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ABSTRACT

This paper presents a simulation based policy optimization scheme for performing queuing admission control
in the presence of noisy arrival forecasts. The forecast models considered for arrival times go beyond the
no noise and no show forecast models treated in the literature and incorporate realistic features such as
decreasing accuracy profile for jobs arriving farther in future. Assuming access to forecasts for arrivals
within a look-ahead window, the paper proposes optimization over a policy class which approximates
combinations of threshold and blocking type policies in the literature. While threshold policies tend to be
optimal for admission control problems without forecasts, blocking-based policies have been effective in
settings where exact arrival data is known. Exact knowledge on future arrivals is however unrealistic and a
key novelty is the use of robust optimization to compute blocking policy statistics. Numerical experiments
demonstrate good reductions in waiting costs achievable by incorporating forecast data.

1 INTRODUCTION

Forecasting models are employed in several operations management applications to improve decisions
made in the presence of uncertainty. The range of applications which employ forecasts for this purpose
has significantly broadened in the recent years due to the increasing accessibility to data and algorithmic
advances in prediction modeling. Improving service quality to reduce wait times is a prominent avenue of
exploration in this respect, as this arises naturally in applications such as traffic flow management, regulating
overcrowding in hospital emergency departments, etc. Processing capacity cannot be altered quickly in
these settings as a response to being overwhelmed and tactical redirection of arrivals may be necessary.
Studying admission control in queues offer a good abstraction of these decision-making situations and
our interest in this paper is to examine how noisy forecasts can be incorporated to decide dynamically on
accepting or redirecting job arrivals.

Queuing admission control problems enjoy a rich literature: Under conventional assumptions on jobs
arriving according to a renewal process and independent job sizes, the sequential decision-making task at
hand is approached typically by formulating as a Markov or semi-Markov decision process instance; see,
for example, (Naor 1969; Johansen and Stidham 1980) and surveys (Stidham and Prabhu 1974; Stidham
1985) and references therein. The costs involved are factored in by assuming a fixed one-time cost per
job rejection/redirection and a holding cost per unit time a job is held in the system. In instances where
the system manager’s knowledge is restricted to the current queue length and statistics pertaining to the
interarrival and job size distributions, the optimal policies tend to have a threshold structure: the system
manager admits the next job when the present queue length (or workload) is below a critical level, redirects
the job when the present workload is above the critical level, and admit/reject with a suitable probability
when the present workload matches the critical level; see, for example, (Beutler and Ross 1986).
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If the system manager additionally has access to forecasts for realizations of future arrival times and
job sizes, then it is natural to expect better admission decisions. However the extent of the reduction
on waiting and rejection costs have not been known until the breakthrough results in (Spencer et al.
2014). Assuming knowledge of exact arrival times and sizes of jobs arriving within a finite future window,
Spencer et al. (2014) presents an intuitive policy which utilizes the future arrival information to anticipate
workload buildups and make job redirections accordingly. With sufficiently long look-ahead window of
exact information on future arrivals, Spencer et al. (2014) demonstrate that the expected queue length and
workload in the queue can be controlled to remain bounded even in heavy-traffic conditions where admitted
workload rate is close to the processing rate of jobs by the server.

Such substantial reduction is achieved by deploying a so called blocking policy which, roughly speak-
ing, peeks into the baseline workload offered by all jobs arriving within the look-ahead window and
rejects/redirects jobs arriving at inopportune times. These inopportune times are characterized by arrival
time points at which the baseline workload level climbs up and does not revert back within the look-ahead
window. Rejecting these blocking arrivals involves only polynomial time computation and does not require
an exhaustive search over policy space as would be required in an Markov decision process formulation.

Deploying a blocking-type policy of Spencer et al. (2014) is not straightforward in practice, however,
due to its requirement of the knowledge of exact future arrival information. Forecasts on future arrivals,
if available, are often noisy (see (Sun et al. 2009)) and the accuracy of forecasts typically improve over
time. In other words, forecasts of arrivals nearer in the future are typically more accurate than forecasts
of arrivals farther in the future. Considering the problem of crowding in emergency departments, Xu and
Chan (2016) show that a variant of blocking policies can cope with a certain amount of “no-show” noise.
They show that combining the blocking policy in (Spencer et al. 2014) with a thresholding on current
workload can lead to a superior performance in all traffic conditions. As mentioned earlier, the advantage
with these policies is that they do not require an exhaustive search over a policy space and yet offer good
performance in M/M/1 setting. However, a straightforward application of blocking type policies to different
noise models in forecasts do not offer the same impressive performance and adapting them suitably to
general forecasts and complex queuing environments appears non-trivial.

