood, KS statistic, and chi-square distance. Brittle materials have been in higher demand recently, as
myriad new applications requiring high hardness, rigidity, and strength are needed at high temperatures.
Unfortunately, there is significant variability in the strength of ceramics and other brittle materials, even
among apparently identical samples. Efforts are underway to improve ceramic strength and better model
the strength of brittle materials. Our research could be usefully applied here as well.

With these motivating applications in mind, the importance of correctly selecting a distribution that
best fits sample data is apparent. This paper compares the differences between an MLE-calculated best
fit distribution and known distributions, including the one from which the data was generated. The best
measure of distance, however, is a contested topic. We compare the results using KS statistic and KL
divergence to explore when each might be the preferred technique. To limit the scope of this study, we
focus on the the three continuous distributions, gamma, log-normal, and Weibull, commonly referenced in
the motivating research.

2 RELATED LITERATURE

In recent years, extensive research relevant to establishing the foundation for our analysis has been conducted.
Each of the publications discussed expounds upon to a theory which we have considered in developing our
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approach. All of the publications considered center on one or more research concepts, but a broad search
did not uncover research that has evaluated the full breadth of topics discussed in this paper. The three topics
underpinning this research are KS statistic, KL divergence, and probability of correct selection. Below,
we summarize the relationships between some of the more insightful research papers in discrimination
analysis and our research.

Kundu and Manglick (2004) consider the selection of gamma and log-normal distributions with unknown
shape and scale. To achieve discrimination between these two distributions, the authors apply a ratio of
maximum likelihoods (RML). In this paper, the probability of correct selection (PCS) is estimated using
Monte Carlo simulations based on the distributions for an array of sample sizes, n = 20,40,60,80,100,
and replicating the process 10,000 times. The Kundu and Manglick (2004) paper does not consider a
comparison with KL Divergence.

An example was given in Peng et al. (2015) showing that the PCS can decrease in some situations where
certain distributions are more heavily sampled. Additionally, the authors provide a general formulation of
the probability of correct selection for k alternatives:

PCS ≡ P(X̄1 > X̄2, · · · , X̄1 > X̄k), (1)

where X̄i is the sample mean of alternative i. We will describe how we modify this definition of PCS in
Section 3.2 using the KL divergence and KS statistic where we will limit the alternatives to the gamma,
log-normal, and Weibull distributions (i ∈ {gamma, log-normal, and Weibull} with k = 3).

Dey and Kundu (2009) measured the discrimination between the log-normal, Weibull, and generalized
exponential distributions using a discrimination process comparing the likelihood functions for each of
the three distributions, combining both asymptotic results and Monte-Carlo simulation. They then use the
Kolmogorov-Smirnov statistic for two distribution functions F and G to explain the results. Additionally,
they continue to investigate instances where Type-I censoring occurs. Adopted from this paper is the use
of a “scale” value of 1 for all distributions as well as the shapes used in varying the Weibull distribution,
which are listed in section 4.1. While Dey and Kundu (2009) focus on the likelihood function, this research
evaluates the probability of correct selection using the KS statistic and KL divergence.

Das and Park (2012) investigated several examples and considered the selection comparison between
gamma and log-normal distributions using generalized linear models (GLM). This paper emphasized how
incorrect model assumptions can mask significant factors, making them appear insignificant and resulting
in serious error. Their example with heteroscedasticity demonstrates that modeled distributions should have
a close enough fit, otherwise a result of “all models are wrong” can be achieved. Das and Park (2012) show
how the GLM discrimination rule used in this paper can mislead a comparison for small sample sizes.

2.1 Mathematical Models

This paper assesses the performance of KL convergence and the KS statistic using the gamma, log-normal,
and Weibull distributions, as these are commonly used in reliability engineering (Kapur and Pecht 2014).
This section provides the distribution function, density function, and maximum likelihood estimators (if
they exist) for each distribution. The specific parameterizations for the gamma, log-normal, and Weibull
distributions used in this paper are shown in Appendix A.

