
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

MESSAGE PRIORITIZATION IN CONTESTED AND DYNAMIC TACTICAL NETWORKS
USING REGRESSION METHODS AND MISSION CONTEXT

Rohit Gopalan
Md Hedayetul Islam Shovon

Benjamin Campbell

Defence Science and Technology Group
Third Avenue

Edinburgh, SA 5111, AUSTRALIA

Vanja Radenovic
Kym McLeod

Leith Campbell

Consilium Technology
147 Pirie Street

Adelaide, SA 5000, AUSTRALIA

Dustin Craggs
Claudia Szabo

University of Adelaide
Ingkarni Wardli Building
North Terrace Campus

Adelaide SA 5000, AUSTRALIA

ABSTRACT

Military communications at the tactical edge consists of unreliable, disrupted, and limited bandwidth
networks, which can lead to the delay and loss of critical information. These networks are increasingly
being used for the transmission of digital command and control (C2) information, requiring timely and
accurate transmission, and play a vital role in the outcome of military operations. Machine Learning (ML)
techniques have the potential to improve operational outcomes by autonomously prioritizing the delivery
of the most important information through these networks, using observations of the current mission and
network state. This paper covers the experimental process and the operational metric used for comparison
between the ML and a non-ML approach that sorts messages in a fixed order. We present two regression-
based supervised-learning methods that were shown to be more effective in both medium and high congested
networks than the non-ML approach.

1 INTRODUCTION

Command and control (C2) information management between the commanders and assigned forces plays a
vital role for a successful defence operation. When voice-only tactical radios were used for communication,
commanders exchanged C2 information through this medium ranging from urgent calls for evacuation to
routine resupply requests. Commanders controlled the information flows based on their own interpretations
and knowledge of the current operational status, network load and status, information priority and the vocal
responses of other network users (Judd et al. 2018).

The advent of digital messaging enabled the transfer of different types of messages over radio networks.
Counter intuitively, if managed poorly, this digitization can degrade the timely flow of C2 information. Firstly,
human decision makers can be overloaded by the vast range of messages which can come through digital
media. Secondly, the network itself can be overloaded due to the restricted and intermittent performance
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of mobile networks operating in congested and contested radio frequency (RF) environments in complex
terrain without fixed infrastructure. Without efficient utilization of both the cognitive capacity of human
operators and the information delivery capacity of networks, overload of either can result in compromising
the timely delivery of important C2 messages (Judd et al. 2018).

Effective cognitive capacity is important for friendly soldiers as they need to be dynamically adaptive,
agile and robust within a very challenging environment, subject to significant and disruptive dynamic changes
(Beautement et al. 2005). Moreover, given the limited nature of military communications networks there
is a need for prioritization of messages in order to deliver important information in a timely manner and
improve mission outcomes. More specifically a system is required that can automatically prioritize the
messages that have a high impact on the current mission and can reduce the potential cognitive burden.

Previous work (Judd et al. 2018; Judd et al. 2019; Szabo et al. 2020) presents Semantically Managed and
Resilient Tactical Networks (SMARTNet), a distributed middleware that prioritizes C2 information based
on network and mission context. An instance of SMARTNet operates on every network node, gathering
information on network status, mission context and the environment to determine what information should
be prioritized and delivered. Section 2 will discuss in depth how SMARTNet has evolved in solving the
prioritization problem using contextual information.

Our primary contribution in this paper is the application of regression-based supervised learning
techniques using mission context for solving the distributed prioritization of message delivery. The use
of regression for prioritizing information has been demonstrated in various domains such as healthcare
(Bagula et al. 2016) and network security (Renners et al. 2017). We demonstrate that these regression-based
techniques can effectively assist the message prioritization better than a non-ML approach that relies on a
fixed ordering to sort messages.

The metric used to assess the performance of these techniques is covered in-depth in Section 3. Section
4 discusses the generation of both training data and the applied methods. The effectiveness of the ML
based regression techniques is presented in Section 5. Section 6 provides a brief conclusion and future
work.