Motivated by these studies, we develop an admission control formulation featuring arrival forecasts
which incorporate the following realistic features: Forecasts become available for future arrivals within a
finite look-ahead window. Further, the forecasts are taken to be noisy versions of the unknown actual arrival
times which get better with more updates arriving over time. This leads to the realistic proposition of nearer
arrivals being more accurate than arrivals farther in the future, as a consequence of having accumulated
more updates over time. We formulate a sequential decision problem for admission control under general
forecasts in terms of the usually considered combination of waiting and rejection costs.

To tackle the challenges introduced by the large state-space comprising all workload and forecast
information, we proceed with a simulation based policy optimization scheme to search for an effective
policy within a parameterized softmax policy class. The proposed policy class is rich enough to approximate
the universe of policies which possess threshold or blocking structures described above, or a suitable
combination of them. Since the proposed policy class includes combinations of policies with threshold
and blocking structures, the proactive admission policies in (Xu and Chan 2016) also get approximated
well by the proposed parameterized softmax policy class. Searching for an effective policy for control in
queuing and stochastic processing networks by means of policy gradients has been considered previously
in (Bhatnagar and Lakshmanan 2012; Dai and Gluzman 2022).

A key novelty in our paper is the use of a robust optimization formulation for arriving at statistics
required for incorporating a blocking-type policy in the absence of exact information on future arrivals. This
enables fast computation of blocking-based feature vector components in place of expensive simulation
of numerous sample paths. Using robust optimization to arrive at blocking features with a worst-case
perspective is appealing conceptually as well, as it allows to factor-in the effects of rouge realizations
that can happen within the look-ahead window. Due to reflection at origin, queuing workloads do not
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lend themselves immediately to inexpensive computation. However, in our case, approximating a blocking
policy requires only minimum workload over a look-ahead window and this computation can be performed
with a computationally inexpensive recursion.

The rest of the paper is organized as follows: Upon introducing the queueing and arrival forecasts
models in Section 2, we formulate the admission control task as a sequential decision problem in Section
3. The parameterized policy class considered and the simulation-based policy optimization procedure are
explained in Section 4. Numerical experiments which demonstrate the benefits of using a combination of
blocking and threshold policies via the proposed softmax policy class are given in Section 5

2 A QUEUEING MODEL WITH ARRIVAL FORECASTS

We consider a queuing workload process (Wn : n ≥ 0) whose evolution is modeled by,

Wn = (Wn−1 + sun − 1)+ , n ≥ 1, (1)

where s is the deterministic workload brought by an arriving job and un is the number of jobs admitted at
time n. While the admitted arrivals enter the waiting room at the time of admission, the rejected / redirected
arrivals leave the system immediately. The quantity Wn captures the total unfinished work in the waiting
room and the server. The system features a non-idling single-server processing one unit of workload per
unit time.

Arrivals are indexed by labels a ∈ A. Each arrival a has a scheduled arrival time sa and its actual time
of arrival Ta may deviate from the scheduled arrival time due to uncertainty. Let σ2

a denote the variance
in the actual job arrival time Ta given the initial schedules S = (sa : a ∈ A).

At every time-step n ≥ 1, the decision maker facing arrival uncertainty is equipped with a forecast
list which includes the latest forecasts fn of arrival times for all jobs originally scheduled to arrive before
time n+ ω. For an arrival a ∈ A scheduled to arrive at or after time n+ ω, the forecast arrival time fna
merely equals the scheduled arrival time sa. The forecast time fna and the actual arrival time Ta coincide
if and only if the arrival a happens not later than time n. Thus the forecast vector fn = (fna : a ∈ A)
comprises the best prediction we have about arrival times (Ta : a ∈ A) before decision-making at time n
and the window ω is a positive integer determining the scheduled arrivals for whom the decision-maker is
equipped to receive forecasts.