2.1.1 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence can measure the relative entropy, or information loss, between two
distributions (Bromideh 2012; Bauckhage 2013; Bauckhage 2014). The KL divergence is defined as:

KL(F,G) =
∫

∞

0
f (x) ln

f (x)
g(x)

dx. (2)
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Since the Weibull distribution has support of x ∈ [0,∞), and the gamma and log-normal distributions
have support of x ∈ (0,∞) we have limited the domain to x ∈ [0,∞). The Kullback-Leibler divergence can
be thought of as the ‘distance’ between F and G or as the amount of information lost when using G to
model F (Bromideh 2012). It is important to note that this is not a true distance, as generally speaking
KL(F ||G) ̸= KL(G||F).

2.1.2 Kolmogorov-Smirnov Statistic

The Kolmogorov-Smirnov (KS) statistic measures the maximum (vertical) difference between two cumulative
distribution functions (CDFs). It is defined as

KS(F,G) = sup
x
|F(x)−G(x)| (3)

for two distribution functions F and G (Kundu and Manglick 2005; Dey and Kundu 2009). They found
instability in the results for KS statistic with small sets of observations using the maximum likelihood
estimate. Additionally, censoring data further decreases the accuracy of correctly selecting the underlying
distribution. The final significant observation related to this instability is that correctly discriminating
distributions which are so similar may not provide additional functional benefit.

3 METHODS

In order to compare KS statistics and KL divergence, we sought to generate samples from known distributions,
then calculate estimates of the distributions from the samples, and finally compare how KS statistics and KL
divergence describe the distance between the estimated distributions and the known underlying distributions.
The simulation developed to determine the probability of correct selection of one of the reference distributions
corresponding to given shapes is outlined in Table 1. For each reference shape and iteration, we randomly
sample from the distribution based on the required number of observations. With these samples, we estimate
the best fit distribution using the maximum likelihood. The reference shape and scale is then compared to
the estimated shape and scale by measuring both the KS statistic and KL divergence.

3.1 Selected Parameter Values

The menu of shapes selected for the Monte Carlo simulation were compiled from values previously explored
in similar research and are listed in Table 1. The shape value used for the Weibull distribution and standard
deviation for the log-normal distribution are the same as used by Dey and Kundu (2009), while the shape
values for the gamma distribution are similar to those used by Kundu and Manglick (2005). A scale of
1.0 was selected for all probability distributions (λ = 1,exp(µ) = 1 and l = 1 for gamma, log-normal, and
Weibull distributions, respectively).

Table 1: Evaluated shapes (gamma and Weibull) and standard deviation (log-normal).

Distribution Parameters
gamma (η =) 2.0 4.0 6.0 8.0 10.0 12.0
log-normal (σ =) 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4
Weibull (k =) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

3.2 Simulation Algorithm

Algorithm 1 provides the framework we used to estimate the PCS among the three distributions. This
example will assume a Weibull reference distribution with a sample size of N, where θ is the known
parameters from the reference distribution consisting of the shape and scale.
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Algorithm 1: Probability of Correct Selection algorithm

1 klwin← [ ]
2 kswin← [ ]
3 for m = 1 to M do
4 X ←Weib(θ ,N)
5 A← [ ]
6 B← [ ]
7 for i ∈ {gamma, log-normal,Weibull} do
8 θ̂i←MLE(i|X)

