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ABSTRACT

Contested and dynamic environments with poor and unreliable network conditions are often encountered
by military operations or crisis management systems. While it is a common occurrence for networks to
behave poorly, or for system nodes to malfunction, most existing decision making algorithms have only
been tested in perfect conditions. In this paper, we present an analysis of the robustness of reinforcement
learning and evolutionary approaches employed in a communication middleware that operates in a contested
environment. The SMARTNet middleware prioritizes and controls the messages sent by each node, with
the aim of preserving network bandwidth. We evaluate the robustness of a reinforcement learning and
an evolutionary computation implementations as SMARTNet executes in changing conditions, with nodes
dropping out, and the network becoming congested both generally and for specific message types.

1 INTRODUCTION

Rescue and military operations often operate in contested and dynamic environments, with unavailable or
jammed networks (Campbell, Angus LTGEN 2018). In these systems, ensuring timely messages arrive
without massive network disruptions is critical for the successful outcome of the operations and to ensure
mission effectiveness. Most contested environments have poor networks or have networks where the network
performance might quickly deteriorate over time or as the network nodes move further apart geographically
or are partitioned from the network, either intentionally or through forces of nature.

For example, operations in foreign and contested terrain use radio-based ad-hoc networks which cannot
guarantee high bandwidth reliable communication. In most battle scenarios soldiers may not have a complete
view of the position or status of friendly forces and thus critical information dissemination decisions that
will affect system-wide properties have to be made with incomplete and unreliable information. Systems
that operate in rescue or humanitarian operations do not have the luxury of stable network and computational
infrastructures, must compete over limited power resources and can can be affected by natural or man-made
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disasters. It is critical that the entities in these systems are responsive to frequent network capability
changes, and that there is an understanding of how robust the system is to various environment changes.

One of the most frequently sent type of messages in these type of mobile systems is a Position Location
Information (PLI) message, which details the position information of the sending entity. Other message
types include status information, text, video, as well as other non-critical messages. While all messages
are assumed to be important when they are sent at each individual node, there is a need for a prioritization
mechanism that ensures timely delivery, responsiveness and global graceful degradation mechanisms for
the entire system. To achieve this, node-specific rules can be defined based on the partial knowledge a
node might have about its environment. Nodes then reason about context and prioritize information sharing
activities as it suits the mission plan and the current context. This complex systems design approach
assumes that individual nodes will make decisions either in cooperation with other nodes or in isolation
caused by various network partitions or specific attacks.

SMARTNet (Chan et al. 2018; Szabo et al. 2020) is a proposed experimental middleware that
prioritizes, controls, and transforms any communication sent by agents deployed on nodes across any
networked applications. Running on every network-connected soldier, vehicle and headquarters, SMARTNet
controls the node’s access to the network and uses information available from its battle management systems,
networks, and sensors to build up a representation of the current state of its platform, mission, environment
and network. SMARTNet uses this contextual knowledge to dynamically decide what priority each message
should have, whether the message needs to be transformed (reduced, compressed or filtered) to fit current
network capacity, and when the message should be sent.

SMARTNet operates in contested and dynamic environments, and as such each agent needs to send
numerous messages according to the operational and mission plan. Since the network is often unstable
or limited in capacity, the sending of messages potentially results in degrading network performance. In
our past work (Szabo et al. 2020), we have explored the use of centralised evolutionary algorithms to
solve this problem, with promising results, while still facing challenges. In particular, our approach had a
significant runtime when deployed live and could not adapt well to a dynamic environment when deployed
statically. To address this, we introduce a simple reinforcement learning approach that considers local
context information when sending messages. To address gaps in existing work, in this paper we also
evaluate the robustness of reinforcement learning and evolutionary computation approaches, using varied
scenarios. The contributions of this paper are:

• A reinforcement learning algorithm to reduce network congestion in the SMARTNet middleware
while achieving timely delivery of messages

• An extensive experimental analysis of the robustness of the reinforcement learning and evolutionary
computation over a baseline in a variety of congested and disrupted scenarios

2 BACKGROUND AND RELATED WORK

A mobile ad-hoc network (MANET) is a decentralised wireless network composed from mobile devices
that operate without support from existing static infrastructure, e.g., routers or servers (Ali and Kulkarni
2015). Similar to a peer-to-peer network, it is the MANET nodes that provide the routing and all other
services to every node in the network. The inherent flexibility, scalability and fault tolerance given by
their design ensures that MANETs are good candidates for contested, dynamic, and resource constrained
environments such as military operations (Rajabhushanam and Kathirvel 2011; Rath and Pattanayak 2014)
or crisis management (Reina et al. 2015).

