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ABSTRACT

Stratification has been widely used as a variance reduction technique when estimating a simulation output,
whereby the input variates are generated following a stratified sampling rule from previously determined
strata. This study shows that an adaptive sampling class of simulation optimization solvers calledASTRO-DF
could become more robust with stratification, S-ASTRO-DF. For a simulation optimization algorithm, we
discuss how to monitor the robustness in terms of bias and variance of the outcome and introduce several
metrics to compute and compare the robustness of solvers. We find that while stratified sampling improves
the algorithm’s performance, its robustness is sensitive to the stratification structure. In particular, as the
number of strata increases, the stratified sampling-based algorithms may become less effective.

1 INTRODUCTION

Simulation optimization (SO) algorithms are highly stochastic and heavily depend on the quality of the
objective function estimator they use. We view the robustness of an SO algorithm as its outcome’s consistent
quality when run several times to solve a stochastic simulation. An earlier study (Nemirovski et al. 2009)
interprets the robustness of the stochastic approximation (SA) method as its applicability to a wide range
of problems (not just strongly convex ones) and shows that SA can be, in that sense, more robust than the
sample average approximation (SAA) (Kim et al. 2015).

It is more common to study the robustness of an estimator instead of an SO algorithm, and even then,
it is difficult to characterize robustness explicitly. Sanchez and Sanchez (2020) express robustness in terms
of higher accuracy (lower variance) and better precision (smaller bias). They quantify robustness using
a loss function to assess the risk of having bad estimates. This risk function has connections with the
asymptotic efficiency of SAA estimators (Glynn and Whitt 1992), which compares the variability of the
estimator and the computational cost required to estimate it. Inspired by these connections, we seek to
compare the robustness of SO algorithms via minimizing the expected value of a similar loss function on
the algorithm outcome. We analyze the robustness of a class of SO algorithms and validate why stratified
sampling, which impacts the robustness of estimation, is effective for the robustness of SO.

1.1 Stratified Sampling

Stratified sampling is a well-known variance reduction technique wherein the input domain is divided
into multiple disjoint sub-spaces. Stratified sampling reduces the variance by using a weighted average of
conditional variances, which by the law of total variance is at most as large as the unconditional variance,
i.e., E[Var(A|B)] ≤ Var(A), for two random variables A and B. Like a stratified sampling estimator, a
conditional Monte Carlo (MC) estimator also conditions a random variable on another; however, they are
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fundamentally different. The variance saving for stratified sampling estimator is Var(E[A|B]) and that for
conditional MC estimator is E[Var(A|B)] (Ross 2013).

In a stochastic simulation context, let X be a random variable in Rd and let g(·) be a function such that
g : Rd → R. Consider m disjoint subsets/strata, denoted by Si, i = 1, 2, · · · ,m, covering the entire input
domain, i.e.,

⋃m
i=1 Si = Rd. Let pi = P{X ∈ Si} be known, leading to E[g(X)] =

∑m
i=1 piE[g(Xi)],

where Xi follows P i, the probability distribution of data within stratum i. In stratified sampling, ni

i.i.d. copies of Xi are drawn from P i to estimate µi := E[g(Xi)] with µ̂i =
∑ni

j=1 g(X
i
j)/ni, for all

i = 1, 2, · · · ,m. The stratified sampling estimator
∑n

i=1 piµ̂i is an unbiased estimator of E[g(X)]. Its
variance is estimated by

∑m
i=1 p

2
i σ̂

2
i , where σ̂2

i is the sample average variance of ni simulations of g(Xi),
i.e., σ̂2

i = (ni)
−2

∑ni
j=1(g(X

i
j)− µ̂i)

2.
Obtaining an effective stratified sampling estimator requires answering two questions:

(i) How to split the input domain, i.e., {Si}?
(ii) How to determine the sample size of each stratum, i.e., {ni}?

The first question demands a splitting structure such that within each stratum there are similar observable
characteristic, such as the variability of the objective function. Consequently, we can model each stratum
by a separate independent distribution. Additionally, stratified sampling is more effective when the variance
across strata is large. Mulvey (1983) proposed a method for stratification via optimal cluster analysis.
Though this method can give precise stratification, it is computationally expensive. Another splitting
approach is using classification and regression trees (CART), which divides the data into subsets, aiming
for a heterogeneous variance in each subset by minimizing the sum of squared errors (Breiman et al. 1984;
Liu et al. 2022). More recently, Farias et al. (2020) proposed a splitting technique based on similarity
functions for classification, which demands accurate modeling of the available dataset’s true distribution.

The second question depends on σ̂2
i and pi. An inaccurate estimate of these two values can reduce

the effectiveness of stratified sampling and possibly lead it to malfunction and produce worse estimates of
the objective function. To determine the variance of the stratum, we need to sample some fixed number
of points initially and then choose the optimal sample size. Chaddha et al. (1971) suggested graphical
procedures to determine the optimal allocation of the total sample size. Huddleston et al. (1970) determined
the optimal sample allocation of strata via convex programming. Bretthauer et al. (1999) used branch and
bound methods to choose the optimal sample size of each stratum. Another common method is adaptive
optimal allocation that minimizes the variance within each stratum (Etoré and Jourdain 2010; Kawai 2010).
Recently, Glynn and Zheng (2021) proposed an optimal simulation budget allocation criteria for strata
following the strong approximation theory and delta method.