9 A.append(KL(P(θ),Q(θ̂i)))

10 B.append(KS(F(θ),G(θ̂i)))

11 end

12 klwin.append
(

argmin
i
{Ai}

)
13 kswin.append

(
argmin

i
{Bi}

)
14 end

15 ˆPCSKL(Weib,k) =
N

∑
j=1

[klwin[ j] =Weib]
N

16 ˆPCSKS(Weib,k) =
N

∑
j=1

[kswin[ j] =Weib]
N

In Algorithm 1, we initiate two lists to store the distribution with the smallest KL divergence values
and KS statistic, respectively (lines 1 and 2) . We then iterate through M replications (line 3) and create N
random variates from the reference distribution with reference parameters θ (line 4), and create two lists
to store the KL divergence values and KS statistic (lines 5 and 6). Then, for each of the three estimated
distributions (line 7), we estimate the parameters for the estimated distribution i, θ̂i (line 8). The KL
divergence values (2) and KS statistic (3) are calculated using the reference parameters θ and the estimated
parameters θ̂i (lines 9 and 10). The distribution with the best (smallest) KL divergence value and KS
statistic is recorded (lines 12 and 13). The estimated probability of correct selection for the reference
distribution with a sample size of k is calculated by counting the number of instances where the klwin and
kswin is equal to the reference distribution for both the KL divergence and KS statistic (lines 15 and 16).
The estimated probability of correct selection shown in line 15 is equivalent to the modifying equation (1)
in the following manner: Let KLδ be the KL divergence for distributions δ ∈ {gamma, log-normal, and
Weibull}, as calculated in line 9. Without loss of generality, we can define the estimated probability of
correct selection for sample size k as and distribution indicator i

ˆPCSKL(δ = i,k)≈ P(KL1 < KL2,KL1 < KL3).

Substituting KS for KL will provide the estimated probability of correct selection shown in line 16 for
the KS statistic.

We used Python 3.9.7 and Scipy 18.1 to simulate the values. Here we explain some of the details in
executing Algorithm 1. The random variates (line 4) are created using the scipy.stats.gamma.rvs,
.lognorm.rvs, or .weibull_min.rvs functions. The MLE values are calculated using the closed
form estimates for the gamma (equations (4) and (5)) and log-normal distributions (equations (6) and (7)),
while the MLE for the Weibull distribution use the scipy.optimize.minimize function. The KL
divergence values (line 9) are calculated using the results found in Bauckhage (2013), Bauckhage (2014), and

2334



Andriulli, Starling, and Schwartz

similar computations. The KS statistic (line 10) is calculated using the scipy.stats.ks_2samp(X,Y)
function, where X and Y are created from appropriate combination of inverse cdf values (using the
scipy.stats.gamma.ppf, .lognorm.ppf, or .weibull_min.ppf functions). Although this
algorithm shows the PCS (lines 12, 13) for the reference distribution (Weibull in this example), the PCS for
the other distributions are recorded and shown in Tables 2-4. All references to scipy can be referenced
in Virtanen et al. (2020).

3.3 Simulation Results

Each simulation was completed with randomly generated samples starting with 10 observations, and
increasing with each iteration to 20, 30, 50, 70, and 100 observations. Finally, 10,000 replications of each
combination were performed.

3.3.1 Gamma Reference Distribution

The results for a gamma reference distribution with a scale parameter λ = 1 and shape parameters η =
2.0, 4.0, 6.0, 8.0, 10.0, and 12.0 are shown in Figure 1 and Table 2. One can see that in general, as
the sample size increases, the probability of choosing a gamma distribution with the KL divergence also
increases (Figure 1a). The PCS of choosing gamma also increases when using the KS statistic albeit at a
much slower rate. While the PCS of both metrics are comparable for smaller sample sizes (n = 10,20),
KL divergence yields a higher PCS in every case, with dramatically better results at larger sample sizes.

10 20 30 50 70 100

number of observations

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y 
of

 c
or

re
ct

 s
el

ec
tio

n

2.0
4.0
6.08.0

10.0
12.0

2.04.0
6.0
8.0

10.0
12.0

(a) KL divergence

10 20 30 50 70 100

number of observations

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y 
of

 c
or

re
ct

 s
el

ec
tio

n

2.0
4.0
6.08.010.0

12.0

2.0

4.0
6.08.0

10.0
12.0
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Figure 1: Probability of correct selection with gamma as reference distribution. The numbers listed on the
figures represent the various shape parameter values for the gamma distribution.

Upon closer examination of Table 2, we see that the KL divergence with a smaller shape value (η = 2.0)
and lower numbers of observations (n = 10,20) has a higher percentage of incorrectly choosing Weibull at
the smaller sample sizes compared to choosing the log-normal distribution, but has a higher percentage of
incorrectly choosing the log-normal distribution with larger shape values and larger numbers of observations.
We can see similar phenomena in the KS statistic tables, where the incorrect selection tends towards the
log-normal distribution for larger shape values and sample sizes. A broad comparison of these results can
be made to the results obtained in Dey and Kundu (2009). Although their analysis is not the same, they
compare the PCS of the generalized exponential, log-normal, and Weibull distributions based on asymptotic
distributions and obtain strikingly similar results.
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Table 2: Classification probabilities for various shape parameter values and sample sizes with gamma as
reference distribution.

