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ABSTRACT 

In a shipping network, feeder ships need to fulfill the demand for cargo transportation between a hub port 
and its feeder ports. The objective of the Feeder Ship Routing Problem (FSRP) is to minimize the 
transportation cost, while the feasible time of entering and leaving a port is affected by tide and load due to 

the limitation of the waterway depth. Different from classic VRPTW(Vehicle Routing Problem with Time 
Windows), the tidal time windows in this study change by the route of the ship, bringing a challenge to 
solve the problem. This paper studies an FSRP with nonlinear time windows and solved by Column 
Generation after a model simplification by Dantzig-Wolfe Decomposition. Numerical experiments and 
sensitivity analyses proved that the algorithm is effective and that considering tidal influence can effectively 
reduce the operation cost of the fleet. 

1 INTRODUCTION 

The shipping market, especially the dry bulk commodities, is recovering from the COVID-19 pandemic 
(UNCTAD, 2021). Transportation among hub ports maritime network is carried by large liner ships due to 
economies of scale(Zheng et al., 2015), while cargos between hub ports and feeder ports often need to be 
carried by feeder ships which are smaller and more flexible to meet the dynamic change of demand, 
hydrography and other conditions. Feeder Ship Routing Problem (FSRP) needs to be regularly solved in 

order to reduce transportation costs according to market changes. 
Hemmati et al.(2014) categorized ship transportation into two main parts: liner transportation and 

tramp and industrial ship transportation. In that paper, tramp and industrial ship transportation is described 
as a pickup and delivery problem with time windows (PDPTW). The Feeder Ship Routing Problem is a 
special case of tramp ship routing: cargo needs to be picked up from or delivered to the hub port and can 
be regarded as a Vehicle Routing Problem(VRP). Ricardo et al.(2018) describe the Feeder Ship Routing 

Problem as a VRP and consider the joint optimization of route and speed. The Feeder Ship Routing Problem 
studied in this paper considers tidal time windows and simultaneous pickup and delivery. 

During the routing of a single ship, the ship's access to a port is greatly influenced by the ship's draft 
and the water depth of the navigation channel, which is called the draft limit. Although the berths usually 
have sufficient water depth, the relatively shallow water depth of the navigation channels often becomes a 
bottleneck for the feasibility of a ship's berthing and unberthing (Yu et al.,2017). Unsal et al. (2019) studied 

an integrated port planning problem in which the departure time of the ship should meet the tidal time 
window. Rakke et al. (2012) studied the routing problem of a single ship considering the static draft 
limitation, and Arnesen et al. (2017) considered the same problem considering pickup and delivery. Gelareh 
et al.(2019) considered a selective traveling salesman problem with draft limits, in which most profitable 
routes are selected since a route that satisfies all needs may not exist. However, none of the presenting 
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papers considered that the depth of the navigation channel might change by the rising and receding tides. 
As shown in Figure 1, the ship draft is related to the ship‘s weight (weight of the ship + weight of the cargo), 
and its correspondence can be roughly considered linear by referring to the hydrostatic equation of the ship; 

while the depth of navigation channel depends on its design depth and the influence of the tide, which can 
be predicted by using the harmonic function of multiple trigonometric functions(Meena et al., 2015). 
Lightly loaded ships with low draft can be berthed and unberthed during any time of the day, while heavily 
loaded ships are more easily stranded during low tide and usually need to wait until the depth of the 
navigation channel is adequate, which is referred to as the " Tidal Time Windows " in this study. 

 

Figure 1: Ship draft and navigation channel draft limit. 

The Feeder Ship Routing Problem with tidal time windows (FSRPTTW) can be regarded as vehicle 

routing problems with time windows (VRPTW). The time windows can be classified into Hard Time 
Window and Soft Time Window: Pan et al. (2021) studied the problem of a coffee sales company in 
Singapore that replenished its retail stores because the replenishment time allowed for each retail store is 
fixed, so the authors restricted it as a Hard Time Window. Soft time windows, also known as Flexible Time 
Window, differ from the hard time window in that it allows vehicles to arrive outside the time window but 
incurs a penalty cost (Tas et al., 2014). In addition, a customer may have multiple discrete time windows 

and allow to be served in any one of them, which is called multiple time windows. Belhaiza et al.(2014) 
studied the problem of multiple time windows that allow vehicles to arrive early but need to wait. Li et al. 
(2020) studied "synchronized multiple time windows", in which a customer can be visited by multiple 
vehicles and within multiple time windows. However, all the vehicles must arrive at the same time window. 
The "tidal time window" in this study is a hard, periodic, multi-time window, and the size of the time 
window will change with the increase or decrease of the ship's load, which presents a nonlinear 