All of these studies focus on the optimal sample size at a single point, however, optimization involves
a sequence of points. While the estimator’s accuracy is important, the other concern for optimization is
the search efficiency. A naive approach entails using a fixed ni for each stratum irrespective of the point
in the search trajectory, which may not be efficient, although, Zhao and Zhang (2014) analytically showed
improved convergence rate with a fixed sample size for a stratified SA. Adaptive sample size choices have
proven more successful in SO (Shashaani et al. 2018; Bollapragada et al. 2018; Curtis and Scheinberg
2020). To the best of our knowledge, Espath et al. (2021), Liu et al. (2022), and Jain et al. (2021) are the
only ones studying adaptive sample sizes for a stratified SO.

Additionally, the traditional stratified sampling considers that the stratification structure is known a
priori. But in many data-driven cases, this may not be true. In particular, stratification structure can vary
based on the progress made during optimization to provide optimal variance reduction and improvement in
the search. Pettersson and Krumscheid (2021) proposed an adaptive stratification algorithm for optimization
that greedily divides the input domain using hyperrectangles or simplices to maximize the reduction of
estimated variance. This algorithm can cause an additional variance, which is not accounted for when
looking at stratified sampling at a fixed point. During optimization, this additional variance may or may
not make the stratified sampling estimator worse than the crude MC estimator.
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1.2 Robustness of a Simulation Optimization Algorithm

Recall the unconstrained SO problem: minθ f(θ), where f : IRd → IR is unknown with noisy observations
accessible from a stochastic simulation. Moreover, let θ∗ = argminθ f(θ) exist. Suppose there is an SO
algorithm at our disposal that generates a sequence of solutions iteratively using the estimated function value
at the previously visited solutions. Given the random input X|Z sampled from PX|Z , which is the input
model (data) for the realization Z of the SO algorithm, and the decision θ, each simulation run generates an
output F (θ,X|Z) that is a random variable with EX|Z [F (θ,X|Z)] = f(θ|Z). This is to emphasize that the
input model of each realization of the algorithms is conditional on that realization. In a stochastic simulation
setting, input data of a single run, henceforth macroreplication, of the SO algorithm is generated from
random substreams that are allocated to the random stream used for that macroreplication (Eckman et al.
2022). In a data-driven setting, Z generates samples of the available data used for that macroreplication
of the SO algorithm. We maintain Z in the notations as it is needed in the SO outcomes’ analysis. For a
realized macroreplication of the SO algorithm, i.e., Z = z, the problem becomes

minimizeθ f(θ|z) =
∫

F (θ,X|z)dPX|z, (1)

generating a sequence of solutions {θk(z), k = 1, 2, · · · }. Hence, each macroreplication of the SO
algorithm produces a distinct sequence of solutions. If the algorithm has convergence properties with high
probability, then one can roughly expect EZ [θk(Z)] → θ∗ as k → ∞.

In this paper, we measure the SO algorithm’s risk with the loss function ℓfk(Z) := (fk(Z)− f∗)2,
where fk(Z) := f(θk(Z)) and f∗ = f(θ∗) is the minimum objective function value we wish to attain.
The loss function can also be defined with respect to the solution, i.e., ℓθk(Z) := ∥θk(Z)− θ∗∥2. The loss
function defines the algorithmic risk, as rθk := EZ [ℓ

θ
k(Z)], which is what we use to infer as the inverse of

robustness in an SO algorithm, i.e., small rθk implies high robustness. The original use of the loss function
is for evaluating the efficiency of an estimator at a fixed point (Sanchez and Sanchez 2020), which also
links to the asymptotic efficiency (Glynn and Whitt 1992) of an estimator. For an SO algorithm, the loss
function has a value (risk) at different intermediate budget points. One can alternatively compare two SO
algorithms’ robustness in finite time given an SO budget (the allowed number of simulation runs, denoted
by τ ) by computing the area under the risk curves, i.e.,

∫ τ
0 rθ(t)dt, where rθ(t) is a continuous counterpart

of rθk over time with t representing the SO budget. We will refer to the total number of simulation runs
by the end of iteration k as Wk(Z) in one macroreplication and let K(Z) = min{k : Wk(Z) ≤ τ} be the
last iteration before termination.

1.3 Our Contribution

For SO, robust algorithms increase reliability. Notably, in parameter calibration or simulation validation,
because of (i) the unknown distribution of the data and (ii) the stochasticity associated with sampling
the data, robustness becomes elusive and essential. Since the intrinsic noise in the data is unavoidable,
we focus on enhancing the robustness of the SO algorithms with adaptive stratified sampling to reduce
the sampling error. With theoretical and numerical studies, we will analyze these effects on robustness
compared to a benchmark asymptotically and in finite time. We focus on a class of stochastic trust-region-
based algorithms called ASTRO-DF (Shashaani et al. 2018; Ha et al. 2021), which stands for Adaptive
Sampling Trust-Region Optimization for Derivative-Free problems, well-suited for the data-driven studies
later. In the following sections, we will lay out the framework for analyzing the stratified ASTRO-DF, or
S-ASTRO-DF, and investigate the finite-time performance in a suite of experiments.

