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ABSTRACT

This paper provides an approximation method for the optimization of isolated evacuation operations,
modeled through the recently introduced Isolated Community Evacuation Problem (ICEP). This routing
model optimizes the planning for evacuations of isolated areas, such as islands, mountain valleys, or
locations cut off through hostile military action or other hazards that are not accessible by road and require
evacuation by a coordinated set of special equipment. Due to its routing structure, the ICEP is NP-complete
and does not scale well. The urgent need for decisions during emergencies requires evacuation models
to be solved quickly. Therefore, this paper investigates solving this problem using a Biased Random-Key
Genetic Algorithm. The paper presents a new decoder specific to the ICEP, that allows to translate in
between an instance of the S-ICEP and the BRKGA. This method approximates the global optimum and
is suitable for parallel processing. The method is validated through computational experiments.

1 INTRODUCTION

This paper presents an approximate solution approach for isolated evacuation operations using the Isolated
Community Evacuation Problem (ICEP) (Krutein and Goodchild 2022). The ICEP is a routing problem that
models the evacuation of an isolated area using a fleet of coordinated resources when road-based evacuation
is not possible. Some examples of recent events where coordinated resource routing for evacuation was
necessary that demonstrate the relevance of this modeling approach, are the bush fires in Mallacoota,
Australia in 2020 (ABC News 2020), and the evacuation of Samos Island, Greece in 2019, (Coffey 2019),
which both required a coordinated marine and air evacuation from beaches to evacuate populations that
were encircled by fires. This led to increased interest in building comprehensive evacuation plans for
isolated areas (Britten 2019). The problem generates an optimal route plan for the resource fleet that
minimizes the total evacuation time of the area. It is therefore a combination of a network flow problem
and a routing problem. Since the ICEP contains a routing component it requires some binary variables
and is formulated as a mixed-integer program (MIP). Commercial solvers that solve the problem for an
exact optimal solution therefore need to use solution methods appropriate for integer programming, such
as Lagrangian relaxations, plane cutting and branch-and-bound/branch-and-cut methods to find the optimal
solution. For large problem instances, it can take a significant amount of time to find the optimal solution
since the trees generated by the branching methods grow exponentially in size. An additional challenge is
posed by using an objective function that minimizes the total evacuation time instead of the sum of route
times, which is commonly used in vehicle routing problems (VRP), since the total evacuation time is defined
as the duration of the longest route generated among the resources. Experiments have shown that solution
discrimination is significantly more challenging for a commercial solver with such an objective function
compared to minimizing the sum of route times (Krutein and Goodchild 2022). Since the problem aims
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to find a solution to respond to an emergency, it can be crucial to find a high quality solution quickly, and
a near-optimal solution will suffice. A constructive heuristic that combines a greedy route plan generation
with a local search has already been presented (Krutein and Goodchild 2022), which produces results
quickly. However, this heuristic does not reliably produce solutions close to the optimal solution, since it
can get stuck at local minima. This is particularly the case for the stochastic version of the ICEP, denoted
S-ICEP, which takes uncertainty over evacuee numbers and event location into account. The reason why
the S-ICEP is of particular relevance to evacuation planning is that during evacuation planning, it is often
not known at all where exactly the source of a disaster is located, what populations are affected and where
they should be evacuated from. For that reason using a scenario-based two-stage stochastic approach
with weighted probabilities allows planners to identify the evacuation resources that perform best across
a variety of potential disaster scenarios. On the instances tested with the simpler heuristic for S-ICEP,
this led to optimality gaps of up to 36.36% (Krutein and Goodchild 2022), which is not practical for
evacuation planning. While some in-depth analysis on the application challenges and data requirements
for this modeling framework have already been obtained through a detailed real-world case study (Krutein
et al. 2022), solving the problem quickly is still a challenge. The proposed approximation method for
the S-ICEP leverages a meta-heuristic framework that uses a Multi-Parent Biased Random-Key Genetic
Algorithm (MP-BRKGA) (Andrade et al. 2021). The paper introduces a S-ICEP specific decoder method
that can be used to translate outputs from the MP-BRKGA into a unique solution to the S-ICEP. The
method is validated by computational experiments. This paper provides the following contributions:

• A decoder algorithm that translates standardized MP-BRKGA outputs into a solution to the S-ICEP,
enabling the approximation of the optimal solution to the S-ICEP.

• Experimental results that demonstrate better performance of the proposed method compared to
commercial problem solvers.