2 BACKGROUND AND RELATED WORK

2.1 Background

Humans are good at understanding and applying context from various information sources to make decisions
that can potentially affect outcomes (Schaefer et al. 2019). Commanders, as the example we discussed
in Section 1, effectively demonstrated this during the era of the voice-only tactical radios. The context
they applied was based on the current mission status, how military networks work, what information
gets prioritized over others and the vocal response received from subordinates. However, the same thing
cannot be said of Artificial Intelligence (AI) systems especially within high uncertainty and unstructured
operations (Schaefer et al. 2019). Nevertheless, integrating such AI is especially important considering
the increasingly complex and dynamic technological environments that modern soldiers are expected to
operate within (Judd et al. 2018; Schaefer et al. 2019).

Schaefer et al. (2019) have integrated context-driven AI into the human-machine teaming research
program, Robotics Collaborative Technology Alliance (RCTA). They developed a module that facilitates
the collection of information from the environment, mission and social context; encouraging joint decision
making and collaborative operations between humans and AI powered robots. The AI approaches that have
been applied include Speech/Gesture Recognition and Natural Language Processing (NLP). By providing
various sources of communication such as audio, visual and tactile via these AI approaches, interactions
between humans and robots can be made more robust while ensuring message delivery and shared situational
awareness (Schaefer et al. 2019).

The RCTA program suggests that it is possible to utilize context-driven AI within complex and dynamic
military operations. Szabo et al. (2020) and Judd et al. (2019) proposed artificial intelligence approaches
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that aim to facilitate communications across digitized tactical networks within contested and congested
networks. These solutions aim to apply both mission and network context for prioritizing and delivering
C2 information.

2.2 SMARTNet for Using Context for Prioritization

In its most basic mode of operation, SMARTNet uses fixed rules to control the rate at which position
information messages (blue spots) are generated while sorting all messages in the dissemination queue
based on fixed prioritization rules. These fixed rules will be referred to from here on as the baseline
SMARTNet. Judd et al. (2018) enhanced SMARTNet so that it dynamically adjusted priorities based on
mission context. This enhancement was tested against the baseline in simulations where two platoons carry
out operational phases of Advance, Assault and Pursuit. Based on the location error metric (see section
2.3), this enhancement achieved a lower location error in most cases. However certain corner cases resulted
in unexpected interactions of the dynamic rules causing higher location errors than the static prioritisation
baseline. This suggests that while dynamic prioritisation based on human designed rules has the potential
to improve network performance, creating the rules is non-trivial.

As an alternative to the dynamic rule based approach, Machine Learning (ML) techniques have been
investigated to solve the prioritization problem. Judd et al. (2019) proposed a solution that addresses the
prioritization problem. This solution applies features derived from the current mission context and the
contents of the queue, to determine the need to re-prioritize the message dissemination queue. Triggered
every time a node’s mission or network context changes, this solution uses Support Vector Machines (SVM)
to return a binary value. As the classification measures such as accuracy, precision and recall returned
very good results for at least 10,000 training samples, it shows that supervised learning can be used for
solving similar problems. However, this method simply determines when re-prioritization should occur but
does not carry it out due to the limitations of the SVM classifier. An additional mechanism is required to
conduct the re-prioritisation task. This provides the motivation towards the exploration of regression based
techniques.

Szabo et al. (2020) applied Evolutionary Algorithms (EA) to learn optimal network bandwidth for
sending messages across the network. Using network context, the EA returns a ratio of how much bandwidth
should be allocated for friendly node positions, enemy detection, text and tactical graphic messages. EAs
were demonstrated to be effective over the baseline which dictates when friendly node positions are sent
across the network while sending messages in a fixed order. The improvement shown by the EAs over
the baseline was approximately 49%. While the EAs were effective in applying network context, these
algorithms may have observed greater improvement if current mission context was also applied.