characteristic and brings challenges to solve. 
The vehicle routing problem with time windows is a mixed integer programming problem, and a large-

scale problem cannot be exactly solved in polynomial complexity time, so the existing research usually 
uses a column generation algorithm and heuristic algorithm. For example, Wang et al.(2019) used the 
column generation algorithm to solve the vehicle routing problem for the cooperative operation of UAVs 
and trucks, and compared it with the Gurobi solver, which solves the mathematical model exactly; Li et 

al.(2020) mentioned above also used the column generation algorithm to solve for the demand of the vehicle 
routing problem with synchronized time windows and split demand, the results achieved the same or even 
lower compared with the exact solution using Cplex. Heuristic algorithms are often used to solve medium 
to large-scale vehicle routing problems because of their fast speed and low resource consumption. Pureza 
et al. (2012) tried adaptive tabu search (ATS) with ant colony algorithm (ACO) for solving the practical 
problem of tobacco and alcohol transportation in Brazil, whose innovation is that they considered the 

number of crows as a decision variable in constructing a nonlinear service time; Martins et al.(2019) used 
the Adaptive Large Scale Neighborhood Search (ALNS) algorithm to solve the problem of transporting 
fresh goods in separate compartments, where the time window is related to the preservation conditions of 
fresh goods rather than from customer preferences; Azi et al.(2014) used the ALNS algorithm to solve the 
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problem of transporting perishable goods, where all the time windows have the same rear edge considering 
the characteristics of perishable goods. Berghida et al.(2015) solved a complex vehicle routing problem 
using a biogeography algorithm (BBA) that analogizes the solution search to a biological population 

searching for habitat. The problem considers a fleet of heterogeneous vehicles, mixed backhaul cargo, and 
a time window. The FSRPTTW model in this study has a nonlinear time window making the problem model 
complex, so a heuristic algorithm based on column generation is designed. The Danzig-Wolfe 
decomposition is first used to decompose the model into a set-covering master problem and the shortest 
path subproblem, and a label expansion heuristic algorithm is used for the subproblem to solve and generate 
the columns of the master problem, which can achieve a relatively high solution in a shorter time. 

The main contributions of this study are as follows: firstly, the relationship between ship draft and 
navigation channel depth is analyzed, and the concept of the tidal time window is proposed; secondly, the 
feeder ship routing problem with tidal time window (FSRPTTW) model is constructed; then the model is 
solved by Danzig-Wolfe decomposition and heuristic column generation algorithm; finally, a case study is 
verified by simulation. The article will be developed in the following structure: Chapter 2 introduces the 
feeder ship routing problem with a tidal time window and establishes the mathematical model; Chapter 3 

performs the Danzig-Wolfe decomposition of the problem, establishes the path-based model, and designs 
the column generation algorithm to solve it; Chapter 4 presents the simulation and Chapter 5 conclusions. 

2 MATHEMATICAL MODEL  

The problem studied in this paper assumes that there is a hub port and several feeder ports in a region, and 
the shipping company needs to arrange a fleet of feeder ships, each of which leaves from the hub and visits 
a sequence of feeder ports before return to the hub, during each visit, both picking-up and delivery are 

considered. Unlike the traditional vehicle routing problem, a vessel visiting a feeder port needs to consider 
the "tidal time window", the size of which depends on the vessel's load at the time. 

2.1 Problem Statement 

𝐺 = (𝑉, 𝐸) represents a transportation network in a region, where 𝑉 = {0,1, … , 𝑛} represents the set of 
ports, 0 is the hub port, 𝑉′ = {1, … , 𝑛} is the set of feeder ports, each feeder port 𝑖 and the hub port have 
two-directional cargo transportation demand, the demand that pickup from the hub and deliver to the feeder 

is 𝑑𝑖, that pickup from the feeder and deliver to the hub is 𝑝
𝑖
. 𝐸 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is the set of edges, 

and 𝑐𝑖𝑗 and 𝑡𝑖𝑗 are the travel cost and travel time of the edge, both of which are non-negative. 𝐾 ships load 
cargos from the hub port at time 0, and when they visit a feeder port 𝑖, they deliver 𝑑𝑖 cargos and pickup 
𝑝