KL divergence KS statistic
shape dist 10 20 30 50 70 100 10 20 30 50 70 100
2 gamma 0.34 0.484 0.583 0.766 0.881 0.96 0.289 0.374 0.405 0.415 0.43 0.462

lognorm 0.233 0.11 0.057 0.015 0.003 0 0.22 0.112 0.064 0.06 0.068 0.067
weibull 0.428 0.406 0.36 0.219 0.116 0.039 0.491 0.514 0.531 0.526 0.502 0.471

4 gamma 0.286 0.465 0.601 0.818 0.939 0.988 0.253 0.355 0.398 0.439 0.478 0.568
lognorm 0.389 0.34 0.28 0.134 0.05 0.011 0.327 0.285 0.24 0.168 0.115 0.055
weibull 0.325 0.195 0.119 0.047 0.01 0.002 0.42 0.36 0.361 0.393 0.407 0.377

6 gamma 0.229 0.435 0.552 0.685 0.816 0.932 0.196 0.323 0.392 0.425 0.466 0.499
lognorm 0.379 0.427 0.398 0.3 0.18 0.068 0.264 0.336 0.338 0.338 0.295 0.236
weibull 0.392 0.138 0.05 0.015 0.003 0.001 0.54 0.341 0.27 0.237 0.239 0.264

8 gamma 0.196 0.427 0.525 0.633 0.713 0.842 0.168 0.299 0.361 0.437 0.452 0.489
lognorm 0.34 0.411 0.439 0.359 0.285 0.158 0.19 0.285 0.342 0.393 0.399 0.363
weibull 0.464 0.162 0.036 0.008 0.001 0 0.642 0.416 0.297 0.17 0.149 0.147

10 gamma 0.154 0.417 0.54 0.609 0.658 0.745 0.136 0.278 0.35 0.433 0.454 0.478
lognorm 0.303 0.369 0.425 0.387 0.341 0.255 0.126 0.22 0.287 0.393 0.44 0.432
weibull 0.544 0.214 0.035 0.005 0.001 0 0.738 0.502 0.363 0.174 0.106 0.09

12 gamma 0.135 0.396 0.543 0.597 0.637 0.705 0.117 0.256 0.34 0.425 0.466 0.486
lognorm 0.258 0.337 0.416 0.399 0.362 0.295 0.082 0.172 0.25 0.363 0.444 0.455
weibull 0.607 0.267 0.041 0.003 0.001 0 0.8 0.572 0.41 0.212 0.09 0.059

3.3.2 Log-Normal Reference Distribution

The results for a log-normal reference distribution with a scale parameter exp(µ) = 1 and various standard
deviations σ are shown in Figure 2 and Table 3. Comparing the KL divergence results and the KS statistic
results, one can see that the KL divergence correctly identifies the log-normal distribution at a higher
probability for every σ and sample size.

In general, as the sample size increases, the probability of choosing a gamma distribution with the
either the KL divergence or the KS statistic also increases, as expected (Figure 1a).
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Figure 2: Probability of correct selection with log-normal as reference distribution. The numbers listed on
the figures represent the various standard-deviation parameter values for the log-normal distribution.

Further examination of Table 3 shows that the KL divergence achieves a generally increasing probability
of correct selection. Additionally, the KL divergence more accurately selects log-normal distributions at
a significantly higher rate than the it did for the gamma distribution. However, with the KS statistic
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for standard deviation values of (σ = 1.2,1.4) and lower numbers of observations (n = 10,20) there is a
temporary spike in the percentage of correctly choosing log-normal distribution. For these two standard
deviation values, there is some turbulence in reliably selecting the correct distribution for higher sample
sizes. Comparing these results to Table 2, we see that the KL statistic provides a higher PCS for log-normal
reference distributions for all the tested standard deviation parameters. The final note for this assessment
is that when log-normal failed to be selected, the gamma distribution was incorrectly selected at a much
higher rate than Weibull. Interestingly, this phenomenon appeared to reverse with standard deviation values
of (σ = 1.2,1.4).

