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ABSTRACT 

Data farming is a simulation-based methodology used within the defense community to analyze complex 

systems and provide insights to decision makers. It can produce very large, multi-dimensional data sets that 

require sophisticated analysis tools, such as metamodeling. Advances in explainable artificial intelligence 

have expanded the types of metamodels that can be considered; however, constructing a well-fitting 

machine learning metamodel involves many tasks that can become time consuming for an analyst. 

Automated machine learning (autoML) can save an analyst time by automating metamodel training, tuning 

and testing. Using outputs of an agent-based simulation of a military ground-based air defense scenario, we 

compared the performance of metamodels trained using autoML and different experimental designs. We 

found that autoML can reasonably automate the construction of metamodels and adds robustness to the 

analysis by considering multiple types of metamodels; however, the type and size of experimental design 

can significantly impact metamodel performance. 

1 INTRODUCTION 

Decision makers within the defense community often need to understand complex systems involving large 

sets of uncertain factors (Horne et al. 2018). Real-world experiments of these complex systems are not 

always possible; for instance, in a procurement process, it may be cost-prohibitive to acquire all options for 

testing purposes. In other situations, the decisions may pertain to systems not yet developed or fielded. 

Simulation models can help analysts and decision makers develop a basic understanding of a system, 

discover robust options, and compare possible outcomes of those options (Kleijnen et al. 2005). 

Data farming is a methodology developed within the defense community that aims to improve the 

understanding of the many possibilities facing decision makers by running large-scale, efficiently-designed 

simulation experiments (Horne et al. 2018). It is a collaborative and iterative process consisting of five 

building blocks: rapid scenario prototyping, model development, design of experiments, high performance 

computing, and analysis and visualization; details on the data farming methodology can be found in Horne 

et al. (2014) while a recent overview of current data farming capabilities can be found in Sanchez (2020). 

The data farming process can generate large volumes of multi-dimensional data that require sophisticated 

analytical techniques in order to highlight useful information, extract conclusions and support decision-

making (Horne et al. 2014). Often, multiple techniques are needed to fully exploit the data (Horne et al. 

2014; Sanchez 2020), including the construction of metamodels. As defined in Kleijnen and Sargent (2000), 

a “metamodel is an approximation of the input/output (I/O) transformation that is implied by the simulation 

model.” Metamodels are helpful because they can promote understanding (Sanchez 2020); for instance, the 
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functional form of a metamodel (e.g., a low-order polynomial model) can provide insights into how a 

simulation output changes as the simulation inputs change (e.g., in a linear or non-linear manner). 

Metamodels can also help assess which simulation inputs are key drivers for a simulation output (Sanchez 

2020).  

Common examples of metamodels in past military applications of data farming include polynomial 

regression models, logistic regression models, and decision trees (Kleijnen et al. 2005; Lucas et al. 2007; 

Kallfass and Schlaak 2012; Sanchez and Wan 2015; Hill et al. 2019; Kesler et al. 2019). These types of 

models are often described as interpretable or white-box models: it is possible to study their internal 

mapping of the I/O relations, which can then be used to infer knowledge about the modeled system 

(Feldkamp et al. 2020; Feldkamp 2021). Many machine learning models, such as deep learning or ensemble 

models, are often described as black-box models. They have been shown to achieve higher prediction 

accuracy than white-box models, creating a trade-off between interpretability and accuracy (Lundberg and 

Lee 2017). In response to this trade-off, the field of explainable artificial intelligence (XAI) has emerged, 

leading to the development of methods aimed at making black-box models transparent (Feldkamp 2021). 

XAI comprises a broad range of methods, some examples include permutation feature importance and 

SHapley Additive exPlanations (SHAP) (Feldkamp 2021). Recent military applications of these methods 

within a data farming context can be found in Amyot-Bourgeois et al. (2021) and Serré et al. (2021). 

Feldkamp (2021) proposed a workflow for incorporating XAI methods into the output analysis of the data 

farming process. 