𝑖
 cargos, and return to the hub port after completing the route. The latest time return to the hub port (the 

maximum travel time of the vessel) is 𝑇𝑡. The loading and unloading services at each port will consume 
the service time of 𝑠𝑖, and 𝑞𝑖𝑘 is an intermediate variable of the ship 𝑘’s load when departing from port 𝑖. 
At any time, the load of a ship must not exceed its capacity limit 𝐶. Each feeder port 𝑖 has a draft limit of 
function 𝐹𝑖(𝑡). Generally speaking, the tidal function is symmetry and periodicity, so the feasible time for 
a ship to visit a port can be considered as multiple time windows, and its time window is narrower when 
the ship is heavily loaded than when it is lightly loaded. The whole time can be divided into several periods 
by the low ebb of tide, making sure that there is only one continuous time window in each period. Figure 2 
is an illumination of the tidal time window. In each period 𝑝, 𝐺𝑆𝑖𝑝(𝑞) is the earliest time when a ship with 

a load of 𝑞 can go through the navigation channel, and 𝐺𝐸𝑖𝑝(𝑞) is the latest time. (𝐺𝑆𝑖𝑝(𝑞), 𝐺𝐸𝑖𝑝(𝑞)) is the 
tidal time window in period 𝑝. 

The time when ship 𝑘 berths at port 𝑖 is 𝑡𝑎𝑖𝑘 and the time when it leaves is 𝑡𝑙𝑖𝑘, both needed to be 
within the tidal time window, if the ship arrives or finished the service before a time window, the ship needs 
to wait, the berthing waiting time and the leaving waiting time are 𝑤𝑎𝑖𝑘 and 𝑤𝑙𝑖𝑘. 

The decision variable 𝑥𝑖𝑗𝑘 indicates whether ship 𝑘 sails from port 𝑖 to port 𝑗; the intermediate variable 

𝑦
𝑖𝑘

 indicates whether ship 𝑘 serves and satisfies the demand of port 𝑖; the decision variables 𝑎𝑖𝑝𝑘 and 𝑙𝑖𝑝𝑘 
are used to indicate in which time window ship 𝑘 enters or leaves port 𝑖. 
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The objective of the FSRPTTW is to find the set of ship route that satisfy the loading constraint and 
draft limit, complete the transportation demand of all feeder ports (each feeder port is visited once), and 
minimize the total transportation cost, where the transportation cost includes sailing cost and waiting cost, 

and the weights are denoted by 𝛼 and 𝛽. 

 

Figure 2: Tidal time window. 

2.2 Notation and Model 

Based on the vehicle routing problem with time window with simultaneous pickup and delivery, this study 

proposes a periodic tidal time window constraint to describe the tidally influenced draft limit. The sets, 
parameters, variables and functions involved in the model are organized as follows. 

 
Set: 

 

𝑉 Set of Ports; 
𝑉′ Set of Feeder ports; 

𝐸 Set of edges; 
𝑃 Set of periods.  

Parameters: 
 

𝐾 Number of vehicles; 
𝐶 Capacity limit; 
𝑇𝑡 Maximum time of time horizon; 

𝑝𝑖 Pickup demand at vertex 𝑖; 

𝑑𝑖 Delivery demand at vertex 𝑖; 
𝑐𝑖𝑗 Travel cost of arc (𝑖, 𝑗); 

𝑡𝑖𝑗 Travel time of arc (𝑖, 𝑗); 

𝑠𝑖  A number big enough; 

𝑀 Pickup demand at vertex 𝑖; 

𝛼 cost parameter, weight of sailing cost; 
𝛽 cost parameter, weight of sailing cost. 

Functions:  
𝐺𝑆𝑖𝑝(𝑞) The time window front edge of a ship with load 𝑞 visiting port 𝑖 at period 𝑝; 
𝐺𝐸𝑖𝑝(𝑞) The time window rear edge of a ship with load 𝑞 visiting port 𝑖 at period 𝑝. 

Varaibles: 
 

𝑞𝑖𝑘 Load of ship 𝑘 leaving port 𝑖; 

𝑇𝐷𝑖𝑘 Total delivery of ship 𝑘 leaving vertex 𝑖; 
𝑇𝑃𝑖𝑘 Total pickup of ship 𝑘 leaving vertex 𝑖; 

Time (h) 

Water depth/ 

Draft (m) 

0 12 24 36 42 

C C 

6 

8 

10 

Tidal time windows 

6 18 30 
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𝑡𝑎𝑖𝑘 Arrival time of ship 𝑘 at vertex 𝑖; 
𝑡𝑙𝑖𝑘 Leaving time of ship 𝑘 at vertex 𝑖; 

𝑤𝑎𝑖𝑘 Waiting time of ship 𝑘 at vertex 𝑖 for entering; 

𝑤𝑙𝑖𝑘 Waiting time of ship 𝑘 at vertex 𝑖 for leaving; 

𝑎𝑖𝑝𝑘 Binary, whether ship 𝑘 arrivals at vertex 𝑖 during period 𝑝; 

𝑙𝑖𝑝𝑘 Binary, whether ship 𝑘 leaves from vertex 𝑖 during period 𝑝; 

𝑥𝑖𝑗𝑘 Binary, whether ship 𝑘 travels from vertex 𝑖 to vertex 𝑗; 

𝑦𝑖𝑘 Binary, whether ship 𝑘 visits vertex 𝑖. 
 

