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ABSTRACT 

As the bridge between land and sea transports, container terminals play a significant role in global trading 

activities. In order to improve the operational efficiency at the wharf apron, this paper introduced an 
integrated scheduling problem with the consideration of vehicle dispatching and routing, and developed a 
time-space network based on takt time. Given the highly uncertain nature of vehicle movement and 
equipment handshakes, a simulation-optimization approach was developed, which integrates an improved 
particle swarm optimization and a discrete event simulation model. To further reduce simulation run time, 
parallel computing was adopted in the algorithm. Numerical experiment shows that the proposed algorithm 

outperforms the genetic algorithm-based and strategy-based simulation-optimization approach. 

1 INTRODUCTION 

With the trend of economic globalization and the rapid development of global maritime trade, every 
government has admitted that the container terminal is vital to its economy (Hsu and Wang 2020). The 
wharf apron is at the seaside of the terminal and connects between the quayside activities and yard side 
activities. It consists of quay cranes, vehicles (i.e., automated guided vehicle, AGV), and space for the 

vehicle traveling back and forth. The space is composed of three parts, i.e., working lanes, passing lanes, 
and holding buffers. Vehicles interact with the quay crane on working lanes, which are beneath the quay 
crane arm. Passing lanes are for vehicles crossing the wharf at high speed. Once the vehicle approaches the 
corresponding quay crane, it will turn into the holding buffer and wait for being called. 

For large vessels, thousands of containers will be discharged and loaded in a few hours (Chen et al. 
2020). In order to depart the vessel in the shortest possible time, the terminal operating system (TOS) needs 

to manage a fleet of vehicles to handle all pending tasks at the same time. Due to the limited space, the 
coordination between quay cranes and vehicles is a technical difficulty. If the coordination fails, vehicles 
may face heavy traffic jams or conflicts on lanes, and even form a deadlock, which has to be avoided to 
maintain a smooth operation at the wharf apron. 
 Thus, in this paper, it is interested in determining an integrated scheduling plan at the wharf apron, 
including (1) vehicle dispatching, i.e., which vehicle is assigned to which task, and (2) vehicle routing, i.e., 

which lanes should each vehicle take for the vehicle to travel from its origin to destination. However, there 
are many uncertain factors in practice, such as vehicle arrival time at the wharf and the handling time of 
quay cranes and yard cranes, making it difficult to determine the plan. Those factors are also difficult to 
model in close mathematical form. Thus, it motivates us to use simulation to describe the complex 
operations at the wharf, and then integrate it with a heuristic algorithm to search for the optimized plan. 
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 The contribution of this paper is to first propose a time-space network based on beat time to describe 
the moving process of vehicles at the wharf apron and then formulate a mixed integer programming model 
to describe the problem formally, and a particle swarm optimization algorithm is proposed to solve it. 

Considering the uncertainty, a simulation-optimization approach is proposed based on the simulation 
software FlexSim. The rest of the paper is structured as follows: Section 2 reviews the relevant literature. 
Section 3 establishes a mathematical model based on an time-space network based on takt time, followed 
by two heuristic algorithms proposed in Section 4. Section 5 develops the simulation-optimization 
approach, and corresponding numerical experiments can be found in Section 6. Finally, Section 7 draws 
the conclusion and suggests future research directions. 

2 LITERATURE REVIEW 

Container terminal scheduling has become a hot research field in the past ten years. Previous scholars only 
improve the efficiency of a single piece of equipment, but optimizing the scheduling of a kind of equipment 
may lead to a suboptimal solution. So, the scheduling problem of the container port has changed from the 
single equipment to the collaborative scheduling between multiple types of equipment. 

For the quayside scheduling, Chang et al. (2010) considered the integrated scheduling problem of berth 

and quay cranes allocation. A multi-objective dynamic allocation model is formulated, and a genetic 
algorithm is designed to solve the problem. Similarly, Xiang and Liu (2021) studied the integrated problem 
of berth allocation and quay crane assignment. The study adopted the k-means clustering method to 
formulate a robust integrated scheduling model. Hsu and Chiang (2019) studied the dynamic and continuous 
berth allocation problem, established a mixed-integer programming (MIP) model, and solved the problem 
through a two-stage approach, which significantly outperforms benchmark algorithms. For the yard side 