2.3 Metrics used within SMARTNet

Judd et al. (2019) applied classification based metrics of accuracy, precision, recall and F1-score to measure
the effectiveness of the SVM model that determines when to re-prioritize the message dissemination queue.
F1-score is the primary metric used to assess the performance of classification-based supervised learning
models. This value is obtained by combining both precision and recall (Fujino et al. 2008). Even though
the model was demonstrated to be effective, no metrics were applied for comparing the model with the
baseline. For comparing a ML solution against the baseline, suitable metrics are required.

Both Judd et al. (2018) and Judd et al. (2019) attempted to resolve this issue by applying metrics
to measure the effectiveness of their proposed solutions. These metrics consist of average location error,
max position error, message latency and total position location information (PLI) messages sent. While
Judd et al. (2018) measured the effectiveness of the dynamic rule-based approach to prioritization, Judd
et al. (2019) measured the effectiveness a Double Deep-Q Network (DDQN) based reinforcement learning
(RL) solution that aims to control the rate at which updated PLI messages get sent across the network.
These applied metrics though, were limited to PLIs; to be more general, other message types need to
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be considered. This will necessitate developing and applying a metric that assesses the performance of
prioritizing various C2 information types. This metric can be then used for comparing ML solutions against
the baseline.

This limitation was resolved by Szabo et al. (2020) through the extension of the prioritization problem
towards Text Messages, Tactical Graphics and Enemy Detection messages. Moreover, a generic metric, the
Mid-level Metric (MLM) was introduced to assess the performance of C2 message dissemination based
on information type, timeliness, identity of the receiving node and the current state of the operational
environment within a SMARTNet scenario. This metric was used for comparing the EA algorithms against
the baseline. The MLM is more generic than the metrics used by Judd et al. (2018) and Judd et al. (2019),
which was more focused towards the PLIs. The MLM will be expanded upon in Section 3 and will be
used for comparing the regression methods against the non-ML approach in Section 5.

3 MEASURING THE EFFECTIVENESS OF C2 DISSEMINATION

To be able to compare the performance of different C2 information management strategies in prioritizing
C2 information across tactical networks we first need to have an understanding of what constitutes good
performance. This has always been a challenging area of research, as C2 information management
performance is dependent on a range of factors including, importantly, its impact on the operational
outcomes (Alberts et al. 2002). Simply measuring the effectiveness of information delivery itself provides
an incomplete picture as delivering more information does not necessarily improve performance - the
usefulness of the information to the recipient is a critical consideration (Baroutsi 2015). Likewise, issues of
simulation fidelity will occur while attempting to simulate the impacts of C2 information management on
operational outcomes. As a consequence, these issues will greatly impact the usefulness of the simulation
results.

Szabo et al. (2020) propose the mid level metric(MLM) framework to mitigate these issues. The
MLM combines message delivery metrics with an SME-derived ruleset and outputs a score to indicate
the expected impact of network utilization on the overall operational outcome. The MLM framework is
comprised of two parts - a scenario generator that generates random simple unclassified tactical scenarios
for SMARTNet that require the dissemination of C2 information between nodes, and a scoring system
to score the performance of a C2 information management strategy over a generated scenario. For this
work, we have extended the MLM framework to include a concept of operational context. This extended
framework will be used for experimentation in Section 5.

3.1 Mid Level Metric Scenario Generation

The MLM scenario generator creates simple tactical scenarios for use within SMARTNet, based on an
unclassified version of SME and Australian Army doctrine derived rules. The scenarios can be generated
with any number of nodes and duration, and each node within the scenario will steadily generate C2
information required to be transmitted to other nodes. Table 1 shows the five C2 information types, and
their generation rules. Within the scenario the nodes utilise a simple tactical movement algorithm, which
is a modified random walk that keeps nodes close to other nodes within echelon-appropriate distances, and
vehicle-appropriate velocities. For this work, we have also added enemy movement and detection to the
scenario generator. The enemy nodes utilise a similar movement algorithm to friendly nodes and will keep
within the highest echelon appropriate distance within the scenario to the friendly nodes. To simplify data
generation patterns, every 10 seconds each of the enemy nodes is assigned to be detected by a random
friendly node.

3.2 Mid Level Metric Scoring

In addition to generating scenarios, the MLM provides a scoring system that evaluates the C2 information
management performance on the generated scenario. The scoring system works by recording information
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Table 1: Mid-level metric scenario generation.