The mathematical model for FSRPTTW is as follows. 
 

𝑍 = min (𝛼 ∑ 𝑐𝑖𝑗

(𝑖,𝑗)∈𝐸

∑ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

+ 𝛽 ∑(𝑤𝑎𝑖𝑘 + 𝑤𝑙𝑖𝑘)

𝑖∈𝑉

)  (1) 

∑ 𝑦𝑖𝑘  

𝐾

𝑘=1

= 1 ∀𝑖 ∈ 𝑉′ (2) 

∑ 𝑦0𝑘

𝐾

𝑘=1

= 𝐾  (3) 

∑ 𝑥𝑖𝑗𝑘 = ∑ 𝑥𝑗𝑖𝑘 =

𝑗∈𝑉𝑗∈𝑉

𝑦𝑖𝑘 ∀𝑖 ∈ 𝑉′, 
∀𝑘 = 1, ⋯ , 𝐾 

(4) 

𝑀(𝑥𝑖𝑗𝑘 − 1) ≥ (𝑞𝑗𝑘 − 𝑞𝑖𝑘) − (𝑝𝑗 − 𝑑𝑗) 
∀(𝑖, 𝑗) ∈ 𝐸, 

∀ 𝑘 = 1, ⋯ , 𝐾 , 
(5) 

𝑀(𝑥𝑖𝑗𝑘 − 1) ≥ (𝑇𝐷𝑗𝑘 − 𝑇𝐷𝑖𝑘) − 𝑑𝑗 
∀(𝑖, 𝑗) ∈ 𝐸, 

∀ 𝑘 = 1, ⋯ , 𝐾 , 
(6) 

𝑀(𝑥𝑖𝑗𝑘 − 1) ≥ (𝑇𝑃𝑗𝑘 − 𝑇𝑃𝑖𝑘) − 𝑝𝑗 
∀(𝑖, 𝑗) ∈ 𝐸, 

∀ 𝑘 = 1, ⋯ , 𝐾 , 
(7) 

𝑞0𝑘 = ∑ 𝑥𝑗0𝑘

𝑗∈𝑉′

∗ 𝑇𝐷𝑗𝑘 ∀ 𝑘 = 1, ⋯ , 𝐾 (8) 

∑ 𝑥𝑖0𝑘

𝑖∈𝑉′

∗ (𝑞𝑖𝑘 −  𝑇𝑃𝑖𝑘) = 0 ∀ 𝑘 = 1, ⋯ , 𝐾 (9) 

0 ≤ 𝑞𝑖𝑘 ≤ 𝐶 
∀𝑖 ∈ 𝑉, 

∀𝑘 = 1, ⋯ , 𝐾 
(10) 

𝑡𝑙0𝑘 = 0 ∀ 𝑘 = 1, ⋯ , 𝐾 (11) 

𝑡𝑎0𝑘 ≤ 𝑇𝑡 ∀ 𝑘 = 1, ⋯ , 𝐾 (12) 

𝑀(1 − 𝑥𝑖𝑗𝑘) ≥ (𝑡𝑎𝑗𝑘 − 𝑡𝑙𝑖𝑘) − (𝑡𝑖𝑗) 
∀𝑖, 𝑗 ∈ 𝑉′, ∀(𝑖, 𝑗) ∈ 𝐸 

∀ 𝑘 = 1, ⋯ , 𝐾 
(13) 

𝑡𝑙𝑖𝑘 = 𝑡𝑎𝑖𝑘 + 𝑤𝑎𝑖𝑘 + 𝑠𝑖 + 𝑤𝑙𝑖𝑘 
𝑖 ∈ 𝑉′, 

∀ 𝑘 = 1, ⋯ , 𝐾 
(14) 

𝑡𝑎𝑖𝑘 + 𝑤𝑎𝑖𝑘 ≥ 𝐺𝑆𝑖𝑝(𝑞𝑖𝑘 − 𝑝𝑖 + 𝑑𝑖) + 𝑀(𝑦𝑖𝑘 − 1) + 𝑀(𝑎𝑖𝑝𝑘 − 1) 
∀𝑖 ∈ 𝑉′, 𝑝 ∈ 𝑃, 

∀ 𝑘 = 1, ⋯ , 𝐾 
(15) 