The application of machine learning models in combination with XAI methods, as noted in Feldkamp 

(2021), opens up a whole new range of techniques that can be applied to build and interpret metamodels of 

farmed data. Building machine learning models involves many tasks, such as choosing a type of model or 

family of models, tuning model hyperparameters, and evaluating model performance. This can become a 

time consuming process, especially within an iterative process like data farming where a series of data sets 

may be generated as the experiment grows and evolves. Automated machine learning (autoML) refers to 

tools that automate some or all machine learning tasks with the goal of making the practice of machine 

learning more systematic and more efficient (Ghahramani 2019). Open source examples of autoML tools 

include Auto-Sklearn (Feurer et al. 2021), H2O AutoML (LeDell and Poirier 2020) and the Tree-based 

Pipeline Optimization Tool (Le et al. 2020). 

AutoML provides an opportunity to further expand the set of tools available for output analysis and can 

play a key role in enabling XAI within data farming. However, when building metamodels within a data 

farming process, consideration must also be given to the experimental design. This has been described as a 

chicken-and-egg problem (Kleijnen et al. 2005): the type of metamodels considered depend on the 

experimental design and vice versa. While guidance on an appropriate choice of experimental design for 

white-box metamodels is available in the literature, it appears less guidance is available for black-box 

metamodels. Therefore, the objective of our paper is two-fold. Firstly, it seeks to increase the efficiency of 

metamodel construction through autoML. Secondly, it contributes to guidance on the choice of 

experimental design for black-box metamodels by undertaking a multi-model, multi-design comparison 

that also considers the trade-off between repetition and coverage in an experimental design. 

2 BACKGROUND 

Simulation metamodeling is a process that involves choosing an experimental design, the type and form of 

metamodel, and a validation strategy to assess the metamodel (Meckesheimer et al. 2002). Kleijnen and 

Sargent (2000) break down this process into ten steps and emphasize the importance of identifying the goal 

of the metamodel as part of the process. In this paper, our focus is on building predictive metamodels that 

can be used to identify which simulation inputs are key drivers for a simulation output.  

2.1 Experimental Designs 

In a synthetic environment, experimentalists have more, or sometimes perfect, control over the parameters 
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defined as inputs to a simulation model. A subset of these parameters may be identified as variables of 

interests, or factors, likely to influence the outcome of the simulation. These factors can take on multiple 

values, a single combination of which is called a design point (DP), and a set of DPs is called the design of 

experiment (DoE) (Keijnen et al. 2005). Devising efficient DoEs is an important element of a good 

investigation in a synthetic environment. Key considerations for DoEs are discussed in Kleijnen et al. 

(2005) and Sanchez (2020), examples include an acceptable trade-off between the number of DPs and the 

simulation run time, a low correlation between factors to facilitate the identification of each factor’s 

individual contribution to the outcome, good space-filling properties, and a simple generation method that 

accommodates different types of factors (e.g., categorical, discrete, continuous). A DoE should also assist 

in answering the objectives of the experiment, be it initial exploration, identifying the relevant factors, or 

optimizing the outcome, as a few examples. Short descriptions of some common DoEs are provided below; 

additional designs and a more in-depth discussion can be found in Kleijnen et al. (2005). 

A full factorial (FF) design is a simple DoE where each factor is divided into a number of possible 

values, called levels, and each possible combination of levels forms a DP. For example, a two-level FF 

design assigns a minimum and maximum value for each of the N factors, giving a total possible number of 

combinations and DPs of 2N. Building on this example, a three-level FF design adds a center point to the 

possible factor levels, which increases the number of DPs to 3N. Thus, the number of DPs grows very 

quickly. Fractional factorial designs can be used to reduce the number of DPs, but at the expense of hiding 

some features of the response such as possible interaction effects (NIST/SEMATECH 2013a). 

A random sampling (RS) design is generated by randomly selecting a subset of the possible values for 

each factor while taking into account the continuous or discrete nature of the variable. Using this technique, 

there is a risk of having an unbalanced design with clusters and empty regions within the design space, as 

mentioned in Pereda et al. (2017). To minimize this risk, one possible solution is to divide the range of 

values for each factor into sub-intervals or strata and to randomly sample from within each strata; this is 

known as stratified random sampling in survey methodology.  