There has been significant research interest towards machine learning and artificial intelligence tech-
nologies, and their application in various network related problems (Talawar and Ashoka 2020; Li et al.
2018) such as routing protocols (Wu et al. 2008; Gudakahriz et al. 2011; Li et al. 2018; Ghouti et al. 2013)
and security (Talawar and Ashoka 2020). An iterated local search that finds the minimum spanning tree to
connect all nodes is proposed by Wu et al. (2008). Wolf and Merz (2009) focus on achieving minimum
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power broadcast. However, centralized, global knowledge is required by both approaches. To alleviate this,
nature-inspired algorithms have been used by Günes et al. (2003), who use behavior similar to that of ant
colonies to design a routing algorithm that requires only local knowledge. Other nature inspired approaches
include ant, bee or swarm abstractions (Gudakahriz et al. 2011; Saleem et al. 2012) respectively.

Specifically focusing on MANET routing protocols, Li et al. (2018) use reinforcement learning in a
vehicular MANET to improve the message delivery ratio. The geographical area is divided into smaller
grids and the approach iteratively finds the next optimal grid toward the destination. Extreme learning
machines and user mobility models are used by Ghouti et al. (2013) in the design and implementation
of an enriched MANET, that benefits from the prediction of its mobility. The approach is limited by
the prediction accuracy when the distance between neighbouring nodes is computed. Thangaramya et al.
(2019) uses a convolutional neural network in a wireless sensor network to achieve energy aware message
routing. Lastly, a shortest path approach is proposed by Ghasemnezhad and Ghaffari (2018), focusing on
node cooperation, with secure routing and reduced energy consumption as the main design requirements.

Several other approaches exploit optimization and evolutionary computation algoirthms, such as the
one proposed by Liu and Huang (2009), who developed a multi-objective Evolutionary Algorithmic (EA)
approach to solving the Multicast Routing Problem in MANETs. The EA genome is the paths, and the
approach employs the Prufer path encoding scheme. The objectives include delay, delay jitter and packet
loss minimization and maximization of bandwidth utilisation. Abdou et al. (2011) applied evolutionary
algorithms for solving adaptive flooding in MANETs. In flooding, information regarding route discovery
and maintenance is spread around the network. Nodes are interested in spreading as much information
about themselves in the network as possible, however this leads to bandwidth saturation. To address this,
an adaptive model is proposed for each flood message broadcast. The model considers different network
densities encoded in parameter configurations that are generated using an EA. Lastly, two multi-objective
EAs are compared by Yetgin et al. (2012), with a focus on determining routing paths. Route energy use
and end-to-end delay are considered in the analysis.

2.1 SMARTNet Overview

To address challenges of timely message sending in contested environments, the Semantically Managed
Autonomous and Resilient Network (SMARTNet) (Chan et al. 2018) middleware prioritises, transforms,
and controls messages within the network. Messages passed through each SMARTNet node benefit from
enhanced situational and mission context awareness. The middleware aims to achieve timely delivery while
maintaining critical network performance, and employing several approaches to message transformation
and routing (Quin et al. 2019). SMARTNet integrates various information sources and can be deployed
on different platforms. Figure 1 shows the main SMARTNet components. Several modules are of interest,
including Mission Context Inference, which infers the current context from sensor information, Network
Context Inference, which infers the global network state from current local information, and Transform,
which transforms the messages into packets. Helper modules include Logging, Sensor Adapters allowing
SMARTNet to connect to a variety of sensors, and Tactical Network Adapters allowing SMARTNet to
run on top of varying kinds of networks. SMARTNet uses plugins to connect to four types of network,
namely, a single-threaded in-memory network, a proprietary network simulator called FogNet, the EMANE
network emulator (Ivanic et al. 2009; United States Naval Research Laboratory 1996), and real life radios.

The message types that can be sent include Position Location Information (PLI), enemy detection,
text, video and operational context messages. The PLI messages contain node position and node status
information, and they are the mechanism through which a node updates other nodes of its status. Other
message types can also be sent, including critical information about adversary locations or detection
(RedDetection) and status or less-critical text, voice, imagery or video information, as defined in the
scenario. The SMARTNet communication strategy module determines the priorities of all message types.
Context information is comprised from network and operational information.
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Figure 1: Main components of the SMARTNet architecture.