Instead of assuming perfect knowledge of the future arrival times, the forecast list fn is taken to
comprise only unbiased noisy predictions which get better over time. Specifically, if we let En[·] and
Varn[·] denote the conditional expectation and variance operators with respect to the filtration available
while decision-making at time n, we assume the forecasts (fn : n ≥ 0) satisfy Assumption 1 below.
Assumption 1 For any a ∈ A and n ≥ 0, the forecasts (fna : n ≥ 0) satisfy

En [Ta] = fna, Varn[Ta] =

{
σ2
a if n+ ω ≤ sa,

0 if n ≥ fna,
, and E [Varn [Ta]] = va(n), (2)

where the function n 7→ va(n) is decreasing in n.
Observe that va(n) = σ2

a for any a ∈ A with schedule sa situated beyond the forecast window (that
is, if sa ≥ n+ ω). Indeed, this follows from the above system description that non-zero forecast updates
happen at time n only for arrivals which have not yet arrived and are scheduled to arrive in the interval
(n, n+ ω). Moreover, since the forecasts are unbiased, their mean-square error is given by

msea(n) := E
[
(Ta − fna)2

]
= va(n), for a ∈ A.

Example 1 (Random walk forecast model) Suppose the forecasts evolve as in fn = fn−1 +Zn−1, where
{Zn : n ≥ 0} are zero mean independent RA-valued random vectors modeling the evolution of forecasts.
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In particular, one may view Zn−1 as the forecast update term capturing information revealed during interval
[n− 1, n) about the unknown arrival times in (Ta : a ∈ A). As the forecast fn = sa for any time instant
n preceding the forecast window for flight a beginning at sa − ω, we have

fna = sa +

n∧τa∑
i=bsa−ωc+1

Zi−1,a,

where τa = inf{n ≥ 0 : fna ≤ n} and Ta = fτa,a as a consequence. In case where the schedules sa are
integers and updates Zi are supported on {−1, 0, 1}, we have from the definition of the hitting time τa that
Ta = fτa = τa. In particular, if every non-zero update is assumed to possess equal variance, then we have

Varn[Zna] =

{
σ2
a
ω if n ∈ (sa − ω, fna)

0 otherwise.
and Varn(Ta) =

{
σ2
a
ω (fna − n)+ if n > sa − ω
σ2
a otherwise.

(3)

Indeed, these observations follow from an application of Wald’s identity to the random walk fna to obtain
E[τa] = sa, σ

2
a = E[(Ta− sa)2] = E[

∑τa−1
i=sa−ω Zia] and Varn[τ ] = En[τa−n]1{fna>n}. Moreover, at any

decision-making instance n, the total variance in any arrival time Var[Ta] = σ2
a gets split as,

σ2
a = Var[Ta] = E [Varn [Ta]] + Var [En [Ta]]

= vn(a) + Var[fna].

Since Var[fna] = Var[
∑n∧τa−1

i=sa−ω Zia] = (E[n ∧ Ta]− sa + ω)σ2
a/ω, we obtain

vn(a) =
σ2
a

ω
(sa − E[n ∧ Ta]) ,

which is decreasing in n, thus satisfying Assumption 1. �

In general, a forecasts dynamics of the form

fn = g(fn−1, Zn−1) (4)

captures a generic forecast update equation with Zn−1 informing the random update made available during
time [n− 1, n). Besides the special case of the random walk model considered in Example 1, it is natural
for a number of forecast models to satisfy the general conditions stipulated in Assumption 1. Further, to
keep the focus on the impact of future arrival forecasts on admission control, we consider deterministic
service times. Since the key driver of the Lindley recursions defining workload or storage processes, in
general, involves only the difference between interarrival and service times, the approaches considered in
the paper pertaining to forecasts of interarrival times are transferable to settings with random service times.

3 A SEQUENTIAL DECISION-MAKING FORMULATION

Together with the initial schedules S, the tuple Xn := (Wn, fn) describes the state of the system at time
n. Let

Hn = {S, (Wk : k ≤ n− 1), (fk : k ≤ n), (uk : k ≤ n− 1)}
denote the history available while performing admission control at time n. We take H0 = {S,W0, f0}. As
rejected customers leave the system, the jobs which are eligible for admission at a given time n ≥ 1 is
given by the following set of arrivals,

An :=
{
a ∈ A : fna < n, f(n−1)a ≥ n− 1

}
, (5)
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which have occurred since the previous decision epoch n− 1. Consequently,

|An| =
∑
a∈A

[
1[0,n)(fna)− 1[0,n−1)(f(n−1)a)

]
=
∑
a∈A

1{fna≤n, f(n−1)a>n−1},

is the number of arrivals which arrive during the interval [n − 1, n). Thus given the history Hn at time
n, the set of permissible actions is the collection, {0, 1}An , of all functions from An to {0, 1}. An action
un ∈ {0, 1}An is interpreted as

“admit arrival a ∈ An if and only if un(a) = 1.”