A central composite (CC) design separates the range of each factor into five levels, allowing one to 

observe more complex responses in the output such as the main effects, interactions and quadratic effects, 

as noted in Sanchez and Wan (2015). Whereas a FF design with five levels would generate a high number 

of DPs, the CC design generates a smaller and smarter data set by combining a two-level factorial design 

with center points and “star points” (representing extreme values), greatly reducing the number of DPs 

needed in the process. Additional details can be found in Sanchez and Wan (2015) and NIST/SEMATECH 

(2013a); Alam et al. (2004) gives a detailed description of a CC design with four factors. 

Latin hypercube (LH), as defined in Sanchez and Wan (2015), is a DoE where the factors are gridded 

equally into a number of levels n. Organizing the set of DPs into a design matrix where the rows are DPs 

and the columns are factors, a LH design permutes all possible n levels for each column such that each 

possible factor value appears only once. Building on the LH design, nearly orthogonal Latin hypercube 

(NOLH) is a DoE that can achieve a degree of space-filling similar to the finer grids of FF designs with 

much fewer DPs, as pointed out in Sanchez and Wan (2015). The objectives of using a NOLH design in 

complex simulations, as stated in Cioppa and Lucas (2007), include the following: the ability to handle a 

large number of factors sampled in an almost uncorrelated sequence (i.e., in the design matrix, the columns 

are nearly orthogonal), the ability to extract complex models from the output while maintaining a fixed 

number of DPs, and to obtain a good space-filling design (i.e., where the DPs are dispersed across the full 

range of the experimental region, minimizing clusters and empty spaces).  

Four of the above-mentioned common DoEs – FF, RS, CC and NOLH – will be considered in our study 

as they are relatively simple to generate (either directly or through software) but have different space-filling 

properties. Figure 1 illustrates the different space-filling properties of the four chosen designs by projecting 

each design onto a single pair of factors where the total number of DPs is similar.  

2.2 Curse of Dimensionality 

As the number of factors increases, it becomes more evident that using an efficient DoE is a necessary step 
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for conducting the experiment: by selecting an inefficient design for a scenario exploring dozens of factors, 

the number of DPs can quickly increase to billions, and the associated total simulation run time can increase 

to years or decades. This has been referred to as the “curse of dimensionality” in Sanchez (2020). Another 

aspect of stochastic simulations that affects the simulation run time is the number of replications per DP. 

For stochastic simulations, a large enough sample size of replicated runs is necessary to obtain a valid 

distribution of outcomes, but as the number of replications increases, so does the simulation run time.  

The question “how big is big enough” has been asked more broadly in the field of statistics such as in 

Lenth (2001) and NIST/SEMATECH (2013b). More specifically, in the field of experimental simulation, 

the trade-off between the number of DPs and the number of replications has been studied in terms of its 

impact on metamodel precision, examples include Santos and Santos (2009) and MacDonald and Gunn 

(2012). Together, these papers show that the impact of this trade-off on the performance of the metamodel 

depends on the type and form of metamodel. Given this dependency, in our analysis, we will consider two 

different numbers of replications (20 and 100) to examine the impact on metamodel precision.  

 

Figure 1: Projections of different types of experimental designs onto a single pair of factors. 

2.3 Machine Learning Metamodels 

De Reus et al. (2018) proposed several possibilities of how artificial intelligence techniques could be used 

to enhance the data farming process, which included the use of machine learning techniques to support 

metamodeling. Some examples of machine learning techniques that are generally viewed as black-box 

models include neural networks, random forests, gradient boosted trees, support vector machines, and 

nearest-neighbor methods; descriptions of these techniques can be found in Hastie et al. (2009).  