𝑡𝑎𝑖𝑘 + 𝑤𝑎𝑖𝑘 ≤ 𝐺𝐸𝑖𝑝(𝑞𝑖𝑘 − 𝑝𝑖 + 𝑑𝑖) − 𝑀(𝑦𝑖𝑘 − 1) − 𝑀(𝑎𝑖𝑝𝑘 − 1) 
∀𝑖 ∈ 𝑉′, , 𝑝 ∈ 𝑃, 

∀ 𝑘 = 1, ⋯ , 𝐾 
(16) 

𝑡𝑙𝑖𝑘 ≥ 𝐺𝑆𝑖𝑝(𝑞𝑖𝑘) + 𝑀(𝑦𝑖𝑘 − 1) + 𝑀(𝑙𝑖𝑝𝑘 − 1) 
∀𝑖 ∈ 𝑉′, 𝑝 ∈ 𝑃, 

∀ 𝑘 = 1, ⋯ , 𝐾 
(17) 

𝑡𝑙𝑖𝑘 ≤ 𝐺𝐸𝑖𝑝(𝑞𝑖𝑘) − 𝑀(𝑦𝑖𝑘 − 1) − 𝑀(𝑙𝑖𝑝𝑘 − 1) 
∀𝑖 ∈ 𝑉′, 𝑝 ∈ 𝑃, 

∀ 𝑘 = 1, ⋯ , 𝐾 
(18) 
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∑ 𝑎𝑖𝑝𝑘

𝑝∈𝑃

= ∑ 𝑙𝑖𝑝𝑘

𝑝∈𝑃

= 𝑦𝑖𝑘 ∀𝑖 ∈ 𝑉′, 
∀ 𝑘 = 1, ⋯ , 𝐾 

(19) 

𝑥𝑖𝑗𝑘 ∈ {0,1} 
∀(𝑖, 𝑗) ∈ 𝐸, 

∀𝑘 = 1, ⋯ , 𝐾 
(20) 

𝑦𝑖𝑘 ∈ {0,1} 
∀𝑖 ∈ 𝑉′, 

∀𝑘 = 1, ⋯ , 𝐾 
(21) 

 
Where the objective function of the model (1) is the minimization of the total ship cost, 𝛼 and 𝛽 are 

the coefficients of sailing cost and waiting cost. Constraints (2)-(4) are the degree balance constraints at the 

hub port as well as the feeder port. Constraint (5) establishes the relationship between visiting a port and 
the change of the ship, constraints (6)-(9) limit the total pickup amount and total delivery amount, and 
constraint (10) is the load constraint of the ship. Constraints (11) and (12) define the start time and end 
time, and constraints (13) and (14) establish the relationship between arrival time at a port, departure time 
from a port, service time and waiting time. Constraints (15)-(19) ensure that berthing and unberthing time 
are within the time window: when a feeder ship 𝑘 visits port 𝑖 in period 𝑝, its berthing time (arrival time + 

waiting time) needs to be later than the front edge of the tidal time window of that period and earlier than 
the rear edge of the tidal time window of that period, so is the unberthing time (service completion time + 
waiting time). The constraint (20) is a binary constraint of the decision variables. 

The problem studied in this paper differs from the traditional VRPTW in that constraints (15)-(19) 
construct a set of multiple time windows which change with the ship’s load and are nonlinear, which make 
the solution extremely difficult.  

3 ALGORITHM DESIGN 

Since the VRPTW is NP-hard, and the model proposed in this study includes nonlinear constraints (tidal 
time window), the problem complexity is greater, so this study first simplifies the model by Dantzig-Wolfe 
decomposition, and then designs a column generation algorithm to solve it. 

It can be observed that only constraints (2) and (3) consider all ships at the same time; all others are 
constraints on the routes of every single ship. This means that the model can be decomposed into two parts: 

assuming that all possible ship routes are known, the problem can be transformed into finding the set of 
minimum-cost routes satisfying the constraint that all feeder ports should be visited once, which is referred 
to the set-covering master problem model. While the relaxation problem of the master problem is solved 
by the simplex method, the process of finding an entering variable is to obtain a route that satisfies constraint 
(4)-(19) with a minimum reduced cost, which is called the pricing subproblem here. The decomposition 
process is known as Dantzig-Wolfe decomposition. 

Because the number of columns of the master problem is large, if all of them are considered, the 
complexity of solving the master problem is high. Therefore, during the solution, we can start from a 
feasible initial set of routes, obtain dual variables by solving the relaxed master problem and solve the sub-
problem to generate new routes and add into the set of routes so that the cost of the master problem may 
drop, repeat by iterations until the master problem gets a satisfying result. This solving process is called 
column generation. 

3.1 Model of the master problem 

Assuming that the set of all routes satisfying the (4)-(19) problem is 𝑆 , the original problem can be 
transformed into a simple set-covering problem to find a subset of 𝑆 with minimum cost and all feeder ports 
are visited all and only once. The mathematical model is as follows. 