Table 3: Classification probabilities for various standard-deviation parameter values and sample sizes with
log-normal as reference distribution.

KL divergence KS statistic
stdev dist 10 20 30 50 70 100 10 20 30 50 70 100
0.5 gamma 0.264 0.265 0.21 0.113 0.055 0.019 0.281 0.398 0.409 0.394 0.332 0.174

lognorm 0.722 0.734 0.79 0.887 0.945 0.981 0.398 0.499 0.504 0.542 0.614 0.79
weibull 0.014 0.001 0 0 0 0 0.321 0.103 0.087 0.064 0.053 0.036

0.6 gamma 0.26 0.22 0.152 0.059 0.025 0.006 0.324 0.4 0.396 0.316 0.172 0.108
lognorm 0.73 0.779 0.848 0.941 0.975 0.994 0.422 0.492 0.506 0.607 0.772 0.861
weibull 0.01 0.001 0 0 0 0 0.254 0.108 0.097 0.076 0.055 0.031

0.7 gamma 0.254 0.166 0.095 0.028 0.01 0.003 0.347 0.384 0.364 0.191 0.112 0.077
lognorm 0.734 0.833 0.905 0.972 0.99 0.997 0.441 0.501 0.531 0.725 0.834 0.896
weibull 0.012 0.001 0 0 0 0 0.212 0.115 0.105 0.084 0.054 0.028

0.8 gamma 0.226 0.124 0.064 0.016 0.005 0.001 0.352 0.372 0.312 0.122 0.085 0.059
lognorm 0.763 0.875 0.936 0.984 0.995 0.999 0.474 0.5 0.573 0.782 0.858 0.915
weibull 0.011 0.001 0 0 0 0 0.174 0.127 0.115 0.096 0.057 0.025

0.9 gamma 0.204 0.095 0.04 0.009 0.003 0 0.357 0.339 0.221 0.086 0.047 0.038
lognorm 0.784 0.904 0.96 0.991 0.997 1 0.481 0.523 0.655 0.82 0.89 0.931
weibull 0.012 0.001 0 0 0 0 0.162 0.138 0.124 0.094 0.063 0.032

1 gamma 0.182 0.065 0.029 0.005 0.001 0 0.361 0.304 0.169 0.061 0.029 0.018
lognorm 0.805 0.934 0.97 0.995 0.999 1 0.474 0.55 0.701 0.839 0.903 0.939
weibull 0.014 0.001 0 0 0 0 0.166 0.147 0.131 0.1 0.068 0.043

1.2 gamma 0.124 0.037 0.01 0.002 0 0 0.34 0.215 0.106 0.035 0.013 0.004
lognorm 0.854 0.958 0.989 0.998 1 1 0.481 0.622 0.749 0.856 0.905 0.942
weibull 0.022 0.004 0.001 0.001 0 0 0.179 0.164 0.145 0.108 0.081 0.054

1.4 gamma 0.088 0.018 0.004 0 0 0 0.336 0.159 0.075 0.029 0.015 0.007
lognorm 0.883 0.973 0.992 0.999 1 1 0.476 0.667 0.773 0.865 0.904 0.945
weibull 0.029 0.009 0.003 0 0 0 0.188 0.174 0.152 0.106 0.08 0.048

3.3.3 Weibull Reference Distribution

The results shown in Figure 3 and Table 4 for the Weibull distribution are of particular interest. The
multi-color lines represent results for shape parameters η = 0.6, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0. Inspecting
Figure 3 shows that using the KL divergence can result in reliably selecting the correct distribution at least
half of the time. As the shape k “moves further away” from 1.0, and the number of observations increases,
the PCS also increases. With the shape k = 1.0, KL divergence consistently resulted in a correct selection
for approximately half of the simulations, regardless of the number of observations. This is because with
shape k = 1.0, the Weibull is an exponential distribution. The gamma distribution with shape parameter
1 is also exponential, so the MLE fitting can yield the same exponential distribution by starting with the
gamma. Note that the algorithm “incorrectly” chooses gamma half of the time, in fact finding the correct
exponential distribution. With the shape close to 1, at k = 0.8 and k = 1.2, we see a similar pattern. While
KL divergence yields a PCS that increases with sample size, it appears to under-perform when compared to
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other reference distributions. When the wrong distribution is selected in these cases, it is almost exclusively
chooses the gamma distribution.