Admission control formulations often proceed by explicitly modeling the waiting costs and rejection
costs to capture the tradeoff between the two. Keeping an arrival in the system incurs a cost of cs = 1 unit
per unit time, whereas rejecting an arriving customer incurs a one-time cost of cr ∈ (0,∞). The assumption
cs = 1 is without loss of generality, as cr captures the relative cost of rejection.

A policy π comprises a sequence of maps π = (πn : n ≥ 1) in which the component πn maps any
given history realization Hn to a probability distribution on {0, 1}|An|. Equipped with the history Hn, a
decision-maker employing a policy π at time n selects an action by sampling from the probability distribution
πn(Hn). Let Eπ[·] denote taking expectation with the probability distribution induced by selecting actions
un ∼ πn(Hn) for any n ≥ 1. A goal of the decision-maker is to select a policy π from the policy class Π
which minimizes the expected discounted cost,

Eπ

[
N∑
n=0

γn(Wn + cr(|An| − 1Tun)

]
, (6)

where N is the horizon of the control problem (which could possibly be infinite), γ ∈ (0, 1) is a discount
factor, and un denotes the action selected from the probability distribution πn(Hn). Since un ∈ {0, 1}An ,
the component 1Tun is the number of customers admitted and |An| − 1Tun is the number of customers
rejected. Thus the above expected cost formulation includes a combination of admitted workload cost
borne by the system as a consequence of admissions and the rejection costs incurred due to rejections.

4 DESCRIPTION OF THE POLICY CLASS

4.1 Softmax Parameterization of Policies

The state-space comprising the set of all possible workload and forecast combinations is high-dimensional
and exact solution schemes will suffer from the curse of dimensionality that is common for MDPs with large
state-spaces. To overcome this curse of dimensionality, we consider a softmax policy class described as
follows. At time n ≥ 1, the decision-maker uses the historyHn to employ a softmax policy to independently
admit each arrival a ∈ An with probability,

Pr (admit a | Hn) =
1

1 + exp(−θT ξn)
,

where ξn is a suitable Rd-valued feature vector constructed from the historyHn and θ is a suitable parameter
vector from a set Θ ⊆ Rd. An advantage of parameterizing policies according to the softmax over available
actions is that the approximate policy can approach a deterministic policy. Randomized policies are also
helpful in promoting exploration across states which appear identical under a feature mapping or function
approximation (see Sutton and Barto 2018). Since the admission decisions are independent and identically
distributed for each a ∈ An given Hn, we have

1Tun ∼ Binomial (|An|, pθ(ξn)) , where pθ(ξ) :=
1

1 + exp(−θT ξ)
,
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and the notation X ∼ Binomial(n, p) denotes X distributed as a binomial variable with n trials each
succeeding with probability p.

Our approach towards approximating policy class, instead of the more common approach of approxi-
mating value functions, is guided by the aim to leverage the insights from the rich literature on queueing
control. We discuss briefly some of relevant optimal policy structures in admission control problems in
the following section.

4.2 On Effective Policy Structures for Admission Control with and without Forecasts

Threshold policies serve as prominent examples due their optimality in an array of queueing control settings.
Indeed, in the absence of forecasts, a natural variant of the admission control problem we consider admits
an optimal threshold policy (Stidham 1985). Threshold policies are easy to implement and explainable as
they admit an arrival based on whether the current workload is below a threshold. However, in the presence
of exact future information, the performance of threshold policies which only utilize the current workload
information has been shown to be significantly bettered by blocking policies proposed in Spencer et al.
2014.