scheduling, in order to decrease the carbon dioxide emission and cut down the maintenance cost of yard 
cranes, a two-stage stochastic programming model is proposed to plan yard template in Hu et al. (2021). 
An improved Benders decomposition algorithm is developed to solve large-scale scenarios. Niu et al. (2016) 
focused on two scheduling problems in container terminals, i.e., yard truck scheduling problem, and the 
integrated yard truck scheduling and container storage allocation problem. Chen et al. (2020) investigated 
an integrated scheduling problem of rail cranes and AGVs. A multi-commodity network flow model is 

established in the form of the space-time network, which is solved by the Lagrange relaxation method. Cao 
et al. (2020) considered the synchronous scheduling between yard cranes and yard trucks to shorten the 
turnover time of container vessels. Effective vehicle scheduling plays a crucial role in terminals as the 
vehicles directly interact with quay cranes and yard cranes. For vehicle dispatching and routing related 
problems, Xu et al. (2020) proposed a route planning model to resolve the challenge of low utilization 
caused by the no-load return of AGVs. The study established an AGV access route planning model and was 

solved by a simulated annealing algorithm. Luo et al. (2016) proposed an integrated problem of vehicle 
scheduling and container allocation, and designed a genetic algorithm as the solution approach. Luan et al. 
(2021) proposed a MIP model based on a time-space network and two bi-level algorithms to solve the 
equipment scheduling, lane allocation, and AGV conflict-free path planning problem simultaneously. 

In summary, it can be found that the research on container terminals mainly focuses on the scheduling 
and allocation of single or multi resources. The integrated scheduling problem on vehicle dispatching and 

routing, especially on land and buffer allocation, was rarely discussed, and relevant topics with the 
consideration of uncertain factors were even less, not to mention using simulation, and simulation-
optimization as solution approaches.  

3 MATHEMATIC MODEL 

3.1 Problem Description 

This paper focuses on the integrated scheduling problem at the wharf apron, which optimizes vehicle 

dispatching and routing, crossing different types of lanes in the transportation network. There are three 
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types of tasks, i.e., loading, discharging and empty. Figure 1 gives an illustration of how AGV operates at 
wharf apron: for a loading task, the vehicle will pick up a container at the yard side, travel through the 
passing lanes, hold short in one of the holding buffers, and then turn into working lane to interact with the 

quay crane. The discharging task will transport a container from the quayside to the yard side, and the 
vehicle operates in reverse of the loading task. The empty task is for a vehicle to move from the last known 
position to the starting position of the next task. 

An example of the operation is also shown in Figure 1. Vehicle V1 will wait for the quay crane to load 
the container on a working lane, and then it will pass through the holding buffer and the passing lanes to 
reach the yard side. The container will be discharged by the yard crane, and then the vehicle V1 will return 

to the quay crane to perform the next transportation task. Note that in Figure 1, when vehicle V1 is in the 
holding buffer, it happens that another vehicle V2 attempts to pass through the same holding buffer, so the 
conflict between the two vehicles needs to resolve. In this case, the system may schedule the first-arrival 
vehicle to take the buffer first (e.g., V1), and let V2 to wait in the passing lane. Of course, the system can 
direct V2 to an empty buffer if the particular rule is applied. 

   

Figure 1: Problem illustration. 

Specifically, the notations used in this paper are defined as follows. Task i I  is carried out by a 
vehicle to transport. A task i can also be denoted as a container i. The vehicle vV  parks on the working 
lane kK and wait for the task i I  to be loaded. Once the quay crane loads the container onto the vehicle, 
the vehicle passes through the holding buffer lL , and turns into the passing lane pP   to get to the yard 
side. After the container is discharged, the vehicle immediately returns to the quayside to transport another 

container j I . At the same time, once a vehicle v occupies the buffer l, other vehicles can not longer 
choose the buffer l. As the operation procedures of loading and discharging are symmetric, this paper only 
considers import containers. Assume quay crane and yard crane can only load or unload one container at a 
time. 

3.2 Time-Space Network based on Takt Time 

The time-space network is commonly used in the container terminals to schedule vehicles and tasks, such 

as Caprara et al. (2002); Shang et al. (2019) and Luan et al. (2021), which discretizes the time dimension 
by time period. However, the length of the time period will significantly affect the computation complexity. 
Three types of lanes require different ways of management. Vehicles need to interact with quay cranes for 
a few minutes in the working lanes, so the TOS does not need to check the status of the vehicle often. The 
holding buffers are used to temporally park the vehicles coming from the passing lanes. To avoid blocking 
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the passing lanes, the TOS needs to frequently manage vehicles within, and once the working lane or 
holding buffer is available, the TOS will schedule the vehicle to its next location. 