 

Zmaster =  min ∑ 𝑐𝑟𝜆𝑟

𝑟∈𝑆

  (22) 
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∑ δ𝑖𝑟𝜆𝑟

𝑟∈𝑆

= 1 ∀i ∈ 𝑉′ (23) 

λr ∈ {0,1} ∀r ∈ 𝑆 (24) 
 

Where, 𝑐𝑟 denotes the cost of route 𝑟, λr is a decision variable with a value of 1 indicating that route 𝑟 
is selected and a value of 0 indicating that it is not selected, and δ𝑖𝑟 is a binary constant with a value of 1 
indicating that route 𝑟 visits port 𝑖 and a value of 0 indicating otherwise. The objective function (22) of the 
master problem is to minimize the total cost and the constraint (23) restricts all feeder ports to be visited 
once and only once. The main problem model no longer contains the nonlinear "tidal time window" 
constraint, which makes it less difficult to solve. 

3.2 Column generation 

When the problem size is large and there are too many elements in 𝑆, it is difficult to solve the master 
problem directly. However, it can be solved considering a feasible initial routes subset 𝑆′, which is called 
the restricted master problem, and the solution of the restricted master problem is the upper bound of the 
master problem solution, and can be optimized by adding routes to 𝑆′ by column generation. The column 
generation requires relaxing the integer constraints (constraints (23) and constraints (24)) of the master 

problem, known as the relaxed restricted master problem. The model of the relaxation-constrained master 
problem is as follows. 

 

Z𝑅𝑀𝑃 =  min ∑ 𝑐𝑟𝜆𝑟

𝑟∈𝑆

  (25) 

∑ δ𝑖𝑟𝜆𝑟

𝑟∈𝑆′

≥ 1 ∀i ∈ 𝑉′ (26) 

λr ∈ (0,1) ∀r ∈ 𝑆′ (27) 
 
According to the principle of duality, constraint (26) gives a dual variable 𝜋𝑖 , whose economic 

significance is the cost paid to satisfy the demand of feeder port 𝑖 in the present solution. For each ship 
route 𝑟, define the reduced cost 𝑐�̅�, which is calculated as follows. 

 

𝑐�̅� = 𝑐𝑟 − ∑ δ𝑖𝑟𝜋𝑖

𝑖∈𝑉′

 (28) 

 
If there exists a route with a negative reduced cost, it means that the cost of that route is lower than the 

cost of satisfying the same set of feeder port demands in the current solution. Adding it to 𝑆′ can drop the 
objective function of the relaxation restricted master problem. The subproblem is to find a route with 
negative and minimum reduced cost, and optimize the current solution. When the route with negative 
reduced cost cannot be found, the restricted master problem is considered to reach the same lower bound 
as the master problem, and the column generation process ends. The relaxations are removed in order to 
obtain an integer solution. 

3.3 Subproblem model 

Choosing 𝑥𝑖𝑗 as the decision variable indicating whether the route 𝑟 contains the edge (𝑖, 𝑗), the subproblem 
model is established as follows. 
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Z𝑠𝑢𝑏 = min (𝛼 ∑ (𝑐𝑖𝑗 −
𝜋𝑖

𝛼
)

(𝑖,𝑗)∈𝐸

𝑥𝑖𝑗 + 𝛽 ∑(𝑤𝑎𝑖 + 𝑤𝑙𝑖)

𝑖∈𝑉

) (29) 

(4)-(20)  

 
The objective function of the subproblem (29) is the minimization of the reduced cost, and the 

constraints are similar to the original problem constraints (4)-(20), because the subproblem solves the route 
of each ship, so there is no ship index 𝑘. 

3.4 Labeling algorithm 

The subproblem is a shortest path problem with resource constraints, and it contains negative cost because 
the dual variable 𝜋𝑖 needs to be considered, a multi-label algorithm is designed to solve it. In the multi-
label labeling algorithm, each label represents a feasible path, and it contains the sequence of nodes and the 
reduced cost. Initially, there is only one empty label, and the label is extended to traverse the solution 
domain. All labels are stored in 𝐿𝑖𝑠𝑡 for arranging the label extension order. 

Label extension: select a label in 𝐿𝑖𝑠𝑡,  and select a feeder port that has not been included in the label, 
the label is extended by inserting the port into the path before returning to the hub and gets a new label. The 
feasibility and reduced cost of the new label is calculated. If the new label is feasible, the new label will be 
added to the end of 𝐿𝑖𝑠𝑡; if all ports are extended, select the next label in 𝐿𝑖𝑠𝑡 and repeat the iteration. When 
all the labels in 𝐿𝑖𝑠𝑡 are extended, the multi-label algorithm ends and returns the routes with the negative 
reduced cost. 