To understand blocking policies, suppose that at time n we have the exact knowledge of arrival times
and service times in an M/M/1 queue within the future window [n, n+ω). Let Q̃ denote the queue length
process which occurs in the event all arrivals are unconditionally admitted. Equipped with this baseline
queue length process Q̃, the blocking policy introduced in Spencer et al. 2014 proceeds by rejecting an
arrival occurring at time t if

min
0≤ t≤ω

Q̃(n+ t) ≥ Q̃(t+),

where Q̃(t+) is the right-limit of Q̃ at t. Such arrivals are labeled ω-blocking arrivals, as the baseline
queue length process Q̃ does not return to Q̃ at time t within the next ω units of time. As these arrivals
happen at the beginning of an inopportune period where more arrivals are likely to happen than can be
handled, they tend to delay all subsequent arrivals upon admission. Interestingly, a careful incorporation
of information on future arrival and service times has been shown in Spencer et al. 2014 to result only in
expected queue length of magnitude Op(1) even in heavy-traffic situations where the admitted arrival rate
is close to the service rate. Please refer Xu and Chan 2016 for further explanation on the motivation and
effectiveness of the ω-blocking policies under perfect knowledge of arrivals.

If equipped with information required for threshold and blocking policies, observe that the softmax
policy parameterization introduced in Section 4.1 is rich enough to approximate these optimal policy
structures by appropriate selection of feature vectors ξn. We discuss this further in the following section
on selection of features in ξn given Hn.

4.3 Using Robust Optimization to Inform Blocking Arrivals

While effective, the ω-blocking policies require the exact knowledge of future arrival times within time
n+ω at time n itself. However in practice, it is common that available forecasts are only noisy predictions
of true arrival times. Moreover, as in Section 2, it would be natural to have that the nearer arrival times are
known with higher accuracy than later arrivals. Therefore the blocking policies are not directly applicable
in the presence of predictions with considerable noise.

To work around this difficulty, suppose that (W̃n
k : k ≥ n) denotes the baseline workload process

resulting given history Hn and all arrivals are admitted from decision epoch n onward. Since the history
Hn at time n is fixed and all arrivals are admitted from time n onward, we take W̃n

n−1 = Wn−1 as given
in the history Hn. Then a natural alternative to arrive at a policy inspired by blocking policy in our setting
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could be to identify ω-blocking arrivals as arrivals in time instances n for which

ρ

(
min

0≤ k≤ω
W̃n
n+k

)
≥ W̃n

n−1, (7)

where ρ(·) is a risk measure such as mean, median, or value at risk of the conditional distribution of
min0≤ k≤ω W̃

n
n+k given forecasts in Hn. Since this check involving baseline workload process W̃n

n+k
computed at time n (hence indexed by superscript n) would be needed only at time n, we drop the
superscript n for ease of notation in all instances where there is no scope for confusion.

For a chosen risk measure ρ(·), the quantity ρ(min0≤ k≤ω W̃n+k) is rarely available exactly and
Monte Carlo simulation is a natural way to facilitate its computation. An estimation of this type involving
numerous sample paths at every decision-making epoch is however a computationally intensive endeavour to
be expended on a feature vector construction sub-task. To lighten the burden on computation while retaining
the information contained in forecasts, we consider the following worst-case realization of min0≤ k≤ω W̃n+k.

For n ≥ 0, a ∈ A, and Γ ≥ 0, let

Uan(Γ) =
{
t : |t− fna| ≤ ΓVar1/2

n [Ta]
}

be an interval uncertainty set featuring potential arrival times of arrival a given the history Hn. The
uncertainty set is centered at the conditional expectation of Ta and its radius is determined by the conditional
variance Varn[Ta] = Var[Ta | Hn]. This leads to the following box uncertainty set for the arrival times
T = (Ta : a ∈ A):

Un(Γ) =
∏
a∈A
Uan(Γ).

Here Γ > 0 can be treated as an additional parameter which can be used to tune the extent of uncertainty
in the conditional distributions of arrival times given forecasts. The parameter Γ can be chosen sufficiently
large such that the interval Uan(Γ) contains Ta with high probability. As long as the variances in forecasts
remain finite, one can use Chebyshev’s inequality, for example, to help accomplish this.