2 THE ISOLATED COMMUNITY EVACUATION PROBLEM

The ICEP (Krutein and Goodchild 2022) aims to minimize the total evacuation time of an isolated area.
The model includes different sets of nodes that capture resource staging locations, evacuation nodes, and
safe nodes. The use of multiple trips of heterogeneous resources expands the network with each additional
resource i and each additional trip k, which greatly increases the model complexity. To make the model
more suitable for planning purposes, a two-stage stochastic version of the ICEP, denoted S-ICEP (Krutein
and Goodchild 2022) was developed. The formulation of the S-ICEP is provided in Section 2.1 with
notations in Table 1. This model seeks to find the optimal set of evacuation resources while also accounting
for the parameters related to uncertainty in the emergency. A detailed explanation is provided by Krutein
and Goodchild (2022).

2.1 Model Formulation

min
∑i∈I c fi(zi)

∑i∈I(c fi + cvi(T ))
+E[C(z,ξ )]

s.t. zi ∈ {0,1} ∀i ∈ I

where

C(z,ξ ) := min r+
∑i∈I cvi(si)

∑i∈I(c fi + cvi(T ))
+P ∑

a∈A
na

s.t. r ≥ si ∀i ∈ I

2003



Krutein, Goodchild, and Boyle

Table 1: Notation Key for S-ICEP.

Sets Set Description Parameters Parameter Description
i ∈ I recovery resources qi passenger capacity of resource i

k ∈ K potential round trips per resource ui time to availability of resource i
s source node oi loading time of resource i

a ∈ A evacuation areas pi unloading time of resource i
b ∈ B pick-up points in evacuation area da evacuation demand at location a
c ∈C drop-off points in safe locations ga max. no. of self-evacuations from area a

t sink node t i
hb

distance(h→b)
empty travel speed of resource i : cost of arc ζ 1i

hb

h ∈ H initial resource staging locations t i
bc

distance(b→c)
loaded travel speed of resource i : cost of arc γki

bc

ξ ∈ Ξ evacuation scenarios t i
cb

distance(c→b)
empty travel speed of resource i : cost of arc δ ki

cb,
only k = 1, ...,K −1

c fi fixed cost parameter of resource i
cvi variable cost parameter of resource i
T upper time limit for r
P penalty cost for non-evacuated person

Arcs Arc Description Variables Variable Description
αsa ∈ Ā source s to area a f lat flow on arc λat
β ki

ab ∈ B̄ area a to pick-up b of trip k for resource i f lki
ab flow on arc β ki

ab
γki

bc ∈ Γ̄ pick-up b to drop-off c of trip k for resource i f lki
bc flow on arc γki

bc
δ ki

cb ∈ ∆̄ drop-off c to pick-up b of trip k to trip k+1 f lki
ct flow on arc εki

ct
for resource i, for k = 1, ...,K −1 w1i

hb {1: if route on ζ 1i
hb selected, 0: otherwise}

εct ∈ Ē drop-off c to sink node t xki
bc {1: if route on γki

bc selected, 0: otherwise}
ζ 1i

hb ∈ Z̄ initial resource location h to pick-up b yki
cb {1: if route on δ ki

cb selected, 0: otherwise}
for resource i, on trip 1 r total evacuation time

λat ∈ Λ̄ area a to sink node t, for private evacuations si route completion time of resource i
zi {1: if resource i selected, 0: otherwise}
na number of non-evacuated people at area a

si = ∑
ζ 1i

hb∈Z̄

(
t i
hbw1i

hb
)
+ ∑

γki
bc∈Γ̄

(
t i
bcxki

bc

)
+ ∑

δ ki
cb∈∆̄

(
t i
cbyki

cb

)
+

∑
ζ 1i

hb∈Z̄

(
uiw1i

hb
)
+ ∑

ζ 1i
hb∈Z̄

(
oiw1i

hb
)
+

∑
δ ki

cb∈∆̄

(
oiyki

cb

)
+ ∑

γki
bc∈Γ̄

(
pixki

bc

)
∀i ∈ I

r ≤ T

f lat ≤ ga ∀λat ∈ Λ̄

f lki
bc ≤ qi(xki

bc) ∀γ
ki
bc ∈ Γ̄

f lki
bc ≤ qi(zi) ∀γ

ki
bc ∈ Γ̄

da(ξ ) = f lat + ∑
β ki

jb∈B̄: j=a

f lki
ab +na ∀a ∈ A

∑
β ki

a j∈B̄: j=b

f lki
ab = ∑

γki
jc∈Γ̄: j=b

f lki
bc ∀b ∈ B,∀k ∈ K,∀i ∈ I

∑
γki

b j∈Γ̄: j=c

f lki
bc = f lki

ct ∀c ∈C,∀k ∈ K,∀i ∈ I
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∑
ζ 1i