2 STRATIFIED SAMPLING WITHIN SIMULATION OPTIMIZATION

First, we present the notations and definitions for an SO algorithm that uses crude MC or c-MC vs. stratified
MC or s-MC. Then, we discuss ASTRO-DF and S-ASTRO-DF as a specific example.
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2.1 Notations and Definitions

As a convention in the paper, we use lowercase font for real numbers and uppercase font for random variables.
SO algorithms with c-MC use SAA to map Z → fk(n|Z) := ÊX|Z [F (θk(Z), X|Z)] at iteration k with
SAA using n samples drawn from PX|Z and σ̂2

k(n|Z) =
∑n

j=1(F (θk(Z), Xj |Z) − fk(n|Z))2/n2 as the
estimated sample variance. Conditioning on Z determines solutions visited in a specific macroreplication of
the algorithm. The s-MC SO algorithms usesm strata determined a prioi and independent ofZ, S as a vector
of strata structures, and n = (n1, n2, · · · , nm) as a vector of sample sizes to map Z → {fk(ni|Z,Si)}mi=1,
where fk(ni|Z,Si) := ÊX|Z,Si

[F (θk(Z,S), X|Z,Si)] is estimated by SAA with ni samples from PX|Z,Si
.

Then define the objective function and variance estimator respectively as

fk(n|Z,S) :=

m∑
i=1

pifk(ni|Z,Si) and σ̂2
k(n|Z,S) :=

m∑
i=1

p2i σ̂
2
k(ni|Z,Si).

Hence, c-MC algorithm results in the stochastic process {θk(Z), fk(n|Z), σ̂k(n|Z)} while s-MC algorithm
results in the stochastic process {θk(Z), fk(n|Z,S), σ̂k(n|Z,S)}. For a fixed point such as θ0 (the initial
solution), we know Var(f0(n|Z)) ≥ Var(f0(n|Z,S)). But we would like to characterize {θk(Z)} in
comparison with {θk(Z,S)}. To eliminate the optimization bias (Mak et al. 1999), one must evaluate the
solutions at intermediate budget points with a separate SAA estimator, denoted by f̂(·), that uses (common)
random samples independent from those used for the optimization. Hence to compare the robustness of the
two algorithms, one would compute the function estimate of their resulting solution sequences {f̂(θk(Z))}
and {f̂(θk(Z,S))} and compare their corresponding loss functions.

2.2 ASTRO-DF Algorithm and Adjustments

ASTRO-DF is an almost sure globally convergent SO with two features: trust-region optimization which
uses a local model within a moving neighborhood to find the next incumbent, and adaptive sample sizes,
where sample sizes n and ni become Nk(Z) and Nk(Z,Si), i.e., random and dependent on the point being
visited. Trust-region methods approximate the true objective function by generating an easy-to-handle local
model at each iteration. Optimizing the local model within the trust-region suggests a candidate for the
incumbent solution at the next iteration. Trust-region is typically a closed ball around the current incumbent
solution denoted by Bk(Z) = {θ : ∥θ − θk(Z)∥2 ≤ ∆k(Z)}, where ∆k(Z) is the trust-region radius.
With a surrogate model Mk(θ|Z) generated to approximate the true objective function at iteration k, a
candidate solution θ̃k+1(Z) is identified as argminθ∈Bk(Z)Mk(θ|Z). If sufficient reduction in the estimated
objective function value is achieved at the candidate point, the algorithm accepts it as the new incumbent
and expands the trust-region radius. Otherwise, it starts the next iteration at the previous incumbent with
a shrunk trust-region to generate a more accurate model. The fact that ∆k(Z) → 0 as k → ∞ almost
surely and ∥∇Mk(θ|Z)−∇f(θ)∥/∆k(Z) = Op(1) for all θ ∈ Bk(Z) guarantees the convergence of the
algorithm with iteration complexity of Op(ϵ

−2) for an ϵ-stationary solution (Ha et al. 2021). Adaptive
sampling determines Nk(Z) by maintaining a balance between the stochastic error and optimality gap, i.e.,
less samples when far away and more near θ∗. In ASTRO-DF, the optimality gap is proxied by the square
of the trust-region radius:

Nk(Z) = min
{
n ≥ λk :

√
λkσ̂k(n|Z) ≤ ∆2

k(Z)
}
, (2)

where κ is a positive constant and λk is the deterministic sample size lower bound satisfying λk = O(k1+ϵ).
We denote the function estimate for the candidate solution by f̃k+1(Ñk+1(Z)|Z), where Ñk+1(Z) is
its sample size. The stochastic error in ASTRO-DF can further be reduced by integrating stratified
sampling with adaptive sampling. Intuitively, stratified sampling when combined with adaptive sampling
can generate a more accurate surrogate model, resulting in a better search trajectory. Given a splitting
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structure S, we need to allocate budget to each stratum for each visited solution. In S-ASTRO-DF
(stratified ASTRO-DF) we use the adaptive sampling criteria (2), yet replace the standard error with
σ̂k(Nk(Z,S)|Z,S) following the definition in Section 2.1. We define the lower bound sequence for
stratum i as λk(Z,Si) = ⌈n0 + wk(Z,Si)×