3 Artificial Intelligence Modules in SMARTNet

A reinforcement learning and an evolutionary optimization system were integrated within the SMART-
Net middleware to improve the behavior of the middleware across a variety of network load scenarios.
Reinforcement learning was used to ensure that the middleware reacts promptly to sudden environmental
changes. In addition, reinforcement learning modules can be employed autonomously.

3.1 Reinforcement Learning Dissemination System (RLDS)
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Figure 2: Architecture overview for the RLDS.

Our reinforcement learning system consists of three main components: the Reinforcement Learning
Dissemination System SMARTNet (RLDS), the Reinforcement Learning Training System (RL Training
system), and the Reinforcement Learning Deployment System (RL Deployment System) (Figure 2).

The main functionality of the RLDS module is to order outgoing messages when they are provided to
the packetiser. The RL Training and Deployment systems are implemented in Python and communicate with
the RLDS via the RabbitMQ message broker. The RLDS module is responsible for providing a Message
Ordering implementation within SMARTNet which then determines the order in which outgoing messages
are provided for packetisation. The RL Training system and the RL deployment system require contextual
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information about the specific messages being prioritised. The RLDS transforms this information into a
normalised representation suitable for the RL Training system.

Each Node in SMARTNet has its own Reinforcement Learning Dissemination System (RLDS) module,
which is responsible for executing dissemination system decisions within SMARTNet. The RLDS obtains
dissemination rulesets from an external process (the RL agent) via RabbitMQ. Requests to the external
RL agent are generated by a number of Feature Generators, which take raw context information and
transform it into a representation suitable for the agent to use during training or deployment. For each
request/observation, the RL agent returns, via RabbitMQ, a set of ruleset parameter values that is then
applied to the relevant dissemination strategy modules by the Strategy Updaters. The dissemination strategies
prioritise and transform outgoing messages before providing them to the packetizer to be sent on the network.

The RL Training System is responsible for servicing requests for dissemination strategy ruleset parameter
updates from the RLDS, while simultaneously training a model based on feedback from the RLDS in the
form of rewards. The requests consist of an observation from a particular SMARTNet node summarising
the context of that node, as well as a reward. The observation summarises the network and operational
context of the node. The responses consist of an action, which is an update to the SMARTNet dissemination
system parameters. The RLDS and RL Training System communicate using the RabbitMQ message broker.
Requests and responses are encoded as JSON objects. All nodes periodically request parameter updates
from the RL agent without immediately waiting for a response, giving the RL agent time to service the
requests asynchronously. A fixed amount of simulation time later, each node updates its strategy. This
introduces a fixed, deterministic amount of latency into the decision making of the Nodes, but increases
the speed at which the simulation runs.

The SMARTNet Instance Wrapper provides a Python interface for managing the configuration,
output, and lifecycle of a SMARTNet simulation process. It also sets up a RabbitMQ connection with
SMARTNet and provides an interface to communicate with the SMARTNet nodes during the run.

The SMARTNet PettingZoo Environment provides access to SMARTNet via an API suitable for
reinforcement learning (the PettingZoo API (Terry, Black, Grammel, Jayakumar, Hari, Sulivan, Santos,
Perez, Horsch, Dieffendahl, Williams, Lokesh, Sullivan, and Ravi 2020)). It manages an underlying
SMARTNet instance using the SMARTNet Instance Wrapper, allowing an RL agent to obtain observations
and rewards from Nodes, and provide corresponding actions in return. The environment automatically
cycles to a new SMARTNet instance upon reset. During training, the environment is wrapped to provide
batched observations and rewards and accept batched actions, where each element of the batch corresponds
to one of the SMARTNet nodes in the simulation.

3.1.1 RL Agent

The RL Agent is responsible for predicting the optimal action given a provided observation, as well as for
training this model based on incremental reward values. A Soft Actor-Critic (SAC) agent trained using
self-play, where the same policy is applied at each Node in the system, is used in this experimentation.
The SAC agent uses a continuous, stochastic policy and is trained using entropy-regularisation to facilitate
exploration. The SAC implementation comes from the TensorFlow Agents library. The result of this
training is a policy, which is a function that maps observations to actions. When training concludes, the
RL Agent saves this policy for later use (such as for re-evaluation and comparison to other strategies).