hb∈Z̄

w1i
hb ≤ zi ∀i ∈ I

∑
γki

bc∈Γ̄

xki
bc ≤ zi ∀i ∈ I,k ∈ K

∑
δ ki

cb∈∆̄

yki
cb ≤ zi ∀i ∈ I,k ∈ K \{k = K}

∑
h∈H

w1i
hb = ∑

c∈C
x1i

bc ∀b ∈ B,∀i ∈ I

∑
c∈C

y(k−1)i
cb = ∑

c∈C
xki

bc ∀b ∈ B,∀i ∈ I,∀k ∈ K \{k = 1}

∑
b∈B

xki
bc ≥ ∑

b∈C
yki

cb ∀c ∈C,∀i ∈ I,∀k ∈ K \{k = K}

f lat ≥ 0 ∀λat ∈ Ā

f lki
ab ≥ 0 ∀β

ki
ab ∈ B̄

f lki
bc ≥ 0 ∀γ

ki
bc ∈ Γ̄

f lki
ct ≥ 0 ∀ε

ki
ct ∈ Ē

si ≥ 0 ∀i ∈ I

r ≥ 0

w1i
hb ∈ {0,1} ∀ζ

1i
hb ∈ Z̄

xki
bc ∈ {0,1} ∀γ

ki
bc ∈ Γ̄

yki
cb ∈ {0,1} ∀δ

ki
cb ∈ ∆̄

na ≥ 0 ∀a ∈ A

3 META-HEURISTIC SOLUTION METHOD SELECTION

A meta-heuristic method selection is developed to simplify the classification of the second-stage of the
S-ICEP. However, a similar structure to the second stage of S-ICEP has not been observed in past studies.
The closest related problem is the Bus Evacuation Problem (BEP) (Bish 2011) and its military variations
(Dikas and Minis 2016), which solves a similar problem for on-land transportation using a homogeneous
fleet of buses using a constructive heuristic. The approach provides a less complex solution since routes
are interchangeable between resources without impact. A similar idea for a constructive heuristic has been
applied to solve the ICEP by Krutein and Goodchild (2022). However, the solution quality of this approach
varies significantly depending on which input data set is provided. It thus does not produce solutions with a
predictable quality. The BEP has further been approximated through considering more restrictive branching
methods that establish bounds in a quicker way than a commercial solver and solve to these (Goerigk
et al. 2013). However, these problems neither show a performance guarantee and their performance is also
highly dependent on the data set. The BEP in a simplified robust form has been successfully solved using
a linear search and a tabu search approach with restarts (Goerigk and Grün 2014). Tabu searches are good
algorithms to avoid getting trapped at local minima (Glover 1986). However, the presented linear and tabu
search approaches, like the constructive heuristic presented by Bish (2011) take advantage of the strong
symmetry of the problem in between the different resources by adding or deleting resources and/or trips
from the route plans and/or re-allocating them to other resources and are based on the interchangeability
of route components in between resources. Using a similar logic with a heterogeneous resource set leads
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to either many infeasible solutions due to compatibility issues or not exploring the entire feasible region
since some solutions will never be generated through this approach and generating space efficient tabu
lists that avoid revisiting recently visited solutions is difficult. Experiments with an example case of the
S-ICEP have confirmed this.

The search for approximate solutions is therefore generalized to routing and combinatorial problems.
Specifically for stochastic combinatorial problems, which the S-ICEP belongs to. Bianchi et al. (2009)
have identified meta-heuristics that have shown to be successful in addition to tabu searches. These
were ant colony optimization (Dorigo et al. 1999), simulated annealing (Kirkpatrick et al. 1983), and
evolutionary/genetic algorithms (Goldberg 1989). While there have been some successful applications for
these algorithms to stochastic combinatorial problems, especially when paired with warm start procedures
and local searches, the size of the feasible space in combinatorial problems often requires a simplification
of the solution representation to fit into memory for larger problem sizes and the performance of these
meta-heuristics cannot be reliably predicted for arbitrary problems and requires analysis specific to the
problem at hand (Bianchi et al. 2009).