(
max{nall

0 , λk} −mn0

)
− 0.5⌉, where

wk(Z,Si) =
piσ̂k−1(Nk−1(Z,Si)|Z,Si)∑m

j=1 pj σ̂k−1(Nk−1(Z,Sj)|Z,Sj)
(3)

is the weight of stratum i during iteration k using the previous incumbent, n0 is the minimum sample size
of each stratum and nall

0 is the minimum number of samples from all strata. We then check the adaptive
sampling criteria in (2). If the inequality in (2) is not satisfied, we keep on sampling one point at a time. To
choose which stratum to add a point to, we use a selective randomized method (Tong 2006; Zhang et al.
2022), with a customized probability for each stratum. For optimal allocation ideally the strata weights
wk(Z,Si) should be equal to qk(Z,Si) := Nk(Z,Si)/

∑m
j=1Nk(Z,Sj), the proportion of samples that

belong to stratum i. Based on this we randomly sample from stratum i with probability:

πk(Z,Si) = Pr{sampling from stratum i at iteration k} =
wk(Z,Si)I{wk(Z,Si) > qk(Z,Si)}∑m

j=1wk(Z,Sj)I{wk(Z,Sj) > qk(Z,Sj)}
.

(4)
The probability mass function (πk(Z,Si), i = 1, 2, · · · ,m) evolves to guarantee that the strata with
sub-optimal allocation are more likely to be selected. Algorithm 1 lists the steps of S-ASTRO-DF. We
skip the model construction details of ASTRO-DF; see (Jain et al. 2021) for more.

Algorithm 1 S-ASTRO-DF Algorithm

1: Parameters: Stratification structure and corresponding probabilities {(Si, pi), i = 1, 2, · · · ,m}, initial
solution θ0 and radius ∆0, number of strata m, maximum budget τ , minimum sample size n0 ≥ 2 and
nall
0 ≥ n0m, deterministic sequence λk, success threshold η > 0, and post-processing estimator f̂(·).

2: initialization: Set k = 0 and W0(Z,S) = 0.
3: while Wk(Z,S) < τ do
4: Construct Mk(·|Z,S) using fk(Nk(Z,S)|Z,S) and update Wk(Z,S).
5: Minimize Mk(·|Z,S) within Bk(Z,S) to obtain a candidate solution θ̃k+1(Z,S).
6: Estimate f̃k+1(Ñk+1(Z,S)|Z,S) following the adaptive stratified sampling and update Wk(Z,S).

7: if the success ratio ρk(Z,S) :=
fk(Nk(Z,S)|Z,S)−f̃k+1(Ñk+1(Z,S)|Z,S)

Mk(θk(Z,S)|Z,S)−Mk(θ̃k+1(Z,S)|Z,S)
> η then

8: Set θk+1(Z,S) = θ̃k+1(Z,S) and ∆k+1(Z,S) > ∆k(Z,S).
9: else

10: Set θk+1(Z,S) = θk(Z,S) and ∆k+1(Z,S) < ∆k(Z,S).
11: end if
12: Set k = k + 1, compute wk(Z,Si) for all i = 1, 2, · · · ,m following (3), and go to step 4.
13: end while
14: output: {θk(Z,S),Wk(Z,S)} for all k = 1, 2, · · · ,K(Z,S).

3 ROBUSTNESS ANALYSIS

In this section, we explore the effect of stratified sampling on algorithmic robustness by comparing the
algorithmic risk rθ,c-MCk = EZ [∥θk(Z) − θ∗∥2] for ASTRO-DF and rθ,s-MCk = EZ [∥θk(Z,S) − θ∗∥2] for
S-ASTRO-DF. The algorithmic risk captures both the accuracy of the solutions and their precision. By
comparing the algorithm’s outcome with the correct optimum (θ∗), we look at how the final solution varies
for different macroreplications, signified by Z. The risk values rθ,c-MCk and rθ,s-MCk measure the quality of
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Figure 1: Illustration of how algorithmic risk at termination, i.e., rθ(τ) monitors robustness: final solution
of s-MC is more precise with (lower variance) and more accurate (mean closer to θ∗) than c-MC.

the solution. A robust algorithm demonstrates consistency and sharpness near θ∗. Inherent stochasticity
in an SO algorithm may or may not amplify algorithmic risk as the randomness within the algorithm
could increase the variability of the final solutions across macroreplications. The proposed risk measure
thus considers the algorithm’s sensitivity to varying input and its intrinsic stochasticity. Figure 1 shows
the distribution of the final output of the two algorithms on one problem using common random numbers
(CRN) for sharpness of the comparison; details to follow in Section 4. For s-MC, the observed mean is
close to θ∗, and the solution does not vary significantly across macroreplications. For c-MC, the observed
mean is much higher than θ∗, and the outcome changes drastically for different macroreplications. The
final solution of s-MC is more precise and accurate, and hence, more robust.