During training, trajectories are sampled from 24 parallel SMARTNet instances, each running a 13-Node
scenario. Trajectories from each node are batched together, resulting in a training batch size of 13∗24= 312.
The learner and SMARTNet environments run in separate processes. Running the SMARTNet environments
in parallel drastically increases the speed of data collection. Batched samples from SMARTNet are placed
into the replay buffer, from which the learner samples trajectories for training uniformly at random.

The RL Agent is trained using observations and rewards generated by the Feature Generators, and must
provide actions to the Strategy Updaters that can be used to update the dissemination ruleset parameters.
Observations consist of local node context from several sources. Rewards are taken directly from the MLM
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score, which is SMARTNet’s global situational awareness metric. Actions consist of a priority value for
each message category, as well as a time and distance threshold to apply as PLI Message rate-limiters.

The observations generated by a node comprise of local information available to that node that summarise
its context in the mission (operational context), the context of its networks (network context), and the
context of the dissemination system itself (application context). Operational context includes the average
geographical distance to other Nodes, the Node’s own level in the operational hierarchy, the number of other
nodes in the network, and whether the Node is acting as a gateway. Network context includes information
that can be used to estimate the outgoing capacity of the Node’s networks. Application context includes
a summary of the composition of the outgoing Message Store, including information about its size, the
message categories it contains, the ages of these categories, and the fraction of routed outgoing traffic.

The mid-level metric (MLM) captures the overall performance of SMARTNet in disseminating messages
to their required destination based on message type, timeliness, identity of the receiving node, and the
current state of a simulated operational environment. The message generation and scoring is derived from
unclassified subject matter expert (SME) advice, with a higher score being better and the best score being
0, corresponding to perfect and instant message dissemination.

The MLM has four main scoring components, namely, Blue Spots, Enemy Detection, Text Messages,
and Tactical Graphics. Each of these score components is calculated as an accumulation of penalties as
shown in Table 1, which are computed based on several modifiers that depend on each node’s specific type.
The penalty for a message is calculated as the product of the Score Measurement, Time Modifier, and
Receiver modifier for the specific message type. In order to balance their contribution to the total score, a
weighted sum of penalty components is computed for each node:

P = 2.0Pb +4.0Pe +0.025Ptx +0.025Ptg

where Pb refers to the information type associated with friendly nodes (blue), Pe is associated with the
enemy (red) detection, Ptx is associated with text messages and Ptg is associated with tactical graphics
messages. Each information type has an associated time and receiver modifier depending on the node
type. For example, for an enemy detection message, if the node is part of a section or platoon, the enemy
detection message is less important the further the enemy is from the receiving node, but more important if
the node is part of a battlegroup. The system provides updates of the score once per second as the scenario
is progressing. The final penalty sums are averaged across all nodes in a specific scenario.

3.1.2 Agent & Learner Hyperparameter Summary

Replay buffer capacity: The replay buffer is the size of the trajectory buffer that is used to store the
observation, reward, and action history from the SMARTNet instances. The learner samples from this
buffer uniformly at random in order to reduce gradient variance and stabilise training. The buffer capacity
is in number of batched samples, each of which is 312 elements long, meaning that the maximum capacity
of the buffer in terms of individual samples is the buffer capacity multiplied by 312.
Actor & critic fully connected network layer parameters The actor and critic networks use a simple,
fully-connected neural network architecture to approximate their targets. These networks are parameterised
by the number of layers, and the number of nodes in each layer.
Training steps per iteration On each iteration, the RL system collects one batched set of observations,
actions, and rewards from the 24 parallel SMARTNet instances. Because such a large amount of data is
collected on each step, it is an advantage to run multiple iterations of the learner between each collection,
to ensure that the learner is likely to utilise every collected sample to increase its speed of convergence.
Reward scale factor The rewards produced by SMARTNet are large, negative MLM penalties which must
be scaled to prevent overadjustments of the agent early on during training.
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Table 1: Modifiers used in MLM calculation.