Information
Type

Destination / Type Generation Rate Generation Rules Payload
Size
(mpayload)

Friendly
Node Posi-
tion

Multicast to all Each node generates 1
each second

Simple tactical move-
ment

36 bytes

Enemy De-
tection

Multicast to all Each enemy detected
once per 10 seconds by
random node

Simple tactical move-
ment

81 bytes

Text Unicast to random
node hierarchically ad-
jacent

Each node generates
on average 1 per 5 min-
utes

Each node equal
weight

500 bytes

Tactical
Graphics

Unicast to units one
level down in hierarchy

Each command node
Platoon Leader (PL)
and above generates on
average 1 per 1 minutes

Each node equal
weight

50 bytes

SOS Multicast to all Each node generates
on average 1 per 20
minutes

Leaf nodes only 1 byte

delivery statistics of the five scenario-generated C2 information types, and scoring it using an SME-derived
ruleset based on four factors: information type, the importance of the information to the receiver, the time
taken to receive the information, and how the current operational context changes the importance of the
information. Table 2 shows how the factors are calculated and Table 4 shows how operational context is
calculated and how it impacts on the scoring at the node level. The combined local score, which is the basic
MLM score multiplied by the operational context modifiers, is applied as a penalty to the node responsible
for disseminating that information. The global MLM penalty is the average MLM score, calculated by
summing up the MLM scores of all nodes divided by the number of nodes in the network. The global
MLM score will be used for experimentation in Section 5. The MLM scoring system can give scores in
real time (once per second) as the scenario is progressing in order to support reinforcement learning, or
after completion of the scenario. The MLM uses the knowledge described in Tables 1, 2 and 4 to generate
its scores. As SMARTNet is a distributed system, the MLM is unsuitable for controlling prioritisation,
however it can be used in training an ML model for distributed prioritisation.

4 PROTOTYPE IMPLEMENTATION

This section covers the implementation of the prototype used in our investigation into using regression
methods to apply context for message prioritization. Firstly, we discuss the scenarios we have simulated
for both training and experimentation. Then we outline the applied methods for generating the models
using the obtained comma-separated values (CSV) data from the training scenarios.

4.1 Simulation Scenarios

For both training and experimentation, we have generated 20-minute scenarios with hierarchical network
topologies consisting of 13 friendly nodes (as shown in Figure 1) and 40 friendly nodes. These nodes
will move through the environment, detect enemies (six enemies for 13-node networks and 20 enemies
for 40-node networks) and periodically generate messages to be sent across a basic network simulation
environment with network congestion being low, medium and high. To simulate congestion we control
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Table 2: Mid-level metric scoring implementation at source node level.

Information Type Score Measure-
ment

Time modifier Receiver Modifier

Friendly Node Po-
sition

0.1 point per me-
ter of distance error
from source node to
all other nodes in
the network

None Penalty reduced by 20% for each
100 meters after the first 100
meters (ground truth distance to
node) / Penalty reduced by 20%
for each node distance in hierar-
chy

Enemy Detection 0.2 point per me-
ter of distance error
of each enemy the
source node is sup-
posed to detect

None Penalty reduced for each 100 me-
ters after the first 100 meters,
Penalty Reduction starts at 20%,
reduced by 4 percentage points
for echelon (chain of command
hierarchy) level

Textual Messages 5 points per second Decays by 0.5
points per minute

None (either 100% or 0% if ad-
dressee or not)

Tactical Graphics 5 points per second Decays by 0.1
points per minute

None (as above)

SOS 20 points per sec-
ond

Penalty decays by
20% every 1 minute

None (as above)

Tp, which is the period in seconds between each node sending a packet. At every Tp, the highest priority
messages in the queue, up to a total of 1500 bytes, are added to a packet and broadcast. Tp in training
equals 0.1, 1 and 10 seconds for low, medium and high congestion scenarios respectively. To prevent model
overfitting, Tp for testing in low, medium and high-congested scenarios is set to 0.4, 2 and 15 seconds.
For 13-node networks, we generate 100 scenarios for each network congestion level, giving a total of 300
generated scenarios. For 40-nodes, we generate 50 scenarios for each congestion level, giving a total of
150 scenarios. The data generated from the training scenarios, is saved as CSV data for each message and
context type to be used for training the models (discussed in Section 4.2). Each CSV data file contains the
features and labels defined in Tables 3 and 4.