The KS statistic correctly selected the Weibull distribution more than half the time, but did not improve
much with increased sample size. The gamma distribution is incorrectly chosen much more frequently than
the log-normal, which may be expected because the gamma and Weibull are in the exponential family of
distributions.
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Figure 3: Probability of correct selection with Weibull as reference distribution. The numbers listed on the
figures represent the various shape parameter values for the Weibull distribution.

Table 4: Classification probabilities for various shape parameter values and sample sizes with Weibull as
reference distribution.

KL divergence KS statistic
shape dist 10 20 30 50 70 100 10 20 30 50 70 100
0.6 gamma 0.312 0.239 0.163 0.075 0.036 0.014 0.319 0.298 0.294 0.265 0.228 0.19

lognorm 0.119 0.048 0.02 0.004 0.001 0 0.122 0.17 0.168 0.146 0.119 0.095
weibull 0.569 0.713 0.817 0.92 0.963 0.986 0.558 0.532 0.539 0.59 0.653 0.715

0.8 gamma 0.382 0.399 0.366 0.311 0.267 0.202 0.339 0.32 0.299 0.296 0.351 0.35
lognorm 0.104 0.041 0.016 0.004 0.001 0 0.089 0.109 0.122 0.107 0.098 0.08
weibull 0.514 0.559 0.618 0.685 0.732 0.798 0.571 0.57 0.58 0.597 0.551 0.571

1 gamma 0.394 0.448 0.465 0.479 0.489 0.475 0.322 0.355 0.359 0.358 0.384 0.403
lognorm 0.09 0.034 0.011 0.001 0 0 0.09 0.063 0.068 0.072 0.063 0.048
weibull 0.516 0.519 0.524 0.52 0.511 0.525 0.588 0.581 0.573 0.57 0.553 0.548

1.2 gamma 0.376 0.446 0.449 0.412 0.349 0.248 0.288 0.366 0.364 0.376 0.378 0.396
lognorm 0.094 0.026 0.009 0.001 0 0 0.108 0.038 0.047 0.043 0.04 0.031
weibull 0.53 0.528 0.542 0.586 0.651 0.752 0.604 0.596 0.589 0.581 0.582 0.574

1.4 gamma 0.346 0.4 0.377 0.274 0.161 0.065 0.256 0.34 0.36 0.375 0.361 0.357
lognorm 0.095 0.025 0.009 0 0 0 0.134 0.042 0.03 0.028 0.025 0.026
weibull 0.559 0.574 0.615 0.726 0.839 0.935 0.609 0.618 0.61 0.597 0.613 0.617

1.6 gamma 0.315 0.35 0.298 0.158 0.076 0.024 0.239 0.319 0.334 0.34 0.335 0.33
lognorm 0.1 0.025 0.006 0 0 0 0.15 0.048 0.025 0.021 0.022 0.02
weibull 0.586 0.624 0.695 0.841 0.924 0.976 0.612 0.632 0.641 0.639 0.644 0.651

1.8 gamma 0.281 0.295 0.238 0.102 0.04 0.011 0.214 0.293 0.317 0.321 0.325 0.308
lognorm 0.105 0.025 0.006 0 0 0 0.17 0.059 0.029 0.019 0.016 0.016
weibull 0.615 0.68 0.756 0.898 0.96 0.989 0.616 0.648 0.654 0.66 0.658 0.676

2 gamma 0.241 0.256 0.187 0.073 0.022 0.006 0.179 0.272 0.302 0.306 0.297 0.291
lognorm 0.116 0.028 0.007 0.001 0 0 0.186 0.07 0.031 0.014 0.01 0.014
weibull 0.643 0.716 0.806 0.927 0.978 0.994 0.635 0.658 0.667 0.681 0.692 0.695
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An interesting observation from Table 4 for the Weibull distribution is that for k = 1.0 the KS statistic
incorrectly indicates the gamma distribution at a rate increasing from 64 percent at 10 observations increasing
to around 80 percent for higher numbers of observations. The data in Table 4 shows that overall, when
an incorrect selection was made, the selected distribution was commonly gamma. Considering that both
Weibull and gamma simplify to exponential distributions when their shape parameter is one, the difficulty
in correctly choosing the Weibull reference distribution when k = 1.0 is reasonable.