For that reason, a specific genetic algorithm type is selected as a way to escape the dimensionality problem
of solution representation through a soft representation, the Random-Key Genetic Algorithm (RKGA) (Bean
1994). Traditional genetic algorithms, which use a variable representation in the chromosome however,
are not per default suitable to solve combinatorial problems, since the use of binary and integer variables
gives little flexibility to alternate solutions in a local search without making them infeasible. RKGAs on the
opposite represent the solution in a soft way, where, instead of every chromosome element representing a
variable, the elements, which contain random keys between 0 and 1 represent parts of the physical problem
behind that can be translated into a feasible solution to the problem on every iteration and stored in a simple
list of continuous values (Bean 1994). For example, for a Traveling Salesman Problem (TSP), the nodes can
be represented in a list, and the list indexes can represent the customers in the network. Using the random
key values generated by the algorithm for every customer, the list of customers can be sorted in ascending
order, which represents a feasible tour in the TSP if visited in that order (Bean 1994). Like in a regular
genetic algorithm, during every evolution chromosomes from the population are combined and crossed with
each other to generate off-spring. After ranking the fitness of the available solutions in the population, the
best solutions (e.g. top 10%) are determined the elite set. To enhance diversity and improve the solution
over time, the worst solutions (e.g. worst 10%) are dropped from the population and replaced by random
new chromosomes in every iteration. The RKGA will eventually find the optimal solution in expectation
based on survival-of-the-fittest. Extensions of this methodology that improve the performance further for
many problem types have been to bias towards the set of elite solutions in every evolution step (every off
spring is generated from at least one elite-set solution) through Biased Random-Key Genetic Algorithms
(BRKGA) (Gonçalves and Resende 2011). The BRKGA has been further improved through using multiple
parents to generate offspring instead of just two (MP-BRKGA) (Andrade et al. 2021), which has proven
to improve the performance of the regular BRKGA. This algorithm was chosen as its soft representation
structure appears suitable to store the complexity of the S-ICEP problem, and the introduced randomness
allows for exploring multiple areas across the feasible region and thus, escape local optima. An additional
benefit of RKGA type algorithms that informed its selection as the method of choice is its suitability
for parallel processing. Since in every evolution, all chromosomes have to be evaluated independently of
each other, parallel processing can be a powerful tool that supports accelerating the algorithm. Since the
only problem dependent part of the MP-BRKGA is the decoder function that translates the chromosome
into a feasible solution to the S-ICEP, the main objective of this paper is therefore the development of a
decoder logic that suits the S-ICEP and its validation in computational experiments using the MP-BRKGA
framework provided by Andrade et al. (2021).
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4 DECODER DESIGN

To design a decoder for the S-ICEP to be used in the MP-BRKGA, it is necessary to represent a solution
through a single list of values between 0 and 1. The structure presented in Algorithm 1 was most successful
in generating good route plans for the S-ICEP. First, generate a list of all pick-up and drop-off points,
add an empty row (representing no node visit) and map them to a sequence of equally spaced threshold
points between 0 and 1 (e.g. if there are 3 points in the list plus the empty one, the mapping would be
[0,0.25,0.5,0.75,1]. For Ξ scenarios, I resources, and K maximum trips per resource, the chromosome
will have the length: Ξ∗ I ∗K. Every iteration of the MP-BRKGA then generates a chromosome of values
between 0 and 1. The procedure presented in Algorithm 1 then translates this chromosome into a feasible
solution to the S-ICEP.

Algorithm 1: MP-BRKGA Decoder for S-ICEP.
Result: A feasible, near-optimal evacuation route plan

1 Initialize all resources i ∈ I, evacuees e ∈ E as the evacuees, pick-up nodes b ∈ B, drop-off nodes
c ∈C, scenarios ξ ∈ Ξ;

2 Split the chromosome into Ξ parts of equal length I ∗K (each representing the solution for one
scenario ξ );

3 for every chromosome segment ξ ∈ Ξ do
4 Split each sub-chromosome into I parts of length K (each representing the route of a specific

resource i in scenario ξ ). for every sub-chromosome segment i(ξ ) ∈ ξ do
5 Map the values between

0,1

at each index to the appropriate pick-up or drop-off point, based on threshold-based
mapping;

6 end
7 Aggregate all route segments of all resources i(ξ ) ∈ ξ into a sortable list;
8 Order the list of route segments by their respective arrival time;
9 Allocate the evacuees at each pick-up point b to the resources i based on the order of resource

arrivals, considering the respective capacity of every resource;
10 Remove all route segments at each pick-up point after the last route segment that had

passengers allocated. These trips do not need to be executed, as they do not carry passengers;
11 Calculate route length si for each resource i, and denote the longest one as r;
12 Calculate the operational cost for each resource i, and denote the longest one as r;
13 Calculate the number of evacuees left behind na at each location a, if any remain;
14 end
15 For every scenario ξ , aggregate the values for r(ξ ), ∑i∈I cvi ∗ si(ξ ), and the persons left behind

na(ξ );
16 Calculate the fitness of the solution through the S-ICEP objective, considering the relative

probabilities for each scenario.