Several examples of neural network simulation metamodels can be found in the literature. Using 

stochastic simulation models of manufacturing systems, Hurrion and Birgil (1999) showed that “neural 

network metamodels using a randomised experimental design produce more accurate and efficient 

metamodels than those produced by similar sized factorial designs with either regression or neural 

networks.” Using a deterministic combat simulation model, Alam et al. (2004) studied the impact of 

different experimental designs on the predictive accuracy of a neural network metamodel. They found that 

a modified LH design, as compared to FF, RS and CC designs of the same size, produced the best 

performance. Using stochastic queuing and inventory system simulation models, MacDonald and Gunn 

(2012) examined the trade-off between a larger number of DPs with fewer replications and a smaller number 

of DPs with greater replications in the context of constructing neural network metamodels. In contrast to 

polynomial regression metamodels, their results suggest that the number of replications at each DP can be 

sacrificed in favor of good spatial coverage when training neural network metamodels. 

 De la Fuente and Smith (2017) conducted a literature review of the most applied types of simulation 

metamodels in the context of engineering problems. They concluded, based on their review, that support 

vector regression, neural networks and Gaussian processes are generally stable and reliable techniques 

while random forests and boosted trees are not commonly used in simulation metamodeling. Using a 

systems dynamic model of a hospital, they compared the performance of these five types of metamodels. 

They considered three evaluation criteria: fit quality, fitting time, and interpretability; models stronger in 

one criteria were generally found to be weaker in the others. Using a stochastic simulation model of a 
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military operation, Amyot-Bourgeois et al. (2021) considered random forests and k-nearest neighbor as 

metamodels, which were found to have similar performance scores. Using a single-server simulation model, 

Feldkamp (2021) considered random forests and neural networks, which were also found to have similar 

performance scores. In Feldkamp (2021), as well as De la Fuente and Smith (2017) and Amyot-Bourgeois 

et al. (2021), only a single experimental design was considered.  

From the above-mentioned studies, it is difficult to conclude which DoEs should be used for machine 

learning metamodels because the studies tend to compare a single metamodel with multiple designs or 

multiple metamodels with a single design. Our study considers multiple metamodels with multiple designs 

and therefore offers a more systematic look at the impact of the choice of experimental design on the 

performance of the metamodel. 

2.4 Metamodel Validation 

Kleijnen and Sargent (2000) define validation as the “substantiation that a model within its domain of 

applicability possesses a satisfactory range of accuracy consistent with the intended application of the 

model.” In the context of simulation metamodels, validation should be considered with respect to both the 

system being modeled and the simulation model (Kleijnen and Sargent 2000); in this paper, we focus on 

the latter type of validation. In evaluating machine learning models, performance is often assessed on an 

independent data set (i.e., test set) not used to build the model (i.e., training set). It is also common to split 

the training set for the purposes of model selection (e.g., hyperparameter tuning), which can be done through 

K-fold cross-validation. In K-fold cross-validation, the data set is divided into roughly K equal-sized 

subsets. Each subset is used as a test (or validation) set while the model is trained on the other K – 1 subsets. 

The process is then repeated K times and the prediction error estimates are combined; details on this method 

as well as a more in-depth discussion on machine learning model assessment can be found in Hastie et al. 

(2009, Chapter 7). These methods mirror those that have been proposed for validating metamodels with 

respect to the simulation model. For instance, Kleijnen and Sargent (2000) discuss the use of test sets while 

Meckesheimer et al. (2002) propose the use of cross-validation. In the comparative studies summarized in 

the previous section, Hurrion and Birgil (1999), Alam et al. (2004) and Amyot-Bourgeois et al. (2021) used 

independent test sets. The validation strategy used in this study is closest to Hurrion and Birgil (1999): an 

independent, randomly chosen set of 10,000 unreplicated DPs was used as a test set. De la Fuente and Smith 

(2017) used cross-validation for hyperparameter optimization; this strategy is also used in our study to tune 

the machine learning metamodels.  