Inspired by the computational tractability which comes often with robust optimization formulations,
we consider the following worst-case minimum value of the baseline workload in the next ω period: Given
Hn and any k ≥ 0, the quantity

sup
T ∈Un(Γ)

min
0≤j≤k

W̃n+j (8)

denotes the worst-case minimum workload that can happen during the interval [n, n+k] if the realizations of
arrival times T = (Ta : a ∈ A) lie within the uncertainty set Un(Γ). In this baseline workload computation,
recall that the workload process gets determined by arrival times as described in Section 2. As all arrivals
from decision epoch n are set to admitted in the computation of baseline workload process, we have

W̃n−1 = Wn−1, W̃n+j =

(
W̃n+j−1 + s

∑
a∈A

I(Ta ∈ [n+ j − 1, n− j)− 1

)+

, (9)

defining the sequence {W̃n+j : j ≥ 0} over which the worst-case computation over all realizations of
T = (Ta : a ∈ A) is done in (8). Facilitating the comparison (7) via (8) is driven by computational
considerations, as we shall see in the following section that the worst-case minimum workload admits
tractable computation given Hn. It also serves as a robust optimization based analogue for the expected
minimum baseline workload within the look-ahead window.
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4.4 Tractable Computation of Worst-case Minimum Workload in the Baseline Process

In order to demonstrate tractable computation of the worst-case minimum workload in (8), let us suppose
that the conditional variances in arrival times Ta satisfy Assumption 2 below.
Assumption 2 For every a ∈ A, the conditional variance Varn[Ta] = Var[Ta | Hn] = ν2

a(fa − n), for
some increasing function νa : R→ R+.

Assumption 2 stipulates that the conditional variance Varn[Ta] is determined only by how far the
arrival a has been presently forecast to arrive in the future. Farther the arrival time, larger is the remaining
conditional variance. In the context of the random walk forecast model in Example 1, we have from (3)
that Assumption 2 is satisfied with

νa(x) = σa

√
x+

ω
.

Let us introduce the functions la : R×R×R+ → R+ and ua : R×R×R+ → R+, for a ∈ A, as follows:

la(x, y,Γ) = x− Γ
[
νa(x)1{y <ω} + σa1{y≥ω}

]
and

ua(x, y,Γ) = x+ Γ
[
νa(x)1{y <ω} + σa1{y≥ω}

]
.

Proposition 1 Suppose the forecast model satisfies Assumptions 1 and 2. Then given Wn−1 = w,
fn−1 = f ′, fn = f, scheduled arrival times S = (sa : a ∈ A), Γ ≥ 0, and integers n, k ≥ 0, we have

sup
T ∈Un(Γ)

min
0≤j≤k

W̃n+j = mk(w, f − n, f ′ − (n− 1), S − n, Γ),

where the functions {mk : k ≥ 0} are defined as follows: for any x, y, z ∈ RA,

m0(w, x, y, z,Γ) = (w + s|N0| − 1)+ and (10)

mk(w, x, y, z,Γ) = min
{
mk−1(w, x, y, z,Γ), (w + s|Nk| − (k + 1))+} , (11)

for k ≥ 1, N0 =
∑

a∈A 1{xa<0, ya≥0} and

Nk := Nk−1 ∪ {a ∈ A \ Nk−1 : (k − 1) ∨ la(xa, ya,Γ)} ≤ k ∧ ua(xa, ya,Γ)} . (12)

Proposition 1 provides a characterization in which the worst-case realizations of the minimum baseline
workload in (8) can be computed recursively via the sets N0, . . . ,Nk. For any j ≤ k, the set Nj is the
collection of all arrivals who could have potentially arrived during the period [n − 1, n + j) and can be
handled with the computationally inexpensive recursion in (12).

Proof of Proposition 1. The expression for m0(·) in (10) follows from (9) and by observing that, given
history Hn, the set N0 equals the collection of arrivals An in (5). If we let m−1(·) = −∞, then m0(·)
can be seen as satisfying (11) with k = 0.