Figure 1 illustrates this decoder mechanism for an example. The design of this decoder allows that the
continuous values generated by the MP-BRKGA can be decoded and used to generate feasible solutions to
the S-ICEP in an efficient manner. This problem structure ensures that the entire feasible region is explored.
Since the goal of this paper is to identify and develop a method that can beat the time performance of
a commercial solver while providing more reliable solution performance than the constructive heuristic
presented by Krutein and Goodchild (2022), comparative experiments are presented in the following section.
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Figure 1: Example visualization of decoder translation from chromosome to feasible solution of S-ICEP.
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5 EXPERIMENT RESULTS

Experiments were conducted to investigate whether the MP-BRGKA with the decoder developed above can
beat the performance of an exact commercial solver. As a benchmark, the S-ICEP was implemented in a
formal mathematical structure using the Pyomo modeling environment in Python 3.9, using the commercial
Gurobi 9.0 solver. The BRKGA was implemented using the Python MP-BRKGA package designed by
Andrade et al. (2021). Consequently, the decoder was also implemented using Python, in an object-oriented
structure. The experiments on the BRKGA were conducted in a concurrent and parallelized version. In
addition, a random data generator was used for the S-ICEP with inputs on the number of scenarios, number
of candidate resources, and the number of nodes. Using these parameters, the problem is then randomly
generated using a set of uniform and gamma distributions, depending on the parameter at hand to keep
the problems realistic (e.g. avoiding unrealistic examples where a resource has a capacity of 100,000
passengers). The MP-BRKGA maintains a solution population size proportional to the problem size itself
and is determined through the following formula to keep enough chromosomes in the population to maintain
a large enough level of variety: Population size = Ξ∗ I ∗K. Key metrics on the test data sets are presented
in Table 2. For the study presented in this paper, a total of 5 randomly generated experiments have been
conducted. The experiments were conducted on a cloud computing instance with 36 CPUs and 72 GB
of RAM, and were aborted after a maximum run time of 1,800s, and a maximum evolution of 1,000
generations in the MP-BRKGA. The results are presented in Table 3. For Gurobi 9.0, only solutions from
the concurrent run mode are displayed, as the parallelized run mode performed significantly worse due to
increased computational overhead.

Table 2: S-ICEP Test Data Sets.

Test 1 Test 2 Test 3 Test 4 Test 5

Sets Set size
Scenarios 2 2 2 3 4
Potential Resources 6 4 2 5 20
Docks 7 5 5 8 6
Round trips 2 2 2 3 4

Parameters Setting
Penalty 5,000 5,000 5,000 5,000 5,000

Variable Type Quantity
Continuous Variables 416 550 650 8308 17,290
Binary Variables 413 595 758 12,875 24,820

Table 3: Experiment Results Gurobi 9.0 vs. BRKGA Decoder.

Data Gurobi 9.0 (Concurrent) BRKGA (Concurrent) BRKGA (Parallelized)
Solution time Objective Solution time∗ Objective Solution time∗ Objective

Test 1 5.51s 101.03 109.77s 172.00 142.41s 124.00
Test 2 2.36s 56.67 188.13s 56.67 17.65s 56.67
Test 3 116.15s 229.00 375.28s 324.00 928.2s 232.64
Test 4 1,800.00s ∗∗313.04 805.57s 291.39 671.39s 259.73
Test 5 1,800.00s ∗∗178.04 1,217.39s 218.25 908.63s 108.03

*Last improvement
**Runs aborted after 1,800s; best available solution displayed.

Reviewing the results presented in Table 3, MP-BRKGA was not able to beat Gurobi 9.0 in solution
performance in all test instances. Only in Test 2 it was able to reach the objective value Gurobi was able to
find, but in a much longer time frame than Gurobi, both for the concurrent and parallelized version of the
BRKGA. However, for the larger instances, the performance of the MP-BRKGA in comparison to Gurobi
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9.0 is better, particularly for the parallelized version. While the methods that Gurobi is using guarantee
convergence to a global optimum, the solution time becomes so long that the optimal solution cannot
be reached within a reasonable time frame for emergency management. For these cases, the parallelized
MP-BRKGA can be useful to obtain solutions in a more reasonable time frame. The underlying reasons
and implications of these experiment results are discussed in the following section.