Therefore, an time-space network based on takt time is proposed according to the features of real-world 

operations as above. The idea is to define a minimum time unit, aka takt time, to schedule vehicles in 
holding buffers. Correspondingly, the time units of working lanes and passing lanes are 3 units and 2 units 
of takt time, which can be set according to the requirement of specific problems. As an example of 
integrated scheduling, Figure 2 shows the process of two vehicles transporting containers. Vehicle 1 selects 
lane 3 in the working lanes. Once the container is loaded, it departs to the holding buffer at 2t = , and takes 
2 time unit to reach holding buffer 4, and then holds for 2 time units. Later, Vehicle 1 leaves the holding 

buffer and turns into passing lane 2 at 8t = . Then the yard crane may discharge the container at 11t = , and 
then Vehicle 1 departs from passing lane 2 immediately. At 13t =  Vehicle 1 arrive at the assigned holding 
buffer 4 taking 2 time units, and it leaves after 2 time units. Finally, Vehicle 1 gets to the working lane 3 at  

17t = to carry out the next task. The movement of Vehicle 2 is similar to Vehicle 1.  

  

Figure 2: Time-space network based on takt time. 

3.3 Modeling 

Based on the time-space network concept, a mixed integer programming model is established, and the 

relevant notations are listed in Table 1, and decision variables in Table 2. 

Table 1: Notations of sets and parameters. 

Set Description Parameter Description 

V Set of vehicles α Takt time of working lanes 

I Set of tasks β Takt time of holding buffers 

K Set of working lanes γ Takt time of passing lanes 

L Set of holding buffers kl  Turning time from lane k to buffer l 

P Set of passing lanes lp  Turning time from buffer l to lane p 
k

N  Set of takt time unit of working lanes   Handling time of quay crane loading 
l

N  Set of takt time unit of holding buffers   Handling time of yard crane discharging 
p

N  Set of takt time unit of passing lanes i  Arrival time of task i 
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Table 2: Notations of decision variables. 

Decision variables Description 

, ,ikn iln ipnx y z  =1, if task i selecting lane(buffer) k/l/p of nth takt time; =0, otherwise. 

viw  =1, if vehicle v performs task i; =0, otherwise. 

viju  =1, if vehicle v performs task i before task j; =0, otherwise. 

q

is  Start time of quay crane loading task i. 
y

is  Start time of yard crane discharging task i. 
k

ia  Time of task i arriving at working lanes. 
l

ia  Time of task i arriving at holding buffers. 
p

ia  Time of task i arriving at passing lanes. 
k

id  Time of task i leaving working lanes. 
l

id  Time of task i leaving holding buffers. 
p

id  Time of task i leaving passing lanes. 

T Makespan 

 
The full model is listed as follows: 

Objective function:   minT                                                                            (1) 

Subject to: 

 , },min{p y p
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j , j i i

u w v i
  

   − 
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The objective is to minimize the total makespan T. Constraints (2)-(6) are time constraints which need 
to be satisfied while the task is being performed, where M is a large positive number. Constraints (7)-(9) 

1948



Zhu, Zhou, and Che 
 

 

denote the relationship between arriving time of each area and the selected takt time. For example, for 
constraint (8), if 1ilny = , then the time l

ia  arriving at the holding buffers must be within the interval 
]1)[ ,(n n − . Constraint (10) indicates that one task can only select one takt time of one lane in each area, 

and one task can only be performed by one vehicle. For Constraint (11)-(12), for arbitrary tasks i and j, 
1vij vjiu u+   must hold. If 1vij vjiu u+ =  which indicates both tasks i and j are performed by vehicle v, then 
2vi vjw w+ = ; if 0vij vjiu u+ =  which indicates vehicle v either performs only one of task i and j or neither, 

then 1vi vjw w+  . Thus Constraint (11) and (12) hold. In Constraint (13), viju represent the total number 
of tasks performed by vehicle v before task j, and viw is the total number of tasks performed by vehicle 
v. If task j is the last task performed by vehicle v, then 1vij viu w= −  ; otherwise, 1vij viu w −  . 