To verify (11) with k = i for some i ≥ 1, suppose that (11) is satisfied for k = i − 1. We consider
two cases based on the value of mk−1(w, x, y, z,Γ). If mk−1(w, x, y, z,Γ) = 0, then since minj≤i W̃n+j

is non-increasing in i, we have (11) satisfied since minj≤i W̃n+j = 0 = min{0, (w + s|Ni| − i− 1)+}.
If mi−1(w, x, y, z,Γ) > 0, there exists a realization for T = (Ta : a ∈ A) in the uncertainty set Un(Γ)

such that W̃n, W̃n+1, . . . , W̃n+i−1 are all (strictly) positive. In that case, we have from (9) and the definition
of Nj that

W̃n+j = W̃n−1 + sup
T∈Un(Γ)

∑
a∈A

sI(Ta ∈ [n− 1, n− j))− (j + 1)

= w + s|Nj | − (j + 1), (13)
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for every j = 0, . . . , i − 1 and some realization in Un(Γ). The latter equation follows by observing that
Ta ∈ Un(Γ) satisfies Ta ∈ [n− 1, n+ j − 1) if and only if a ∈ Nj . Indeed this can be seen by noting the
argument xa = fna − n in ν(xa), which makes νa(xa) = Varn[Ta] as per Assumption 2.

Moreover, since the minimum workload minj≤i−1 W̃n+j is zero for all realizations for which (13) is
not true, one can restrict the supremum in (8) to the set of realizations in Un(Γ) for which (13) holds for
every j = 0, . . . , i− 1. Then it follows from (9) and the definition of the collection Ni that

W̃n+i =
(
W̃n+i−1 + s

∑
a∈A

I(Ta ∈ [n+ i− 1, n− i)− 1
)+

=
(
W̃n+i−1 + s|Ni \ Ni−1| − 1

)+
=
(
w + s|Ni−1| − i+ s|Ni \ Ni−1| − 1

)+
,

where the last equation follows from (13) with j = i − 1. Observing that |Ni−1| + |Ni \ Ni−1| = |Ni|
completes the verification for the chosen k. Thus, by the principle of mathematical induction, the conclusions
in proposition 1 stand verified.

4.5 Feature Map Incorporating Worst-case Blocking-based Features

Motivated by existing effective policy structures described in Section 4.2, we take the feature vector
ξn = (ξn1, . . . , ξn5) mapping the history Hn to R5 as follows:

ξn1 = Wn−1 is the most recent workload information,

ξn2 = mω (Wn−1, fn − n, fn−1 − (n− 1),Sa − n, 0) is the minimum baseline workload over the period

[n, n+ ω] if the forecasts are taken to be exact,

ξn3 = mω (Wn−1, fn − n, fn−1 − (n− 1),Sa − n,Γ) is the worst-case realization of the minimum baseline

workload over the period [n, n+ ω] if T ∈ Un(Γ),

ξn4 =
∑
a∈A

1{fn−n<0, fn−1−(n−1)≥ 0} is the number of arrivals in the current decision epoch, and

ξn5 = 1 is the component for intercept/offset term.

Together with the softmax policy parameterization considered in Section 4.1, these feature elements have
sufficient information to approximate threshold policy families, blocking policy variants, and as well a
combination of them. A consequence of Assumption 2 is that the feature vector depends on the forecasts
and schedules of future arrivals only via how far away they are in the future.

4.6 Simulation based Policy Optimization via Policy Gradients

Equipped with the parameterized policy class and the precise description of the feature vectors, Algorithm
1 provides a description of a basic policy gradient method one can employ to arrive at an effective, but
potentially local optimal policy parameter while minimizing (6).

It is often useful to subtract a baseline function from the costs C(i)
n before plugging it in (14) in

order to reduce the variance in the gradient estimate ĝ. The baseline function can, in turn, be steered
to approximate the advantage difference in value function and be parameterized in terms of the feature
vector ξ and cross-combinations of its elements {ξiξj : i, j = 1, . . . , 4}. Then the cost observations C(i)

n

serve in updating the baseline function parameterization in each outer iteration, for example, by means of
minimizing least-squares (see, for example, Chapter 13 in Sutton and Barto 2018).
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Algorithm 1: A basic policy gradient scheme for searching for an optimal policy parameter θ
Input: Initial policy parameter θ ← θ0, step-size α, relative rejection cost cr, discount factor
γ ∈ (0, 1), uncertainty set parameter Γ ≥ 0, and time step N for simulation of trajectories

for iteration = 1, 2, . . . , do
Simulate a set of m trajectories {τ (i) : i ≤ m} for N time steps by admitting arrivals
independently with probability pθ(ξn) at each time step n ≤ N
for each time step n = 1, . . . , N of each trajectory τ (i) do

Compute the cost C(i)
n =

∑N
k=n γ

k−n
[
w

(i)
k + cr(a

(i)
k − u

(i)
k )
]