Information
Type

Score Measurement Time modifier Receiver Modifier

Movement
(Blue)

Distance error: NA Penalty reduced by 20% for each

0.1 point per meter 100 meters (ground truth distance to node);
Penalty reduced by 20% for each node distance
in operational hierarchy

Enemy De-
tection

Time since generation:
10 points per second

Penalty decays
by 20% every 1
minute

Penalty reduced by factor PR for each 100
meters (ground truth distance to node)/ PR
starts at 20% for section level nodes, and is
reduced by 4 percentage points for hierarchical
level above Section level;
(PR = 0.20 for sections, 0.16 for platoons,
0.12 for company, 0.08 for battlegroup)

Text Mes-
sages

Time since generation:
5 points per second

Decays by 0.5
points/minute

NA

Tactical
Graphics

Time since generation:
5 points per second

Decays by 0.1
points/minute,
reduced to 0 at
30 minutes.

NA

3.1.3 Actions & Rewards

The action space for the RL System consists of the five priorities for each message category, and the time
and distance threshold. The agents are provided with rewards directly from the MLM score. The single-step
reward for a transition is the change in score between the initial and final observations in the transition.
The rewards are provided to the Agent via the Remote Updater using the MLM Score Feature Generator.

3.2 Evolutionary Computation

The Evolutionary Algorithm (EA) approach applies a method analogous to biological evolution to the
SMARTNet dissemination ruleset. It starts by generating an initial population of rulesets with random param-
eters (individuals). The chromosome is composed of static message priority parameters for each message cate-
gory (Position Location Information, Tactical Graphic, Text, SOS, Enemy position) and position transform pa-
rameters and has the following structure: PLI priority |Tactical Graphic priority |Text priority |SOSpriority |
Red priority |U pdate Rate (seconds) |U pdate Distance (meters) Priorities are integers in the range [0, 4],
and Update Rate and Update Distance both are integers in the range [0, 1000]. The next generation of
individuals is then created by applying the selection, crossover and mutation operations to the initial popu-
lation. The approach evaluates each individual by running a number of SMARTNet runs and obtaining the
average MLM score. The fittest (highest MLM) 50% of the individuals from the population are retained. In
the crossover, new individuals are generated to replace the discarded ones by either applying the crossover
operation, or copying an individual from the previous generation. Mutation randomly changes some of the
new individuals. This process is repeated on each successive generation of individuals until a termination
condition is met, either a generation limit or a maximum number of SMARTNet runs.

For these experiments, we employ a static dissemination ruleset which assigns predefined priorities to
each message type (PLI, Red, Text, Tactical Graphics, SOS). Each priority is restricted to be an integer in
the range [0, 4]. In this context, mutation replaces a single element of the individual (priority or threshold)
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with a uniformly randomly sampled value. Crossover splices the priorities of the two individuals at a
random index; 50% of the time swap either the time or distance threshold of the two individuals.

4 EXPERIMENTAL ANALYSIS

We perform robustness experiments on both the RL and EA implementations within the SMARTNet
middleware, as described in the below. Our robustness scenarios focus on events that are typical of
contested and dynamic environments, where the network performance might deteriorate or nodes might
become unavailable. As such, our scenarios test gateway and node disconnection, increased rate of messages
of different types, and decreased network performance captured through increased send rate. We employ a
Python API integrated in the PettingZoo library in order to facilitate experimentation. The API enables the
creation, termination, and configuration of SMARTNet instances. It also enables communication between
SMARTNet and Python via RabbitMQ, which is used to enable a remote update to the SMARTNet
dissemination ruleset from an external Python process.

The SMARTNet Python Environment wraps a single Interactive SMARTNet instance, and provides
multiple versions of its API for different types of RL models/agents. The Nodes in the SMARTNet instance
are provided to the RL agent as a batch of samples, enabling a single-agent RL system that supports batched
samples to be used in a multi-agent context. Multiple environments can also be batched together to scale
the system to many CPUs relatively easily.

For the EA setup, we employ a varying mutation rate of (5%, 10%, 20%), a crossover rate of (40%,
50%, 60%) and a population size of (10, 20, 30) individuals respectively. Mutation rate refers to the
probability that each new individual will undergo mutation when creating a new generation . The crossover
rate refers to the probability that an individual will be created by applying the crossover operation to
two individuals versus copying an individual from the previous generation. The EA is implemented in
Distributed Evolutionary Algorithms in Python (DEAP). The SMARTNet runs used for the EA consider
a high congestion setting, similar to the last row in Tables 2, 3, 4, and 5.

Our robustness experiments evaluate the values of the MLM in varied changing network and system
conditions. First, we evaluate the performance of the two algorithms against a baseline when a gateway
is disconnected. In a less critical scenario, we assume lower level nodes become disconnected from the
network. We then evaluate the behavior of the two algorithms when specific message types (text and SOS)
suddenly increase in their sending rate. Lastly, we explore a situation where the send interval increases,
emulating a situation where the network performance deteriorates during the simulation run.