4 SOLUTION APPROACH 

Despite the conventional solution approaches commonly used to solve integrated scheduling problems, the 
uncertainties during the operation always interfere with the schedule. For example, the miss-match between 
equipment handshakes will cause one equipment to wait for the other one, and the schedule will be disrupted 
with errors accumulating. Therefore, a solution that has good performance under uncertainties is more 
preferred than an optimal solution in deterministic settings. 

 Simulation-optimization has been proven to be useful to find good solutions in complex systems with 
high uncertainties, especially when the system’s performance cannot be formulated precisely. Its 
applications in maritime logistics can be found in Zhou et al. (2021). The integrated scheduling problem 
described in this study is in line with the characteristics of the simulation-optimization problem, where the 
search algorithm, specifically the particle swarm optimization (PSO), is used to sample feasible vehicle 
dispatching and routing decision, while the simulation is used to evaluate the real performance of the 

solutions. The framework of the proposed simulation-optimization approach is illustrated in Figure 3. 
The PSO was firstly proposed by Kennedy and Eberhart (1995), which has been widely adopted to 

solve maritime problems because of its simplicity and efficiency, such as quay crane scheduling 
problem(Malekahmadi et al. 2020), yard truck scheduling problem (Hsu et al. 2021), yard crane scheduling 
problem (He et al. 2015). In a recent development, a PSO variation, local PSO (LPSO) proposed by Niu et 
al. (2016), has shown to be effective in solving the integrated problem of yard truck scheduling and storage 

allocation. In this study, the LPSO is further modified to be part of the simulation-optimization framework. 

4.1 Local Particle Swarm Optimization 

Before going into details, the solution of the PSO algorithm needs to be defined: the solution has 5I 
elements, i.e., ( ) (2 ) (3 ) (4 ),..., ,..., ,..., ,...,{ }ni n I i n I i n I i n I in

x x x x x+ + + +=X for 1,2,..., , 1,2,...,i I n N= = , and nix  is a 
real number. ][ ,0  nix V  indicates that the vehicle nix    performing task i, where x    takes the minimal 
integer which is not less than x . If one or several tasks are handled by the same vehicle, ( 1) [0, ]n Ix I+   will 

determine the handling sequence of those task(s). For instance, if ni njx x =     , ( ) ( )n I i n I jx x+ +  indicates that 
the vehicle performs task i before task j. (2 1) [0, ]n Ix K+   denotes that the task i selects working lane 

(2 )n I ix +   . The definitions of (3 ) [0, ]n I ix L+   and (4 1) [0, ]n Ix P+  are similar to (2 1)n Ix + , which represent 
holding buffers and passing lanes, respectively.  An example of the solution representation with 

10, 3, 3, 20I V K L= = = = , and 6P =  is given in Figure 4. In the row with 
nix , the remark denotes that 

each task is handled by one of the vehicles. In the row with ( )n I ix + , each cell has a value with a unique 

integer number, which represents the order of vehicles performing tasks. 
Motivated by Clerc and Kennedy (2002), the formulations for updating particle position and velocity 

are 1 1t t t

n n n

+ += +X X V  and 1

1 1 2 2( ( ) ( ))t t t t t t

n n n n nc R c R+ = + − + −V V P X G X  respectively, where 
t

nV  and 
t

nX  
is the current velocity and position of particle n, t

nP  and 
t

G is the current best and global best positions of 
particle n, 

1R  and 
2R  are a random number of [0,1] , c1 and c2 are acceleration coefficients, and   is called 

constriction factor. Note that c1 and c2 can be computed by 1,2 min max min( ) /c c c c t T= + −  , where T is the 

maximum number of iterations.   is used to prevent the infinite growth of velocity and ensure the 
convergence of the algorithm, and it is computed by 2 1/2=2/|2 ( 4 ) |c c c − − − , where 

1 2 , 4c c c c= +  . 
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Figure 3: Framework of simulation-optimization approach. 

 

Figure 4: Solution representation. 

Generally, particles share information through the global best position 
t

G , which means that each 
particle interacts with other particles in the whole population and may lead to local optimal. As an 
improvement, Eberhart and Kennedy (2002) and Marinakis et al. (2013) proposed a new concept, i.e., 
LPSO, which constructs a neighborhood topology for each particle. The neighborhood topology of a 
particle, which can usually be represented by a graph, is the set of particles connected to it. As shown in 

Figure 5, the global best position 
t

G  in the whole population is replaced by the local best position t

nL  in 
the particle neighborhood topology, and ring topology is one of the most commonly used structures.  