Tidal time window: when solving the subproblem, the feasibility of each label needs to be calculated. 
The problem in this paper differs from other VRPs in that the time window for ship berthing and unberthing 
is affected by tides and ship’s loads.  

Taking berthing as an example, when a ship arrives at the port, the arrival time as well as the ship's 
load and draft can be obtained based on the ship's previous path. According to the port’s tide function and 
the arrival time, we can get the port draft limit at arrival. If the draft is less than the draft limit, the ship can 

berth directly without waiting. If the draft is greater than the draft limit, further judgment is needed: the 
maximum draft limit can be known according to the port’s tide function, and if the maximum draft limit is 
greater than the ship’s draft, the waiting time can be calculated by solving an equation of when the draft 
limit equals the draft, otherwise, it means that the ship cannot berth at any time and the label is not feasible. 

The label feasibility and waiting time are calculated in the same way when the ship leaves the port. 
Domination rule: The multi-label algorithm for the subproblem is able to search all feasible labels, 

which also means that it takes time. To speed up the multi-label algorithm, we use a heuristic domination 
rule to optimize it. For two labels 𝑎 and 𝑏 with the same set of visited nodes and the same last feeder port, 
if the cost of label 𝑎 is lower than that of label 𝑏, then label 𝑎 is considered " dominates" label 𝑏, i.e., for 
any new label extended by label 𝑏 there must exist a label extended by label 𝑎 with a lower cost by 
extending the same sequence of ports. If label b has not yet been extended, then label 𝑏 is removed from 
𝐿𝑖𝑠𝑡, and if label 𝑏 has been extended, then label 𝑏 and all its successor labels are removed from 𝐿𝑖𝑠𝑡. This 

domination rule is heuristic because it does not consider the tidal time window 

4 CASE STUDY AND SIMULATION 

To verify the effectiveness of the algorithm and compare the economic benefit of considering tidal draft 
limit, in this section, numerical cases will be generated and solved, and finally verified by simulation. The 
running environment is an AMD Ryzen 5 1400 Quad-Core Processor @ 3.20GHz processor with 8GB 
RAM and Windows 10 Education Edition system. Our data and model are organized and developed under 
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an open-source software framework, MicroCity (http://microcity.github.io), the programming language is 
lua, and linear programming and mixed integer programming are solved by CPLEX. 

In the simulation case design, the feeder port locations and demands are randomly generated. The feeder 

ports are randomly distributed in a square area with a length of 100 km, the hub port is located in the center 
of the area, and any two ports are accessible to each other. The distance is set as Euclidean distance. The 
hydrological environment and ship data are assumed based on the actual situation of the eastern and 
northeastern coast of China. The draft limit of the hub port is considered sufficient, and the draft limit of 
the feeder port at the lowest tide is 8m~10m, which differs for different ports. The tide is semi-diurnal, the 
function of which is a triangular function, the peak occurs at 0:00 and 12:00, while 6:00 and 18:00 are the 

low ebb of tide, the difference between which is 3 m. The sailing speed of the ship is 10 km/h, the maximum 
load is 3000 TEUs, the ship draft is 6m at no load, 12m at full load. According to Sun et al.(2016), the 
sailing cost coefficient is 𝛼 =  900 𝑈𝑆𝐷/𝑘𝑚, waiting cost coefficient is 𝛽 =  1200 USD/hour. The cases 
are named as Case_n_m, where n is the case index, m is the number of vertexes.  

4.1  Computational results 

Five cases are generated, including 3 small-scale cases and 2 large-scale cases. The computing time and 

objective function values are shown in the Table 1. Additionally, in order to illustrated the benefits of  tidal 
draft limit, an analysis of the static draft limit is applied. The static draft limit means that the depth of the 
navigation channel only considered the minimum draft limit. 

Table 1: Case Study. 

Case Name 
Static draft limit 

Tidal draft limit 

Enumeration Algorithm CG Algorithm 
GAP 

Obj. Time Obj. Time Obj. 

Case_1_21 857938.1744 26.637 556180.7119 19.283 588432.3715 5.80% 

Case _2_21 945327.7169 18.439 604028.7465 17.412 606291.1169 0.37% 

Case _3_21 702260.0632 39.82 496511.1251 24.27 496511.1251 0.00% 

Case _4_26 925134.5793 --- --- 160.748 659001.4017 --- 

Case _5_26 1062123.926 212.051 663408.1955 81.255 681443.5874 2.72% 

 Average           2.22% 

Enumeration algorithm is a direct mixed-integer programming to solve the master problem after 
enumerate all feasible routes. This algorithm is guaranteed to obtain the exact solution, but it will occupy a 
large amount of memory because of the lack of domination rules. It can be observed from Table 1 that our 

purposed algorithm can obtain a satisfying result in shorter time and can solve large-scale problems. 
The analysis of the static draft limit indicates that considering tidal draft can expand the solution space 

and achieve better results. An overall 33.10% transportation cost is reduced, which indicates that it is 
economically meaningful to consider the tidal time window. 