3.1 Assumptions

In our analysis, we assume the following:
(1) The SAA estimation error for a fixed point, i.e., given the history, has mean zero and uniformly

bounded variance almost surely, i.e., there exist σ < ∞ and σi < ∞ ∀i = 1, 2, · · · , n such that:

P{Z : E[fk(n|Z)|Fk(Z)] = fk(Z)} = P{Z : E[fk(n|Z,Si)|Fk(Z,S)] = fk(Z,Si), ∀i} = 1,

P{Z : Var(F (θk(Z), X|Z)|Fk(Z)) ≤ σ2} = P{Z : Var(F (θk(Z,S), X|Z,Si)|Fk(Z,S)) ≤ σ2
i , ∀i} = 1,

where Fk(Z) and Fk(Z,S) are the corresponding SO filtrations up to iteration k,
(2) Both ASTRO-DF and S-ASTRO-DF converge in expectation:

lim
k→∞

EZ [θk(Z)] = lim
k→∞

EZ [θk(Z,S)] = θ∗.

(3) There exist the probability measures Z and ZS such that θk(Z) ⇒ Z and θk(Z,S) ⇒ ZS as
k → ∞, where ⇒ signifies weak convergence.

3.2 Main Result

In this section we state and sketch the proof of the analytical result for S-ASTRO-DF in comparison with
ASTRO-DF. We will use the notations Gk(Z) = ∇Mk(θk(Z)|Z) and Gk(Z,S) = ∇Mk(θk(Z,S)|Z,S)
for the model gradient and Hk(Z) = ∇2Mk(θk(Z)|Z) and Hk(Z,S) = ∇2Mk(θk(Z,S)|Z,S) for the
model Hessian in ASTRO-DF and S-ASTRO-DF, respectively.
Theorem 1 If the assumptions listed above hold, then rθ,s-MC(τ) ≤ rθ,c-MC(τ), i.e., the algorithmic risk
of S-ASTRO-DF at termination with the total budget of τ < ∞ is smaller than that of ASTRO-DF.
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We only provide the proof sketch here. Let Z be given, representing one run of ASTRO-DF. We note
that at termination, the number of iterations for S-ASTRO-DF is K(Z,S) while that for ASTRO-DF is
K(Z). We can write ∥θk(Z)− θk−1(Z)∥2 ≤ ∆2

k−1(Z) and hence:

EZ [∥θk(Z)− θ∗∥2] = EZ

[
k∑

k′=1

∥θk′(Z)− θk′−1(Z)∥2
]
+ ∥θ0 − θ∗∥2 (5)

≤ EZ

[
k∑

k′=1

∆2
k′−1(Z)

]
+ ∥θ0 − θ∗∥2.

Since ∆2
k(Z) ≤ ∆0γ

k (γ is the expansion coefficient of the ASTRO-DF algorithm), for a random iteration
K(Z), the first term on right hand side of (5) can be written as c1+c2EZ [(γ

2)K(Z)], where c1 = ∆2
0(1−γ)−1

and c2 = ∆2
0γ

−1(1 − γ)−1. It then remains to be shown that the moment-generating function of K(Z)
is larger than that of K(Z,S) implying that the average number of iterations for S-ASTRO-DF is less
than the average number of iterations for ASTRO-DF. For intuition, the algorithm with a smaller number
of iterations is more likely to have less successful iterations indicating that the algorithm gets to a better
point faster, hence showing better convergence. We show that S-ASTRO-DF will have fewer iterations
before termination by showing that

Pr
{
∆K(Z,S)(Z,S) < ∆K(Z)(Z)

}
> 1− δ,

for some δ > 0, then we can conclude that ∆k(Z) = O(∥∇Mk(Z)∥) will imply that the model gradient
norm with stratified version of the algorithm is likely to be smaller than that of the crude version.

4 CASE STUDY: PARAMETER CALIBRATION IN WIND POWER SYSTEMS

This section numerically compares the two estimators in a case study that involves parameter calibration
in wind power systems. Computer models are often used to simulate a physical process because of their
cost-effectiveness compared to full-scale physical experiments. Computer models make certain assumptions
linked with parameters to replicate the physical process. These parameters cannot generally be observed
or measured in the real world. This calls for parameter calibration, wherein we use the observational data
to determine the parameter values that minimize model discrepancy (Kennedy and O’Hagan 2001).