  

Figure 5: Ring topology. 
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In the ring topology, each particle is only connected with 2k particles (the global PSO is equivalent to 
that each particle is connected with N-1 particles, as shown in Figure 5(a)), and the indexes of these particles 
are sequential. For example, the particles connected with particle i are ,..., ,...,i k i i k− + . As shown in 

Figure 5(c), when k =1, the ring topology has the simplest structure, and each particle is only connected 
with two adjacent particles. When k takes a small value, the ring topology can delay the propagation of 
information in the whole population and reduce the convergence speed. Let n  denote the neighborhood 
topology of particle n, then the local best position is { | ( ) ( ), }

m m m n

t

n
f f=  X X X XL  and velocity 

formulation is 1

1 1 2 2( ( ) ( ))t t t t t t

n n n n n nc R c R+ = + − + −V V P X L X . 

There are two strategies to generate the initial solution: random strategy and equilibrium strategy. The 

random strategy is to generate a solution following the uniform distribution. The equilibrium strategy is to 

balance the workload between vehicles. Following this idea, first, some solutions are generated randomly 

and then retain solutions whose number of tasks performed by vehicles is within the range of ± 20% of the 

average value /I V . Those solutions beyond the range are regarded as inferior solutions and can be 

discarded. The process is repeated until a good solution is found. 
Due to the rapid growth of velocity, the PSO may fall into local optimum easily. Therefore, inspired by 

Zeng et al. (2017), a mutation mechanism is proposed. Given the mutation rate Pm and two random numbers 
r1 and r2, if 1 mr P , then perform the mutation operation. If mutation is performed and the random number 

r2 is larger than 0.5, 1(1 / ) ( )n n n nR t T = + − −X X P X ,  otherwise, 1(1 / ) ( )n n nR t T = + − −X X G X . 
Meanwhile, a large mutation rate is set at early stage of the iteration to increase the search range, and a low 
mutation rate is set at a later stage to search for the optimal solution. Thus, max max min( ) /m mm mP P P t GP = − − 

. In addition, a repairing procedure is implemented: for two tasks i and j performed on the same vehicle, if 

i j  , ( ) ( )n I i n I jx x+ +  holds; otherwise, swap the values of  ( )n I ix +  and ( )n I jx + .  

4.2 Simulation Modeling 

The simulation model developed in this study is based on commercial software FlexSim, which supports 
modeling as discrete event simulation. Our model is modeled in the combination of 3D objects and process 
flows. The 3D objects are to simulate equipment interactions, especially vehicle movement, which represent 
quay cranes and yard cranes. The process flow model controls the simulation logic of the 3D objects. 

To manage resources such as AGVs, tasks, quay cranes, and yard cranes, the List of the process flow 
is adopted. Corresponding Lists, i.e., AGVList, TaskList, QCList, and YCList, is used to hold resources until 

it is called to serve other activities by triggering a Pull Activity. The resource will be returned back to the 
List via a Push Activity. The logic of the simulation model process is as follows: 
 

Simulation Logic 

Step1 

Step2 

Step3 

Step4 

Step5 

Step6 

Step7 

Step8 

Step9 

Step10 

Step11 

Step12 

Step13 

Convert the solution into a suitable form for the simulation model; 

Pull a task from the TaskList, and pull an AGV from AGVList; 

Pull a quay crane from QCList; 

Quay crane loads the task onto AGV; 

Push QC into QCList; 

After leaving the working lane, arrive at the holding buffer, and then reach passing lane(s); 

Pull a yard crane from YCList; 

Yard crane discharges the task from the AGV; 

Push YC into YCList; 

Task enters the Sink, and the AGV returns to the quayside; 

Push AGV into AGVList; 

If it is the last task, go to Step 2; Otherwise, go to Step 13; 

Output results. 
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5 NUMERICAL EXPERIMENT 

In this section, under the simulation-optimization framework, the performances of the LPSO and 
benchmark heuristics, including the genetic algorithm (GA) and first-come-first-serve-based algorithm 

(FCFS), are evaluated. As a reference, the lower bound of the problem is obtained using the commercial 
solver Gurobi. The algorithms are developed in C++ using Visual Studio 2019. The experiments are 
conducted on a workstation with Intel(R) Xeon(R) W-1290P CPU (10 Cores) @ 3.70GHz and 64GB RAM. 
The version of FlexSim software is 20.1.1 Education version. 