3 METHOD 

3.1 Simulation Model 

The scenario investigated here is the point defense of a tactical ground-based air defense (GBAD) system 

against airborne threats. The air defense scenario is implemented in a synthetic, agent-based environment 

called Map-Aware Non-uniform Automata (MANA) that was developed by the New Zealand Defence 

Technology Agency (Anderson 2013). It has been used as the modeling environment in past military 

applications of data farming and found to have “good traits” for model development within a data farming 

process (Horne et al. 2014). Further, we have developed Python scripts that automate the generation of 

MANA input files for each DP and facilitate running MANA in batch mode on a high-performance 

computing system (Serré et al. 2021). Both the GBAD capability and the airborne threats modeled do not 

correspond to specific existing systems, instead they were kept generic. This is to allow the exploration of 

a wide range of possible values for the parameters defining the two entities. The parameters selected as 

factors of interest are shown in Table 1. The output of interest, sometimes called a measure of effectiveness 

(MOE), records whether all incoming threats were killed. This MOE is known as raid negation and takes 

on a value of one if all airborne threats were successfully intercepted by the GBAD system and zero 

otherwise. 
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Table 1: Factors of interest parameterized in the simulation model of the point defense of a tactical ground-

based air defense (GBAD) system against airborne threats.  

Factors of interest Range of values 

GBAD-related 

factors 

System (single shot) kill probability 0.1 to 0.99 

System delay between two engagements 1 to 10 seconds 

System (engagement/kill) range 0.25 to 45 kilometers 

System ammunition load 30 to 90 ammunitions 

Threat-related 

factors 

Number of threats 1 to 30 threats 

Threat speed 200 to 800 meters/second 

3.2 Experimental Designs 

Table 2 provides a summary of the selected designs (FF, CC, NOLH, and RS) and their respective number 

of DPs. For every design, each DP was replicated 100 times to account for the stochastic variation in the 

simulation model. For the FF design, the number of DPs is determined by the number of factors and the 

number of factor levels. In this study, there are six factors and we considered two, three or four levels per 

factor. For the CC design, the number of DPs is determined only by the number of factors; therefore, only 

a single size of CC design was considered. The DPs were generated following the details in 

NIST/SEMATECH (2013c) for an inscribed CC design. For the NOLH design, the number of DPs 

considered was determined based on the worksheets available from the SEED Center for Data Farming at 

the Naval Postgraduate School (Sanchez 2011). Lastly, the RS design is perhaps the most flexible in terms 

of the number of DPs. DPs were randomly sampled from the intervals shown in Table 1 while accounting 

for the desired number of decimals (set by MANA input requirements). As noted in Section 2.1, while there 

is a risk of the RS design having clusters and empty spaces, it is included here as a benchmark against the 

other designs of the same size. However, only a single RS design was generated for each number of DPs in 

Table 2. This is a potential limitation of the study.  

Table 2: Experimental designs considered and their respective number of design points. 

Random Sampling 

(RS) 

Full Factorial 

(FF) 

Central Composite 

(CC) 

Near-Orthogonal Latin 

Hypercube (NOLH) 

17 - - 17 

65 64 (2 levels) - 65 

77 - 77 - 

129 - - 129 

257 - - 257 

729 729 (3 levels) - 725  

4096 4096 (4 levels) - - 

3.3 Metamodel Training using AutoML 

Based on the findings of a benchmarking study of five autoML tools by Ebadi et al. (2019), this study uses 

an open source tool called H2O that has programming interfaces in several languages, including R and 

Python.  H2O AutoML simplifies the “training and tuning of machine learning models by offering a single 

function to replace a process that would typically require many lines of code” (LeDell and Poirier, 2020). 

This function has only three required parameters: the response column, the training data, and a stopping 

strategy. In this study, the response column is the MOE, raid negation, which is a binary variable. The 

different sizes of experimental designs are used as training data. To explore the trade-off between a greater 

number of DPs with fewer replications and a smaller number of DPs with greater replications, each data set 

of 100 replications was randomly divided into five data sets each with 20 replications; this resulted in a 

total of 96 training sets. A maximum of 20 models was specified as the stopping strategy. In addition to the 
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required parameters, two optional parameters were also specified. Firstly, the same random seed was 

specified for all data sets. However, as noted in the H2O documentation, setting a random seed does not 

guarantee reproducibility for deep neural nets, which are not reproducible by default for performance 

reasons (H2O.ai 2022). Secondly, stacked ensemble models were excluded because feature importance 

methods are not available in H2O for these types of models. Therefore, the following models were trained: 

 

• A fixed grid of Generalized Linear Models (GLMs), 

• A Default Random Forest (DRF), 

• Five pre-specified Gradient Boosting Machines (GBMs), 

• A near-default deep neural net, 

• Extremely Randomized Trees (XRT), 

• A random grid of GBMs, and 

• A random grid of deep neural nets. 