4.2 Model Generation

Table 3: Message types with features and labels.

Message Type Features Label for Cmessage

Friendly Node Po-
sition

Distance Travelled Since Last Update, Average Node Dis-
tance (average distance from one node to other nodes) &
Average Hierarchical Distance (average number of hops
from one node to other nodes)

Score

Enemy Detection Distance Travelled Since Last Update, Average Node Dis-
tance & Average Number of Hops in Network

Score

Text Number of Seconds Since Created Message Score
Tactical Graphics Number of seconds since created message Score
SOS Number of seconds since created message Score
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Figure 1: A 13-node hierarchical network topology resulting in four interconnected networks.

Two exemplar regression methods have been applied to generate models for distributed message
prioritization. They are Multivariate Regression (Bagula et al. 2016) and Decision Trees (Renners, Heine,
and Rodosek 2017). These two methods represent a basic linear regression method and a hybrid method,
respectively (that can identify a set of rules for predicting specific outputs). Both algorithms utilize the
Scikit-Learn API, a Python-based ML library (Pedregosa et al. 2011; Buitinck et al. 2013). We have
developed individual models for all message and context modifier types using the generated CSV data
from the 300, 13-node and 150, 40-node scenarios described in Section 4.1. The CSV data is neither
standardized or normalized prior to model fitting. The functions that compute the outputs for the labels
for each message and context type at training time are based on the MLM scoring functions described in
Section 3.2. At deployment time, each node will have eight (five message type and three context type)
models of either Linear Regression or the Decision Tree method as the features and the label of all message
and context types differ from each other.

Table 4: Context modifier types with features and labels.

Context Modifier
Type

Features Notation for Multiplier Label

Distance to last En-
emy Detection

Distances of nearest 5 enemies from
friendly node

MdistanceToEnemy

SOS Modifier Number of Seconds since Last sent SOS
Message

MSOS

Aggregate Modifier Number of other enemies within a par-
ticular enemy’s radius of 600 metres

Maggregate
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Initially we considered the Random Forest method (Ho 1995). However, based on the findings by
Smith, Ganesh, and Liu (2013) in the field of neuroscience, Random Forest was found to be computing
inaccurate concentrations of nine neurochemicals compared to the Linear Regression method. Through the
application of the Coefficient of Determination metric, known as the R2, these predictions were also found
to vary greatly unlike the Linear Regression method. Therefore, we came to the conclusion that a method
like Random Forest may not suitable for prioritizing C2 information.

5 EXPERIMENTATION & RESULTS

The objective of this experimentation is to investigate the effectiveness of both Linear Regression and
Decision Tree models in understanding context for developing predictions that assist message prioritization.
These models will be embedded within a SMARTNet module that will generate Friendly Node Positions
every second and will sort messages (in descending order) based on their cost by message size ratio defined
in (1).

CmessageMtotal

mpayload
, where Mtotal =


1, if SOS Message
MSOSMaggregate, if Enemy Detection Message
MSOSMdistanceToEnemy otherwise

(1)

Each node will have five message type and three context type models of either the Linear Regression
or Decision Tree method that will compute predictions for (1). All message type models will be predicting
Cmessage while all context modifier types will be predicting Mtotal . The key question from our experimentation
is whether our regression methods can assist in message prioritization based on the features from both the
message and operational context.

Across 300, 13-node scenarios (100 for each congestion level of low, medium and high) and 150,
40-node scenarios (50 for each congestion level), these models were compared against our baseline, a
non-ML approach that generates and sends Friendly Node Positions every second (as long as there is nodal
movement of at least a metre) and sorts messages in a fixed order where SOS messages are prioritized
first followed by Text, Tactical Graphics, Enemy Detection and Friendly Node Positions. This baseline,
previously used in (Judd et al. 2018; Judd et al. 2019; Szabo et al. 2020), was derived through input from
military SMEs.