5.1 Experiment Setup 

The vehicle speed, and the handling times of the quay crane and yard crane are assumed to follow a normal 

distribution with the mean value of 4.5 meters per second, 120 seconds, and 90 seconds, and the standard 
deviation of 0.167, 1.667, 1.667, respectively. According to the layout of Xiamen Yuanhai Port, the length 
of the wharf apron is 400 meters, and the width is 104 meters. The working lane has 4 lanes while the 
passing lane has 6. In between, there are 50 holding buffers that are perpendicular to working and passing 
lanes. The parameters of the LPSO, including T, N,  ,  , max

mP , min

mP , maxc , and minc , are set to be 20, 20, 
4, 0.7,0.1, 0.01, 5, and 2, respectively. 

 The size of the problem can be defined by the number of tasks and the number of vehicles, which is 
denoted as ( )I V . For demonstration purposes, four scenarios in different problem sizes are introduced, 
i.e., (20 )6 , (40 )6 , (60 )8  and (80 )8 . Five replications will be conducted for each scenario, and the 
average value is taken as the outcome. In order to obtain statistical results, 100 simulation runs will be 
conducted for each particle, and the simulation is conducted in non-parallel way. 

5.2 Result Analysis 

The experiment results are shown in Table 3, where LB is the lower bound of the problem obtained from 
Gurobi, in which the input data is fixed, so the LB is the same for the same scenario. OBJ is the objective 
value of the corresponding algorithm, Time represents CPU time, Gap is the gap between OBJ and LB, 
where ( ) / 100%Gap OBJ LB LB= −  . Note that due to the randomness in the simulation, the results have 
randomness, so it is reasonable that gap is negative in Table 3. 
 In Table 3, it can be found that from the view of problem size, the LPSO outperforms the GA and is far 

better than the FCFS. Preliminary results also show that the average gap decreases when the problem size 
increases. It is possible that when the ratio between the numbers of vehicles and tasks is appropriate, 
vehicles can be fully utilized with the minor waiting time. If there are too many vehicles or too few tasks, 
the vehicle may become idle frequently. 

In terms of computational efficiency, the average computing time of all approaches increases with the 
increase of problem size. This reason is that the larger problem size, the more vehicles and tasks, so the 

time for a single simulation run increases accordingly. In addition, the convergence of LPSO and GA 
algorithm is shown in Figure 6. It can be founded that LPSO algorithm decreases rapidly in first few 
iterations and becomes stable after a donze of iterations. However, the GA-based approach takes longer 
time to get a significant improvement. Note that it is normal that the starting points of LPSO and GA are 
different because the two approaches find different optimal solutions in the first generation. 
 Note that, in Table 3, as single thread is used for simulation experiment, it takes three hours or more to 

achieve the results of LPSO and GA. It is mainly due to the huge number of simulation runs needs to be 
executed during the whole search. Thus, we further adopts the parallel computing technique to accelerate 
the simulation run for scenario (20 )6  at each iteration of LPSO and GA algorithms. As the CPU is 
equipped with 10 cores, multiple threads (nearly 20) can be used to run simulation experiment concurrently. 
As shown in Table 4, the computation time of the LPSO and GA are much less, 1248 seconds verse 10957 
seconds, than the result presented in Tabel 3, which is acceptable in real world application. 
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Table 3: Algorithm comparison. 

No. 
Gurobi LPSO GA FCFS 

LB OBJ Time Gap(%) OBJ Time Gap(%) OBJ Time Gap(%) 

Scenario (20×6) 

1 

2501 

2452.67 11071.19 -1.93 2763.24 11073.66 10.49 2939.67 499.52 17.54 

2 2469.47 10937.48 -1.26 2608.53 11014.60 4.30 2771.37 492.81 10.81 

3 2603.97 9808.28 4.12 2574.41 11214.41 2.94 3019.91 446.66 20.75 

4 2590.30 10171.25 3.57 2653.41 10848.61 6.09 2951.02 462.06 17.99 

5 2578.73 11799.74 3.11 2690.56 11220.20 7.58 2985.34 440.28 19.37 

Avg. 2501 2539.03 10757.59 1.52 2658.03 11074.30 6.28 2933.46 468.27 17.29 

Scenario (40×6) 