Compute the gradient g(i)
n = ξ

(i)
n

[
u

(i)
n − a(i)

n

(
1 + exp(−θT ξ(i)

n )
)−1

]
end for
Compute the policy gradient estimate

ĝ =
1

m

m∑
i=1

N∑
n=1

γn−1C(i)
n g(i)

n (14)

Update policy parameter θ ← θ − αĝ
end for

return θ

5 NUMERICAL EXPERIMENTS

We now report the findings of our numerical experiments comparing the performance of the proposed
policy with that of the threshold policy. The simulations are run over a horizon N of 150 time steps with
a look-ahead ω = 10 time units. Each arriving job is taken to require s = 0.25 time units of service.
The total number of arrivals within the simulation window is taken to be Poisson distributed with mean
1.2N/s, thus representing a over-loaded system. The unconditioned variance in each arrival time is set to
be σ2 = (3N/|A|)2.

The policy gradient procedure in Algorithm 1 is run for several possible values of rejection cost cr
and the uncertainty set parameter choices Γ = 2 and 3. The resulting iterates are combined with Polyak-
Ruppert iterate averaging scheme. Figure 1 reports the (rejection rate, average workload) pairs observed
upon evaluating the policy output by Algorithm 1 for every choice of rejection cost cr and Γ. The focus
in Figure 1 is on regions wherein the rejection rate as well as average workloads are non-trivial. To gain
an understanding on how well the output policies improve upon the baseline threshold policy, we report
the (rejection rate, average workload) obtained for various choices of threshold between 0 and 15. Each of
the threshold policy choice is, in turn, optimal (within the family of threshold policies) for the respective
rejection rate.

We observe that for rejection rates below 0.3, our policy optimization procedure ends up with an average
workload much lower than the threshold policy that attains the same rejection rate. Incorporating information
on future arrivals, as explained in (Spencer et al. 2014; Xu and Chan 2016), allows admission control
policies to proactively reject arrivals in periods with potential for workload buildup in the near-future. This
anticipatory admission control is an explanation for why policies incorporating forecast information can
lead to lower workloads for a fixed rejection rate. When allowing less-ambitious rejection rates exceeding
than 0.3, the traffic load experienced by the server is lesser than 0.9 and the proposed policies do not offer
significant advantage over average workloads than the threshold policy.

In Figure 2 we plot the average trajectory cost in each iteration of the outer loop in a sample run of
the policy optimization procedure in Algorithm 1. We observe that the trajectory costs come down over
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Figure 1: Comparison with threshold policies. Figure 2: Decrease in trajectory cost over iterations.

time and then stabilise, indicating that a policy that works towards minimizing the overall trajectory cost
is arrived at iteratively by Algorithm 1.

In Figure 3, we show a sample trajectory of the system on which admission control is performed using
the proposed policy (obtained from Algorithm 1 with Γ = 3) and a threshold policy. The threshold policy
was tuned to reject at least as many arrivals as our proposed policy. As the policy admit/reject arrivals
differently, the workload trajectories evolve differently when the two policies are employed (despite the
same number of total rejections). As can be seen in the figure, the workload attained with the proposed
policy has smaller peak workloads and leads to more balanced workload over time.

Figure 3: Comparison of sample workload trajectories.

6 CONCLUSIONS

We have considered queuing admission control wherein noisy forecasts on future arrival times become
available periodically. The resulting high-dimensional Markov decision problem is handled by optimizing
over a parameterized family of policies involving features motivated from conventional threshold policies
and blocking-based policies. Computation of the relevant feature maps (as a function of the state variable)
is shown to simplify if the future arrival times are assumed to lie in a suitable uncertainty set and robust
optimization is invoked for computing the respective worst-case estimates. Experimental results demonstrate
the superior performance of the proposed policy optimization over threshold policies which ignore forecast
information.
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Examining the scope and benefits of including a richer set of features, learnt possibly via an algorithmic
representation learning procedure involving kernels or deep neural networks, is an interesting direction to
consider. Obtaining a clear understanding of how optimal delay reduction is affected by the magnitude
of the forecast noise and the length of look-ahead window remains an important question. Extensions to
settings with lead times (where accept / redirect decisions are to be made a fixed number of time units
prior to the arrival) become pertinent when considering applications from traffic and hospital emergency
department congestion management.
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