Figure 2 depicts a comparison of both the regression-based methods against the baseline. Based on this
graphic, it is observed that both methods achieved a lower global MLM penalty compared to the non-ML
approach (our baseline) across all medium and high congested scenarios. In addition, the Decision Tree
method also achieved a lower global MLM penalty compared to the baseline in the low congested 40-node
scenarios. This indicates that we have observed improvement by at least one ML method within these
scenarios.

Table 5: Results showing level of improvement by ML methods over the non-ML approach.

# Nodes Congestion Linear Regression Decision
Tree

13 Low -326.49% -9.05%
13 Medium 9.27% 24.16%
13 High 3.07% 2.61%
40 Low -67.17% 26.70%
40 Medium 9.50% 18.58%
40 High 11.58% 7.10%
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Figure 2: Global MLM penalty comparison between non-ML and ML approaches.

For calculating the amount of improvement of both methods from the baseline as shown in Table 5,
we have used equation (2), (

1−
MLMRegression

MLMBaseline

)
∗100 (2)

where MLMRegression is the global MLM penalty (as discussed in Section 3.2) by Linear Regression or
Decision Tree methods and MLMBaseline is the global MLM penalty by the non-ML approach.

These results demonstrate the effectiveness of our models by accounting for both the features in the
message and the operational context. There are two reasons why. First of all, the gateway nodes (that
belong to two networks) have the delicate balancing act of prioritizing the Friendly Node Position, Enemy
Detection and SOS messages that are to be forwarded with their own generated Friendly Node Position,
Enemy Detection, Text and Tactical Graphic messages. The gateway nodes effectively maintained that
balance in all scenarios except for those involving the low-congested 13-node networks as these nodes were
found to give lower priority towards their own messages. Secondly, if a node’s queue contains multiple
Friendly Node Position and Enemy Detection messages from the same sender, the messages with the highest
cost per message size ratio will be sent over the network, while the other messages will be set to expire.

In terms of which ML method achieved greater improvement over the non-ML approach, we have
found that the Linear Regression method achieved greater improvement in the high-congested scenarios
while the Decision Tree Method improved the most across the low to medium congested scenarios. Since
Friendly Node Positions are being generated every second, it is crucial to send enough updates about a
Friendly Node’s position while also ensuring the timely delivery of all other message types. Figure 3 is
a comparison of the average distance (in metres) a friendly node has travelled before it sends an update
of its current position across the network. This shows that the Linear Regression method has the highest
average distance for all scenarios. As a consequence, this method suffers a greater distance error penalty
in the low to medium congested scenarios for not sending enough updates. But delaying the updates was
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Figure 3: Average distance travelled in metres before friendly node sends current position.

proven to be beneficial in the high congested scenarios, which led to a greater improvement within those
scenarios over the Decision Tree methods. A key reason why Decision Tree methods have lower average
distance in all scenarios and a greater improvement over the baseline in both low and medium congested
scenarios is mainly its ability to compute accurate predictions (by minimizing the error between actual and
predicted values) across all message and context models. These results were omitted for brevity.

6 CONCLUSION

In this paper we have explored regression-based supervised-learning for understanding context for message
prioritization. We have successfully demonstrated that linear regression (Bagula et al. 2016) and decision
trees (Renners, Heine, and Rodosek 2017) can improve message prioritization when compared to a fixed
ordering based prioritization approach. Critically, these methods have been shown to be particularly effective
in medium and high congestion scenarios, where prioritization is expected to have the most value.

In this study we have explored only the mission context. The network context (i.e data capacity, actual
packet send times, etc) is also a key component for effective message dissemination and prioritization.
Future work should incorporate both network and mission context for message prioritization. This should
support the learning of a compromise between overall message latency and position error. We expect that
this inclusion will result in further improvements in network performance, reflected in MLM scores.
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