4.2 Simulation design 

At the beginning of the simulation, each ship is located at the hub and loaded with cargo which needs to be 

distributed to the ports along the route, and the sequence of ports is obtained by the algorithm described in 
this paper. The ships have five states, which switches under different conditions. At the beginning of the 
simulation, the ship’s state is sailing from the hub port to its first port. 

The sailing state refers to the state in which the ship sails from one port to another, and the origin and 
destination ports are known. In this state, the ship's position will be changed as time goes by, and the 
position change is calculated as follows. 
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𝑦𝑘
′ = 𝑦𝑘 +

(𝑦𝑗 − 𝑦𝑖)

√(𝑦𝑗 − 𝑦𝑖)
2

+ (𝑥𝑗 − 𝑥𝑖)
2

∗ Δ𝑡 ∗ 𝑠𝑝𝑒𝑒𝑑 
(30) 

𝑥𝑘
′ = 𝑥𝑘 +

(𝑥𝑗 − 𝑥𝑖)

√(𝑦𝑗 − 𝑦𝑖)
2

+ (𝑥𝑗 − 𝑥𝑖)
2

∗ 𝛥𝑡 ∗ 𝑠𝑝𝑒𝑒𝑑 
(31) 

 
When the ship arrives at the destination port, the ship state is changed. The draft and the draft limit of 

the navigation channel of the destination port is calculated at this time, and if the draft meets the limit, the 
ship’s state is changed to the service state, otherwise it is changed to the anchorage waiting state. 

The anchorage waiting state refers to the state where a ship arrives at the port and waits for the tide. 
In this state, the port draft limit changes with time, and the ship state changes to the service state when the 
draft limit is greater than the ship’s draft. 

The service state refers to the state in which the ship is in port for loading and unloading. In this state, 

the ship's load will change with time, and the change is as follows. 

𝑞𝑘
′ = 𝑞𝑘 + (𝑝𝑖 − 𝑑𝑖) ∗

Δ𝑡

𝑠𝑖
 (32) 

When the operation is completed, the ship’s state is changed. The draft of the ship at this time and the 
draft limit of the current port navigation channel are calculated. If the draft meets the limit, the ship’s state 

is changed to sailing state from current port to the next, otherwise it is changed to the berth waiting state. 
The berth waiting state is known as the state when the ship finishes the service and waits for the tide 

at the berth before leaves the port. In this state, the port draft limit will change as time goes by. When the 
draft limit is greater than the ship draft, the ship’s state changes to sailing state from current port to the next. 

The end state is when the ship position returns to the hub port again, the ship’s state changes to end 
state. In this state the ship status and properties will not be changed anymore. The simulation ends when all 

ships' states are changed to end state. 

4.3 Simulation result 

Figure 3 shows the ship route of Case_5_26 under four equally divided time slices. From the final results, 
it can be seen that the ship visits are mostly concentrated at noon or midnight, when the tide is at its highest, 
and the ship draft limit is easily to be satisfied. The video and codes of the computer simulation in this 
paper are available online (https://github.com/NemoChina/FSRPTTW_Simulation.git). 

5 CONCLUSION AND FUTURE RESEARCH 

In this paper, we study the routing problem of feeder ships, and combine with the influence of tide on the 
feasibility of berthing and unberthing. Establish the feeder ship routing problem with tidal time window 
(FSRPTTW). Unlike the traditional vehicle routing problem with time window (VRPTW), the "tidal time 
window" is periodic, and the size of the time window changes with the increase or decrease of the ship's 
load, which is more suitable for describing the actual situation of shipping. 

Since the problem proposed in this study is nonlinear, the Dantzig-Wolfe decomposition is carried out 
to simplify the model, and a column generation algorithm is applied; then a heuristic dominant labeling 
algorithm is designed for the sub-problem. Our proposed algorithm framework achieves a balance in 
solution accuracy and speed. 

Finally, case simulation is applied to prove the effectiveness of the algorithm and the economic 
significance of considering the tidal time window. 

The column generation algorithm used in this paper is a heuristic algorithm, and we intend to develop 
an exact algorithm to solve this problem in future research. In addition, the assumptions for case generation 
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in this paper are idealistic, and we would make them more realistic in future studies, such as using reality-
based ship and cargo assumptions and considering the impact of the COVID epidemic. 

 

Figure 3: Simulation result. 
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