This case study is for wind power systems. The wake effect parameter significantly affects the power
generated in multi-turbine wind farms. Wake represents the deficit in wind speed at a downstream turbine
because of one or more turbines in the upstream direction. Engineering wake models often characterize
wake effects because of their computational simplicity. Jensen wake model is one such model, which for
a given set of input conditions, gives the effective wind speed at each turbine in the wind farm (Jensen
1983). Power generated at a turbine is then estimated using the effective wind speed in conjunction with
the power curve (Liu et al. 2022). The power curve is a characteristic of a wind turbine that relates the
effective wind speed to the power generated. The effective wind speed calculations in the Jensen wake
model are sensitive to a parameter called the wake decay coefficient. Though standard values of 0.075
for onshore wind farms and 0.04 for offshore wind farms are suggested for the wake decay coefficient,
some recent work has shown that these values are not necessarily optimal (You et al. 2017). We thus
aim to calibrate the wake decay coefficient for the given data set collected from an offshore wind farm by
minimizing the estimation error of the computer model. For more details see (Jain et al. 2021).

4.1 Implementation and Discussion

We first compare S-ASTRO-DF with varying numbers of strata against ASTRO-DF. To explore the
effect of the additional uncertainty of stratification in the algorithm, we also compare static stratification,
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S-ASTRO-DF(s, ·), for all macroreplications against dynamic stratification, S-ASTRO-DF(d, ·) which
changes at each macroreplication. Thus, S-ASTRO-DF(d, ·) algorithms have additional inherent stochas-
ticity, whereas S-ASTRO-DF(s, ·) do not. The second argument in both is the number of strata. We
compare these algorithms by varying different input conditions: the initial solution (θ0 ∈ {0.02, 0.15}), the
initial trust-region radius (∆0 = {0.08, 0.04}), and the shrinkage factor (γ2 ∈ {0.64, 0.8}). The shrinkage
factor shrinks the trust-region radius upon rejection of the candidate solution. We report the performance
of the algorithms for different input conditions via six outputs: the final value, the algorithmic risk, and
the overall risk or the area under the risk curve, all for the objective function value and the solution.

We run 20 independent macroreplications for each algorithm with CRN to estimate and compare
the robustness. Each macroreplication starts at the same initial point (θ0) and has the total budget of
τ = 10, 000. For each experiment, Z is the random number generator seed that is used to divide the data
randomly into a training set of size 70% for optimization and a test set of size 30% for post-processing.
X on the other hand is a set of points sampled from these training and test sets. The intermediate
solutions reported during optimization at various budget points are re-evaluated using the entire test set.
In S-ASTRO-DF(s, ·) algorithms, the stratification structure is determined a priori using the entire data,
whereas S-ASTRO-DF(d, ·) determines the stratification structure using the training set at the start of
each macroreplication. We have data of size 11,656 collected from 30+ turbines for the wind case study,
which is larger than the total budget considered in this set of experiments. The data consists of the weather
conditions (wind speed, wind direction, turbulence intensity) and power generated at all the turbines for
the corresponding weather conditions and is recorded at the met mast when the met mast is not under
wake, and the wind direction ranges between 165◦ and 315◦. We use CART on turbulence intensity as
the stratification variable for splitting the data into multiple strata. The optimal value of the wake decay
coefficient (θ∗) is approximately 0.06 (identified from a separate experiment with larger budget), which
we use to measure the algorithmic risk and therefore, the robustness using just a portion of the data.

4.2 Results and Discussion

Since the initial point is identical for all the algorithms and we use CRN, the loss trajectories start at the
same point and evolve according to how well each algorithm performs. Figure 2 shows the evolution of
the new algorithmic risk value across time, following the concept of progress curves (Eckman et al. 2022)
and using the MATLAB version of SimOpt library (Eckman et al. 2020). We can gather the progress
of each algorithm over time for each macroreplication (plots at the top row). These progress plots can
be summarized in an aggregate progress curve to easily overlay all algorithms in one plot (bottom left
plot). We compare the algorithmic risk over time (bottom middle plot), which also further summarizes the
progress of each solver to one curve. We can summarize one curve even further into a single number by
computing the area under the risk trajectories (bottom right table).

Table 1 summarizes the results of the algorithms for each experiment. The third and fourth columns
report the mean and 95% confidence interval (CI) of the final objective function value and the final solution
at termination (after the total budget τ is exhausted), respectively, i.e., θ(τ) and f̂(θ(τ)). The fifth and
the seventh column summarize the algorithmic risk at termination in terms of the objective function value,
rf (τ), and the solution value, rθ(τ), respectively. Further, instead of looking at the algorithmic risk only
at termination, it is important to see how it changes during optimization for each experiment. The sixth
and eighth columns summarize the overall algorithmic risk, estimated as the area under the loss curve.