 

Output from the H2O AutoML algorithm includes a leaderboard that ranks all models trained in the 

process using five-fold cross-validated model performance by default. For a binary classification problem, 

the default metric used for ranking is AUC – the Area Under the receiver operating characteristics (ROC) 

Curve. Based on the AUC, the best model from each algorithm family was selected. The applicable 

algorithm families are: deep learning, DRF (includes XRT), GLM and GBM. For a binary classification 

problem, the GLM algorithm trains a logistic regression model with regularization. This study used version 

3.36.0.1 of the R H2O Package for the Windows platform. Additional details on H2O can be found in the 

H2O documentation (H2O.ai 2022); an overview of the H2O AutoML algorithm can be found in LeDell 

and Poirier (2020). 

3.4 Metamodel Validation 

To assess the metamodels trained using different experimental designs, their predictive performance was 

evaluated using a random sample of 10,000 DPs. In the test set, 36% of the observations belong to Class 1 

(raid negation) and 64% to Class 0 (no raid negation). Due to this class imbalance, the mean per class 

accuracy and the area under the precision recall curve were used to measure predictive performance in 

addition to the AUC. Details on these measures can be found in the H2O documentation (H2O.ai 2022). 

4 ANALYSIS AND DISCUSSION 

Figure 2 summarizes the algorithms that produced the best performing model in each family for all 96 

training sets, 16 of which had 100 replications and 80 had 20 replications. For deep neural nets, the random 

grid search tended to produce better performing models than the near-default model. For GBMs, the pre-

specified models tended to produce better performing models than the random grid search, especially for 

the data sets with 100 replications. For the random forest family, just over half of the models were XRTs. 

For logistic regression, only a fixed grid is considered by the H2O AutoML algorithm.  

 While three performance measures were considered, they all showed the same overall trends; therefore, 

only a single performance measure is presented. Figure 3 compares the predictive performance of the 

models using the mean per class accuracy on an independent test set of 10,000 random DPs. This plot 

highlights several trends. Firstly, models trained using a FF design tended to have the weakest performance 

scores overall, and were consistently outperformed by designs of the same size, including RS designs. This 

latter finding is consistent with the findings of Hurrion and Birgil (1999) for neural networks. However, 

some caution is needed as only a single set of random DPs was considered in each case. Secondly, for most 

models, greater gains in performance tended to be observed when the number of DPs increased than when 

the number of  replications increased. This is consistent with the findings of MacDonald and Gunn (2012) 

for neural networks, again suggesting that increased spatial coverage can be favored over increased 

replications. A notable exception is logistic regression where the mean per class accuracy remained 
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relatively stable as the number of DPs or replications increased for the NOLH design and all but the smallest 

RS design. This finding mirrors those for polynomial regression metamodels in Santos and Santos (2009), 

which found that there was no significant difference in the precision of the fitted metamodels between 

designs with more DPs, but fewer replications, and their high-replication, fewer DPs, counterparts. 

 

Figure 2: Distribution of algorithms that produced the best performing model in each of the four families 

of models across all training sets, which had either 20 or 100 replications.  

 

Figure 3: Comparison of the performance of the binary classifiers trained using automated machine learning 

on data sets generated with different experimental designs, numbers of design points, and replications. 