4.1 Scenario Setup and Baseline

We evaluate the two implementations and their generated SMARTNet dissemination strategies across a
range of scenario parameters, including packet send intervals (400ms, 2000ms, 15000ms), network size
(13 and 40 nodes) and random seeds (0-99 for 13-node networks, 0-49 for 40-node networks). We use an
in-memory network model with a range of fixed packet send intervals to evaluate strategies over a wide range
of congestion conditions. The scenarios use a hierarchical network topology where nodes are connected
in a ternary tree (see Figure 3). The baseline implementation assumes FIFO message prioritization.

4.2 Single Gateway Disconnection Scenarios

In these scenarios, a single gateway node is disconnected from the rest of the network (node 2) at the
mid-point of the scenario. This not only disconnects the gateway node, but also isolates its hierarchical
subordinates from the rest of the network. Its subordinates are still able to communicate with each other,
however. The effect of this change is most apparent on the 40-node scenarios, as the gateway node has 12
children in this case (compared with only 3 in the 13-node scenarios).

In the low and medium congestion scenarios, the EA and RL strategies perform marginally worse across
the board on the gateway-disconnection scenarios, with as small exception in the medium 40 nodes scenario,
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Figure 3: A 13-node hierarchical network topology. Nodes are connected to their operational superiors
and ellipses represent fully connected subnets.

Table 2: Final MLM scores in single gateway disconnection.

(Congestion level, # nodes,
send interval)

Baseline Best RL Best EA

(Low, 13, 0.4s) -22.22 -22.6 -22.54
(Medium, 40, 2s) -167.2 -166 -174.5
(Low, 40, 0.4s) -128.2 -128.5 -133.4
(High, 13, 15s) -109.5 -86.29 -81.34

where the RL performs slightly better. In the high congestion scenario, both the RL and EA outperform the
baseline, with the EA showing a 26% improvement over the baseline, versus a 22% improvement of the
RL. However, their margin of difference is significantly narrower for the standard scenarios. This may be
a result of improved generalisability of the learned strategies, or the fact that these scenarios represents a
more challenging dissemination context than their standard equivalents, meaning that the potential margin
for improvement on the strategy’s part is much smaller. The RL strategy outperforms the EA strategy,
indicating that it can adapt dynamically to system context and is better able to generalise to these scenarios.

4.3 Lower Level 3-node Disconnection Scenarios

These scenarios are similar to the gateway disconnection scenarios, except that several lower-level nodes
(nodes 5, 6, and 7 in the blue subnet in Figure 3) are disconnected from the network rather than a single
gateway. In the case of the 13-node scenarios, these nodes are leaf nodes, and in the case of the 40-node
scenarios they are low-level gateway nodes.

Table 3: Final MLM scores in 3-node disconnection.

(Congestion level, # nodes,
send interval)

Baseline Best RL Best EA

(Low, 13, 0.4s) -22.52 -22.91 -22.82
(Medium, 40, 2s) -199.1 -197.3 -204.1
(Low, 40, 0.4s) -160.5 -160.7 -166.6
(High, 13, 15s) -109.5 -86.00 -81.80

In the single gateway disconnection scenarios the performance difference between the strategies is
relatively small. The EA still outperforms both other strategies on the high congestion scenario (27%
improvement versus 22% improvement of the RL versus the baseline). This may be due to improved
generalisation or reduced scope for improvement on this more challenging scenario set. On average, the
RL strategy performs better than the EA strategy, indicating better generalisability of the dynamic strategy.
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4.4 Text Message Rate Increase Scenarios

In these scenarios, the Text Message generation rate is increased from 10 seconds mean time to happen
(MTTH) to 1 second MTTH. Thus, it starts at a lower rate than the standard scenario (3 seconds MTTH)
and ends higher. Text messages are relatively large messages (500 bytes), so this increase could test the
ability of a strategy to avoid starving other categories when an influx of large messages occurs. Table 4
presents our results. The gap between the strategies is wider as compared with both node-disconnection

Table 4: Final MLM scores as message rate increase (Text and SOS).