We observe that for θ0 = 0.15, which is an initial solution in a hard – flat – region, the algorithms
with two strata perform the best. The first four experiments show that as we increase the number of strata,
the algorithm’s performance tends to degrade. In fact, the algorithms with eight strata perform worse than
the original ASTRO-DF in all four experiments. We speculate that more strata for flat regions leads to an
unnecessarily large sample size, which causes overfitting and more bias, resulting in less robust solutions.
When we change the initial point to θ0 = 0.02, which is in an easy – steep – region, the algorithms with
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Table 1: Summary of the results for all the experiments evaluated over 20 independent macroreplications
with * marking statistically significant difference with 90% significance level when compared to ASTRO-DF
and bold font signifying the best values in each column (within an experiment with multiple algorithms).

f̂(θ(τ)) θ(τ) rf (τ)
∫ τ
t=0 r

f (t)dt rθ(τ)
∫ τ
t=0 r

θ(t)dt

Mean-CI Mean-CI Final Overall Final Overall
Experiments Algorithms (×104) (×10−2) (×109) (×1013) (×10−4) (×102)

θ0 =
0.15

Exp 1:
∆0 = 0.08
γ2 = 0.64

ASTRO-DF 3.52 ± 0.09 7.8 ± 0.8 1.25 1.33 6.86 0.28
(2,s) 3.46 ± 0.04* 6.9 ± 0.1* 1.20 1.25 1.02 0.12
(4,s) 3.50 ± 0.07 7.3 ± 0.6 1.23 1.25 3.58 0.08
(8,s) 3.65 ± 0.16 9.6 ± 2.3 1.35 1.37 41.82 0.45
(2,d) 3.48 ± 0.08 7.1 ± 0.7 1.22 1.28 3.88 0.31
(4,d) 3.48 ± 0.10 7.1 ± 1.0 1.22 1.27 7.02 0.17
(8,d) 3.76 ± 0.17 11.3 ± 2.6 1.43 1.43 64.80 0.67

Exp 2:
∆0 = 0.08
γ2 = 0.8

ASTRO-DF 3.54 ± 0.10 7.8 ± 1.0 1.26 1.28 8.29 0.17
(2,s) 3.48 ± 0.06* 7.1 ± 0.4* 1.21 1.23 2.08 0.06
(4,s) 3.47 ± 0.05* 6.7 ± 0.5* 1.20 1.25 1.94 0.07
(8,s) 3.56 ± 0.12 8.3 ± 1.8 1.28 1.30 23.11 0.28
(2,d) 3.44 ± 0.05* 6.2 ± 0.7* 1.19 1.24 2.65 0.13
(4,d) 3.46 ± 0.05* 6.9 ± 0.4* 1.20 1.23 1.61 0.08
(8,d) 3.57 ± 1.46 8.7 ± 2.4 1.28 1.33 38.23 0.44

Exp 3:
∆0 = 0.04
γ2 = 0.8

ASTRO-DF 3.48 ± 0.07 7.4 ± 0.7 1.21 1.27 3.65 0.15
(2,s) 3.42 ± 0.05* 6.4 ± 0.4* 1.17 1.24 1.16 0.10
(4,s) 3.47 ± 0.07 6.9 ± 0.6 1.21 1.25 3.06 0.09
(8,s) 3.57 ± 0.12 8.3 ± 1.6 1.28 1.33 18.29 0.27
(2,d) 3.50 ± 0.11 7.2 ± 1.0 1.23 1.28 7.02 0.19
(4,d) 3.45 ± 0.06 6.3 ± 0.6* 1.20 1.25 1.96 0.10
(8,d) 3.53 ± 0.13 7.9 ± 1.7 1.25 1.30 18.71 0.24

Exp 4:
∆0 = 0.04
γ2 = 0.64

ASTRO-DF 3.53 ± 0.13 7.6 ± 1.6 1.26 1.31 16.38 0.27
(2,s) 3.43 ± 0.05* 6.2 ± 0.5* 1.18 1.23 1.16 0.11
(4,s) 3.50 ± 0.10 7.3 ± 1.2 1.23 1.27 3.06 0.14
(8,s) 3.71 ± 0.15 10.0 ± 2.1 1.38 1.43 39.41 0.48
(2,d) 3.44 ± 0.07 6.4 ± 0.8 1.19 1.27 7.02 0.21
(4,d) 3.50 ± 0.10 7.1 ± 1.0 1.23 1.30 6.64 0.19
(8,d) 3.71 ± 0.17 10.1 ± 2.2 1.39 1.42 42.20 0.46

θ0 =
0.02

Exp 5:
∆0 = 0.08
γ2 = 0.64

ASTRO-DF 3.46 ± 0.08 6.5 ± 0.8 1.20 1.28 3.77 0.35
(2,s) 3.48 ± 0.06 7.0 ± 0.7 1.21 1.23 3.52 0.04
(4,s) 3.45 ± 0.05 6.6 ± 0.6 1.20 1.24 2.60 0.04
(8,s) 3.49 ± 0.07 7.1 ± 0.7 1.22 1.22 3.89 0.03
(2,d) 3.51 ± 0.08 7.0 ± 0.9 1.24 1.26 5.13 0.07
(4,d) 3.45 ± 0.09 6.6 ± 0.9 1.19 1.22 4.61 0.03
(8,d) 3.46 ± 0.06 6.8 ± 0.6 1.20 1.22 2.38 0.02