AutoML tools, like H2O, where the process of training and tuning machine learning models is done by 

a single function call, increase the efficiency of metamodel construction by reducing the amount of time an 

analyst spends coding. AutoML tools that also include XAI methods, such as variable importance measures, 

can introduce further efficiencies by allowing the analyst to explore the models further in the same 

environment with minimal additional coding. As an example, Figure 4 presents a variable importance 
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heatmap based on the variable importance measures available in H2O. Note that H2O uses different variable 

importance calculations in their heatmaps for different types of models; further, the results are then 

standardized to a common scale to compare relative variable importance. Therefore, the heatmap should be 

viewed as an exploratory tool that shows how different models treated each variable. In Figure 4, when the 

number of DPs was small, some of the models considered one variable to be much more important than the 

others. These models also tended to have poorer performance. The deep neural net generally gave more 

equal weight to all variables; however, as the number of DPs increases, all models indicated that the threat 

speed and system ammunition load are the least important variables. Consistency across different types of 

metamodels adds robustness to the findings whereas inconsistencies may indicate a need for further 

analysis. 

 

Figure 4: Standardized variable importance measures for the binary classifiers trained using automated 

machine learning on data sets generated with different experimental designs (left axis), numbers of design 

points (right axis), and 100 replications. Higher values indicate higher relative importance. 

As a second example of XAI methods, Figure 5 presents the SHapley Additive Explanations (SHAP) 

summary plot generated using H2O for the best performing GBM model trained using the NOLH design 

with 725 DPs and 100 replications. Proposed by Lundberg and Lee (2017), SHAP values provide a model-

agnostic approach for calculating variable importance. Each dot represents the SHAP value for a DP and is 

colored by the value of the corresponding individual feature with purple (darkest color) representing low 

values and yellow (lightest color) representing high values. In Figure 5, the variables are ordered from most 

important (system delay) to least important (system ammunition load) based on their global impact (i.e., 

the sum of the absolute values of the SHAP values), which agrees with the ordering in Figure 4 for this data 

set and model. For the system delay and the number of threats, the smooth gradation in coloring indicates 

a smooth increase in the model’s output (odds of raid negation) as the value of these variables decreases 
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(e.g., raid negation is more likely when the number of threats is smaller). The opposite trend is observed 

for the system kill probability and system range: the smooth gradation in coloring indicates a smooth 

increase in the model’s output as the value of these variables increases (e.g., raid negation is more likely 

when the system kill probability is higher). 

 

Figure 5: SHAP summary plot for the best performing GBM classifier trained using the NOLH design with 

725 design points and 100 replications.  

CONCLUSION 

Recent research has demonstrated that XAI methods can be used within the data farming process to analyze 

the simulation output (Amyot-Bourgeois et al. 2021; Serré et al. 2021; Feldkamp 2021). However, before 

these methods can be applied, a well-trained machine learning model is needed. Our paper explored the use 

of autoML to increase the efficiency of metamodel construction while at the same time examining the 

relationship between the experimental design and precision of machine learning metamodels.  

Four families of machine learning models were considered: deep neural nets, random forests (including 

XRTs), GBMs, and logistic regression with regularization. Classifiers trained using a FF design generally 

had weaker performance and were consistently outperformed by designs of the same size. For deep neural 

nets, random forests, and GBMs, greater gains in performance tended to occur when the number of DPs 

was increased rather than the number of replications. Together, these observations suggest that good space-

filling properties are important for these types of classifiers. The performance of the logistic regression 

models was less impacted by the experimental design, number of DPs, and number of replications. It 

outperformed the other classifiers when the number of DPs was smaller. Variable importance heatmaps 

showed that once the number of DPs was large enough, the same set of four factors was identified as being 

more important by all families of models considered. This indicates some robustness in the findings and is 

a benefit of fitting several types of metamodels.  

AutoML tools allow a wider set of metamodels to be trained and tested with less coding effort from an 

analyst. The results can be used as a starting point for additional model training and testing, and can also 

identify initial trends to investigate further. When XAI methods are integrated within autoML tools, 

additional model investigation can be done efficiently within the same environment. AutoML tools are part 

of a rapidly evolving field of study; as they continue to evolve, they can play a key role in building 

metamodels more efficiently and enabling XAI within a data farming process. 
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