(Congestion level, # nodes, Text Message SOS Message
send interval) Baseline Best RL Best EA Baseline Best RL Best EA
(Low, 13, 0.4s) -0.92 -1.33 -1.23 -0.44 -0.80 -0.74
(Medium, 40, 2s) -338.6 -218.5 -233.4 -11.05 -16.11 -34.99
(Low, 40, 0.4s) -7.10 -7.93 -23.63 -1.77 -2.43 -2.64
(High, 13, 15s) -160.6 -144.9 -139.9 -55.89 -50.80 -50.05

scenario modifications. However, it is still narrower than for the standard scenarios, indicating again either
somewhat improved generalisability of the learned/optimised strategies, or merely a more challenging
dissemination context with less scope for improvement. The RL strategy performs significantly better than
the EA strategy in this experiment, showing improvements both in the best and in the average MLM score.
This indicates that it has improved robustness compared with the static EA strategy.

4.5 SOS Rate Increase Scenarios

These scenarios are similar to the Text Message rate increase scenarios, but instead increase the rate of SOS
message generation from 5 minutes mean time to happen (MTTH) to 30 seconds MTTH. This represents
a lower rate both before and after the change than in the standard scenarios (6 seconds MTTH). SOS
messages are small (1 byte) but generally important messages to send quickly.

When subject to increased SOS generation rates, a similar pattern emerges to that of text message
increase scenarios. Both strategies still underperform compared with the baseline in the low and medium
congestion scenarios, but by a smaller margin than in the standard scenarios, as shown in Table 4. The
RL agent performs much better than the EA strategy, again indicating that its adaptive behaviour leads to
better generalisation and thus robustness to a range of scenarios. This is in spite of the fact that it was
trained on a limited set of scenarios, and that it can only change rulesets based on context and is unable
to individually prioritise messages based on their content. Both the RL and EA strategies outperform the
baseline on the high congestion SOS rate increase scenarios.

4.6 Send Interval Increase Scenarios

The scenario settings override the send interval, and as such there is only one scenario per network size.
The send interval is initially set to 1 second, and is changed to 10 seconds at the mid-point of the run,
capturing the situation where the network deteriorates during a run. Table 5 shows our results.

Table 5: Final MLM scores when the send interval increases.

Number of nodes Baseline Best RL Best EA
40 -544.0 -130.1 -252.9
13 -64.91 -25.86 -27.44

As it can be seen, the learned/optimised strategies outperform the baseline by a significant margin. The
EA agent marginally underperforms the baseline, while the RL agent improves upon it by 24.84%. This
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is possibly because it is able to generalise to the two send interval values in this experiment that were not
present in the original scenario set used to evaluate the baseline.

Our results shows that both reinforcement learning (RL) solutions and evolutionary computation (EA)
solutions have the potential to increase the robustness of the SMARTNet middleware when it is running
in contested and dynamic environments. In low congestion scenarios, while the RL and EA solutions
come close to the baseline, they do not offer any improvements. However, in medium to high congestion
scenario, it is the dynamic learning ability of the RL and the optimized nature of the EA that show significant
improvements over the static baseline. The average improvements of the solutions range from 13% to 25%.

Despite the EA optimizing a high congestion scenario, the RL solutions significantly outperform the
EA solutions, showing better generalisability of the dynamic strategy.

5 CONCLUSION

The SMARTNet middleware optimizes the sending of various message types of different importance
across a MANET, with an aim to obtain timely delivery of important messages. We perform an extensive
experimental analysis of the robustness of reinforcement learning (RL) and evolutionary computation (EA)
solutions in various scenarios typical of a contested and dynamic environment, including gateway and
individual node failure, and deterioration of network performance.

Our analysis shows that while the RL and EA show no improvements in low congestion scenarios,
we see some improvements (up to 36%) in some medium congestion scenarios, and consistent significant
improvements over the baseline (up to 25%) in high congestion scenarios. In the case where the network
performance deteriorates, the RL strategy offers an improvement of 61% over the baseline, in the 40 node
scenario. These results are very promising, showing the benefits of artificial intelligence approaches in
improving middelware performance in MANETs, while considering contested and dynamic environments.
In addition, an AI approach has significant promise to be more generalisable and thus applicable to varied
scenarios. Despite its improvements, the current reinforcement learning implementation is single-agent,
assuming all agents are identical and observe the environment in the same way. This is not the case when
there are significant network partitions or when adversarial agents are present. Our future work includes the
implementation and evaluation of a multi-agent reinforcement learning algorithm in these environments.
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