6 DISCUSSION OF RESULTS

The results from the experiments have shown that the implemented version of the MP-BRKGA has
outperformed the Gurobi implementation for larger problem instances. This makes the method useful for
emergency use, since obtaining solutions quickly is instrumental during situations where human lives are
in danger. While the solutions generated by the parallelized decoder are fine solutions to the problem at
hand, the algorithm speed could still be improved for smaller instances. Investigating reasons for this lack
of performance, the first disadvantage that can be noted is that, the MP-BRKGA only approximates optimal
solutions due to its iterative and randomized nature. The main problem in the decoder structure is that the
feasible region of the S-ICEP is so large that the solution space that is searched by the decoder causes a
lot of sub-optimal solutions to be generated. Even though this ensures a diversified set of chromosomes, it
does not support the progression to a better solution. While it is difficult to develop meta-heuristic methods
with performance guarantees, further efforts could be placed on letting the decoder bias towards solutions
that have a high likelihood to improve the set of solution candidates, while reducing the risk that the global
optimum is accidentally excluded.

Furthermore, the algorithm needs to evolve through many generations to receive solutions with good
fitness values. This means that the speed of the decoder function is crucial in determining a short solution
time. Unfortunately, the use of an object-oriented representation of the problem requires the use of for
loops in Python. Since Python is a scripting language and therefore slow processing of for loops (lack
of memory allocation, no full multi-threading), it is difficult to beat commercial solvers that run on faster
programming languages.

7 CONCLUSIONS AND NEXT STEPS

In this paper, a new decoder logic was presented to solve the S-ICEP problem through a MP-BRKGA. The
decoder function is well suited to generate high quality solutions to the S-ICEP problem in a reasonable
time frame and thus provides an important contribution in identifying a faster way to solve the S-ICEP. This
allows emergency personnel, planners and coordinators to make routing decisions that resolve a dangerous
situation quickly and therefore contributes to national security. This is particularly the case for larger
problem instances with a large number of evacuees, a large number of pick-up and drop-off points and high
heterogeneity in the data set. One example are evacuations of large isolated areas affected by natural or
human-made hazards such as fires or nuclear reactor leaks. Another example are evacuations triggered by
military conflicts, such as the evacuation of encircled/isolated troops or civilians that have to be evacuated
by air or by sea from multiple locations through a coordinated effort. Furthermore, islands that require
evacuation by the coast guard due to tsunami or wildfire hazards.

The speed of the current implementation of the algorithm allows for improvements. One part of these
improvements could be dedicated towards giving the decoder more bias to high quality solutions and thus
decrease the number of generations that need to be evolved to get close to the global optimum. It could
be considered to reduce the feasible region of the decoder to only generate solutions from regions that are
promising to contain good route plans. For example, if a certain number of resources are being used, it is
likely that a good solution will try to keep all available resources busy at all times to shorten the evacuation
time, thus solutions that do not keep all resources busy could be discarded. Another direction with similar
effect could be to make the decoder two-staged and implement a high level quick approximation of the
objective value in the first step and only evaluate the objective function exactly if a certain threshold is
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reached to reduce the computational effort. This way, not much time is wasted on finding the actual
objective value of solutions that are not promising anyways. A combination of both approaches can also
be considered. Furthermore, future work can further compare the computational performance of the MP-
BRKGA approach from this paper to the previously proposed structural heuristic (Krutein and Goodchild
2022), in addition to Gurobi.

Another part of these considerations is implementation based and can be achieved through choosing a
different way to implement this algorithm. In that sense, the next steps become more of an implementation
challenge than a modeling or design challenge. A vectorized problem representation in the decoder has the
potential to significantly accelerate the algorithm and should be considered to improve the solution quality.

Lastly, another approach would be to choose an entirely different solution approach to the S-ICEP.
Promising research directions are the decomposition of the problem using column-generation methods that
separate the problem into a route generation problem and an evacuee allocation problem (Lübbecke and
Desrosiers 2005). Another promising approach is the use of deep learning, which was recently explored
for dynamic programs in inventory replenishment (Qi et al. 2021). The main idea is to predict the model
outputs directly from input data after training a deep learning model from a training data set of problem
instances solved to the optimum using a commercial solver.
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