4 DISCUSSION

The log-normal distribution overall achieved the highest rate of successful correct selection, with PCS
increasing as the number of observations increased. The first significant observation resulting from this
research is that the KL divergence is almost universally more likely to result in correctly selecting the
underlying distribution from a randomly sampled set of observations. The low PCS obtained from the
KS statistic are not surprising because it relies on evaluating the greatest distance between the estimated
and reference distributions. This observation further reinforces past research by Dey and Kundu (2009)
showing that the KS statistics from reference distributions to their estimated distributions tend to be very
close, resulting in difficulty in choosing the correct distribution. Additionally, increasing sample size does
not necessarily increase the probability of correct selection for certain shape values. When the reference
distribution is Weibull, both statistics become more accurate the farther the shape is from 1.0.

The most important result of this work is the finding that under all explored scenarios the KL divergence
outperformed the KS statistic. As our research objective was to determine circumstances under which
one measure outperformed the other to aid practitioners in choosing the best distribution for reliability
applications, these results are very powerful. Further research is warranted into applications for higher-
dimentional problems and other distributions not tested here, as well as other methods of distribution fitting
(such as the likelihood function method).

A APPENDIX

A.1 Gamma Distribution

The gamma probability density function (PDF) is given by

f (x|η ,λ ) =
1

Γ(η)λ η
xη−1 exp

[
−
( x

λ

)]
,

and cumulative distribution function (CDF)

F(x) =
1

Γ(η)
γ

(
η ,

x
λ

)
where η > 0 is the shape parameter, λ > 0 is the scale parameter, and γ

(
η , x

λ

)
is the lower incomplete

gamma function.
The maximum likelihood estimators for the gamma distribution can be estimated by (Ye and Chen

2017)

ψ = N
N

∑
i=1

xi ln(xi)−
N

∑
i=1

ln(xi)
N

∑
i=1

xi

η̂ =
N ∑

N
i=1 xi

ψ

λ̂ =
ψ

N2 ,
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where N is the number of observations or sample size. Unbiased estimators are calculated using (Louzada,
Ramos, and Ramos 2019)

η̃ = η̂− 1
N

(
3η̂− 2

3

(
η̂

1+ η̂

)
− 4

5
η̂

(1+ η̂)2

)
(4)

λ̃ =
N

N−1
λ̂ . (5)

A.2 Log-Normal Distribution

The log-normal PDF is given by

f (x|µ,σ) =
1

xσ
√

2π
exp

[(
−1

2

)(
lnx−µ

σ

)2
]
,

and CDF

F(x) =
1
2

[
1+ erf

(
ln(x)−µ

σ
√

2

)]
,

where µ ∈ (−∞,∞),σ > 0 are the mean and standard deviation of the natural logarithm of the variable x,
respectively, and erf is the error function. We will use the commonly used parameterization of scale= exp(µ).

The unbiased maximum likelihood estimators can be estimated using

µ̂ =
∑n lnxn

n
, (6)

σ̂
2 =

∑n(lnxn− µ̂)2

n
. (7)

A.3 Weibull Distribution

The Weibull probability density function (PDF) is given by

f (x|k, l) = k
l

(x
l

)k−1
exp

[
−
(x

l

)k
]
,

and cumulative distribution function (CDF)

F(x) = 1− exp
[(x

l

)k
]
,

where k > 0, l > 0 are the shape and scale parameters, respectively. Unlike the gamma and log-normal
distributions, the MLE for the Weibull distribution does not have an explicit expression and must be
estimated numerically.
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