Exp 6:
∆0 = 0.08
γ2 = 0.8

ASTRO-DF 3.50 ± 0.08 7.3 ± 0.8 1.23 1.30 4.70 0.40
(2,s) 3.46 ± 0.06 6.8 ± 0.6 1.20 1.22 2.64 0.03
(4,s) 3.44 ± 0.06* 6.6 ± 0.5* 1.19 1.24 1.61 0.05
(8,s) 3.47 ± 0.05 7.0 ± 0.5 1.21 1.23 2.10 0.03
(2,d) 3.44 ± 0.05 6.6 ± 0.6 1.19 1.24 2.21 0.07
(4,d) 3.40 ± 0.06* 5.9 ± 0.5* 1.16 1.22 1.44 0.04
(8,d) 3.46 ± 0.06 6.7 ± 0.6 1.20 1.22 2.19 0.03

Exp 7:
∆0 = 0.04
γ2 = 0.8

ASTRO-DF 3.48 ± 0.06 6.7 ± 0.8 1.21 1.27 3.85 0.14
(2,s) 3.43 ± 0.06 6.5 ± 0.5 1.18 1.21 1.63 0.02
(4,s) 3.41 ± 0.05* 6.2 ± 0.4 1.16 1.23 1.07 0.05
(8,s) 3.46 ± 0.09 6.8 ± 0.8 1.20 1.22 4.19 0.04
(2,d) 3.46 ± 0.07 6.8 ± 0.6 1.20 1.26 2.40 0.08
(4,d) 3.45 ± 0.08 6.6 ± 0.6 1.19 1.21 2.48 0.03
(8,d) 3.41 ± 0.07* 6.1 ± 0.5 1.16 1.19 1.28 0.02

Exp 8:
∆0 = 0.04
γ2 = 0.64

ASTRO-DF 3.49 ± 0.10 7.1 ± 1.0 1.22 1.29 6.86 0.18
(2,s) 3.44 ± 0.05 6.5 ± 0.4 1.18 1.21 1.32 0.03
(4,s) 3.45 ± 0.07 6.8 ± 0.6 1.20 1.22 2.37 0.04
(8,s) 3.48 ± 0.07 7.0 ± 0.8 1.21 1.23 4.21 0.04
(2,d) 3.45 ± 0.08 6.5 ± 0.7 1.19 1.23 2,91 0.07
(4,d) 3.43 ± 0.06* 6.4 ± 0.5* 1.18 1.20 1.48 0.02
(8,d) 3.43 ± 0.06* 6.1 ± 0.6* 1.18 1.20 1.82 0.02
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Figure 2: Illustration of results from 20 runs of each version, summarized for comparison.

stratified sampling estimator consistently outperform the original ASTRO-DF, and the performance tends
to get better as we increase the number of strata.

Next, we compare the effect of static vs dynamic stratification (splitting as part of the SO). For
experiments 1-4, the static stratification generally has better performance, and vice versa is true for
experiments 5-8. This highlights the importance of selecting a good stratification structure. Even for the
same problem, the optimal stratification structure can vary based on where we are in the search space. In
the experiments that start off from a steep region, a small step size can significantly reduce the objective
function value and lead the algorithm to a better point. As a result, all the algorithms perform well
for experiments 5-8, but some of the S-ASTRO-DF(d, ·) algorithms slightly outperform the rest with a
lower risk value. S-ASTRO-DF(d, ·) algorithms have some inherent stochasiticity due to using different
stratification structures for each macroreplication. But this inherent stochasiticity does not necessarily have
a negative effect on the risk. In the experiments starting from a region with a gentle slope, better estimates
are needed to make progress, which could be contributing to why algorithms with dynamic stratification
do not perform as well for experiments 1-4.

The dynamic stratification employed is a preliminary study that involves adapting the stratification
structure based on the search trajectory for a better understanding of the local distribution at the incumbent.
However, the changing structure throughout the search will further complicate the complexity analysis.

By changing the other parameters in the experiments, we also explore the sensitivity of different
stratification settings. Figure 3 plots the distribution of the algorithmic risk in terms of solution (final and
overall) for the eight experiments. It shows that the median of the overall risk for algorithms with stratified
sampling is lower than that without stratification. The interquartile range for algorithms with eight strata is
large compared to the rest, mainly due to their poor performance in the first four experiments. Even though
S-ASTRO-DF(4, s) does not give the best result for a particular experiment, it has the most consistent
performance for all the scenarios considered in this study.

5 CONCLUSION

This paper explores using stratification for the derivative-free trust-region-based SO with adaptive sampling.
The analytical and numerical results reveal that while stratified sampling enhances the performance of the
algorithms, care is needed in the stratification structure to enhance robustness. Though it is expected that
increasing the number of strata would give more precise estimates and further reduce the variance in theory,
it does not necessarily help in practice. Here, we only consider static and dynamic stratification with fixed
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(a) Boxplots for algorithmic risk (in θ) at termination. (b) Boxplots for overall risk (in θ).

Figure 3: Comparison of the algorithmic risk in terms of the final solution under different settings.

structures. An adaptive stratification structure during each iteration is an open question, an interesting
aspect of which involves determining the appropriate number of strata in each iteration. The stratification
variable also affects the performance of a stratified sampling-based SO. We use turbulence intensity for
the wind power case study to stratify the input domain. In the future, we seek guidelines that identify
influential inputs to be used in the stratification in a bid to maximize the SO performance.
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