1 

4373 

4655.38 10830.60 6.46 5005.80 11834.11 14.47 5143.90 472.17 17.63 

2 4737.21 10884.58 8.33 5076.57 10536.00 16.09 5531.14 532.83 26.48 

3 4722.57 11851.58 7.99 4868.22 11700.53 11.32 5218.62 519.61 19.34 

4 4814.28 10547.87 10.09 4759.32 12173.13 8.83 5489.74 505.80 25.54 

5 4761.78 11887.95 8.89 4815.05 10763.33 10.11 5161.83 479.80 18.04 

Avg. 4373 4738.24 11200.52 8.35 4904.99 11401.42 12.17 5309.05 502.04 21.41 

Scenario (60×8) 

1 

6857 

6900.29 12394.24 0.63 7049.04 11841.02 2.80 8268.30 584.89 20.58 

2 6859.56 13120.62 0.04 6910.03 11744.10 0.77 8040.07 518.30 17.25 

3 6876.98 13052.03 0.29 7017.32 13371.63 2.34 8088.42 585.39 17.96 

4 6903.04 12348.55 0.67 7006.06 12145.37 2.17 7945.78 498.09 15.88 

5 6934.87 11921.56 1.14 6848.21 13232.70 -0.13 7704.36 523.03 12.36 

Avg. 6857 6894.95 12567.40 0.55 6966.13 12466.96 1.59 8009.38 541.94 16.81 

Scenario (80×8) 

1 

9041 

9027.37 13918.46 -0.15 9092.01 13983.34 0.56 10348.90 629.11 14.47 

2 8989.28 13417.02 -0.57 9033.40 13604.86 -0.08 11005.69 610.08 21.73 

3 9023.38 14699.26 -0.19 9017.62 13984.87 -0.26 10107.18 665.47 11.79 

4 9118.99 13990.51 0.86 9070.83 14187.59 0.33 10728.39 562.81 18.66 

5 9172.65 13164.81 1.46 9164.23 13372.74 1.36 10689.42 626.31 18.23 

Avg. 9041 9066.33 13838.01 0.28 9075.62 13826.68 0.38 10575.92 618.76 16.98 

 

 
Figure 6: Convergence of LPSO and GA for scenario (20 × 6). 
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Table 4: Algorithm comparison. 

No. 
Gurobi LPSO GA FCFS 

LB OBJ Time Gap(%) OBJ Time Gap(%) OBJ Time Gap(%) 

Scenario (20×6) 

1 

2501 

2476.17 1250.91 -0.99 2605.02 1406.22 4.16 2939.67 499.52 27.26 

2 2413.38 1237.95 -3.50 2603.70 1495.98 4.11 2771.37 492.81 19.97 

3 2443.68 1292.09 -2.29 2609.92 1505.62 4.36 3019.91 446.66 30.73 

4 2420.82 1234.81 -3.21 2549.88 1504.17 1.95 2951.02 462.06 27.75 

5 2447.66 1227.30 -2.13 2592.17 1415.97 3.65 2985.34 440.28 29.24 

Avg. 2501 2440.34 1248.61 -2.43 2592.14 1465.59 3.64 2933.46 468.27 26.99 

 

6 CONCLUSION 

This paper studies the integrated scheduling problem of vehicle dispatching and routing with the 
consideration of potential conflicts within working lanes, passing lanes, and holding buffers at the wharf 

apron. The problem was first developed into a mixed integer programming model using time-space network 
based on takt time, which allows different equipment to have unequal time units, i.e., takt time. To handle 
the operation uncertainty and obtain a good feasible solution, a PSO-based simulation-optimization 
approach was developed, which integrated the LPSO with certain mutation and repairing techniques. 
Through four groups of numerical studies, the result of the objective value showed that the LPSO 
outperformed other benchmark heuristic and strategy based algorithms from 0.1% to 6%. Further more, 

when the parallel computing is implemented for simulation run, the computation time can be significantly 
reduced by 88.6 % on average. 

As a preliminary work, this paper still has room for improvements. For example, (1) Better benchmark 
algorithms can be compared with the proposed one; (2) The number of iterations can be dynamically 
adjusted according to the trend of outcomes using the multi-fidelity simulation-optimization approach. The 
approach may use a simplified simulation model or a queueing model to quickly evaluate solutions in the 

large range. Once the promising solutions are identified, a detailed simulation model will be used to search 
for the optimized solution; (3) In addition, by controlling the total computing budget, the number of 
simulation runs for each particle, and the number of iterations can be optimized based on the optimal 
computing budget allocation algorithm. 
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