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ABSTRACT

Using simulation models for manufacturing facilities is a common approach for planning, optimizing, and
testing different machine configurations and positioning before the actual construction. However, creating
these models is time-consuming and costly. Consequently, only a few different simulation models are
usually created based on best practices and experience, precluding any examination of the entire variety of
possible solutions. To address these obstacles, we present a proof of concept to automate and hence reduce
the cost of the process of simulation model creation, thereby allowing for the creation of a larger number
of selectable solution variants. Based on a given master simulation model, which obtained all possible
variations of a shop floor, we defined simulation building blocks as components. We used component-based
synthesis using combinatory logic to synthesize a product line of varying simulation models for a given
configuration to be executed and evaluated to find suitable solutions.

1 INTRODUCTION

Simulation of complex processes in manufacturing facilities is a powerful method for production planning
and optimization regarding dimensioning machines, production lines, and virtual commissioning (Reinhardt
et al. 2019). It allows the evaluation of different variants to support the decision-making process (Negahban
and Smith 2014). Nevertheless, setting up and executing a simulation model is often a manual process that
involves several steps and experts — for instance, defining simulation scenarios by a production planner,
consolidating and preparing input data for the simulation by a data analyst, and implementing simulation
models by a simulation expert (Chance et al. 1996). Because of the different process steps and experts,
the development cycles of simulation models tend to need time from several days to weeks (Lugaresi
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2021). A possible strategy to reduce this effort from days/weeks to hours or minutes is automating the
generation of the simulation models for a given scenario and input data. Furthermore, various variants of
a manufacturing facility often need to be evaluated in a simulation study to make an informed decision,
which leads to adapting the simulation model’s parameters, control strategies, and structures (Wenzel et al.
2019). In addition to the time and cost of constructing these simulation models, comparing a large number
of variants binds resources and workforce.

To address especially the challenge of generating multiple variants, we present in this paper a proof of
concept (PoC) for the automated generation of a product line of simulation models for shop floor layouts
of machines in a fabric hall.

Instead of creating new simulation models from scratch, we start with a master simulation model,
which allows obtaining all possible variations of a shop floor. However, each variation of the shop floor
has to be modeled individually by a simulation expert. We use this master simulation model to define
and extract different components, connections, and variation points in the model. A component-based
synthesis framework then uses these elements to construct various simulation models depending on a given
configuration. In effect, an existing model is thereby migrated to an automated product line of model
variants.

Figure 1 gives an overview of the architecture and the workflow within our PoC. The existing master
simulation model uses elements from a Model Library (1) developed by TRUMPF and ITK Engineering
to represent parametrized machines and their automation units. These elements allow a simulation expert
to build a simulation model in a simulation tool. We use the Model Library to implement predefined
machine models, which we refer to as machine cells (2). These machine cells form an abstraction layer.
Then, we wrap the machine cells into components (3) for component-based software synthesis. Additional
components (4) provide the functionality to collect data, such as references to agents or the presentation
layer from the original simulation. These references enable further components to modify the simulation
model, such as producing paths for the workers.

(7) Synthesized Simulation Model
(5) Synthesis Framework

(hidden from end-user)

(4) Additional Components
(6) Graphical User Interface

(2) Machine Cells(1) Model Library

(3) Components wrapping 
Machine Cells

Simulation 
Environment
AnyLogic

Simulation Model Modifier
Data Collection

Path Generator

Figure 1: Overview of the architecture and workflow of the proof of concept to synthesize simulation
models for shop floors: Machine cells (2), combining machines and automation units from a Model Library
(1), are wrapped to form components (3). The Combinatory Logic Synthesizer framework (5) synthesizes
simulation models (7) based on this set of components expended with additional components (4) for a given
configuration (6). The proof of concept is implemented within the simulation environment AnyLogic.

A graphical user interface (6) is provided to configure the desired simulation model by entering the
number of storage towers and the number and types of machines. After configuration, the synthesis can
be performed, producing the required simulation model (7). We use the framework Combinatory Logic
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Synthesizer (CLS) (5), which implements component-based software synthesis based on combinatory logic
with intersection types (Bessai 2019). The synthesis process is not visible to the end-user, but CLS offers
various advantages for designing the automated model generation. For instance, CLS supports structural
variability in synthesized terms (i.e., programs or models), which permits a flexible specification of model
variations. Moreover, this synthesis approach yields a product line instead of a single synthesis result. The
semantic layer and the corresponding type specification of components encapsulate domain knowledge to
express rules of composition, which is often vital for real-life scenarios. Incorporating components offers
a scalable generation method that is extendable and adaptable to further problems by wrapping objects or
operations from existing libraries. Given these advantages, CLS is particularly well-suited to implement
an automatic simulation model generation. We implemented the PoC within the simulation environment
AnyLogic 8 (dotted line) so that a configurable simulation model that contains our implementation can
be exported as a stand-alone application without running the simulation tool. Because we can add more
simulation buildings block during the migration process, we refer to it as gradual migration.

This PoC is a first step to fulfilling the project’s goal with TRUMPF and ITK to establish a web-based
tool that enables non-experts to create customer shop floor layouts in a high-end 3D visualization, using the
customer’s production data as an input to simulate and visualize the production processes. In the future,
this should allow a direct analysis of the performance of different shop floor layouts in a short time and
without the participation of any expert. Primarily, it allows comparing a large number of variants within a
short period to make a sound decision.

This paper is structured as follows: The following section gives an overview of related work on the
automatic simulation model generation using component-based software synthesis and other approaches
following the configuration idea. Section 3 introduces the theoretical concept of combinatory logic synthesis
and presents the CLS framework. Then, Section 4 introduces the industrial use case, which is a shop floor
obtaining various machines, their automation units, and a storage system. In Section 5, we present our
PoC to synthesize simulation models. Section 6 summarizes the performed experiments using our PoC to
illustrate the range of possible solutions. Finally, we discuss the proposed PoC and give an outlook on
future work in Section 7.

2 RELATED WORK

There is a considerable amount of literature on automatic simulation model generation. Recent reviews of
the literature on this topic, for instance (Reinhardt et al. 2019) and (Wenzel et al. 2019), focus on use cases
from production and logistics. Wenzel et al. (2019) address trends and developments in this research field.
In this context, the authors emphasize the need for approaches to handle structural variance and propose a
solution based on component-based software synthesis.

In subsequent work, Kallat et al. (2020) combine the CLS framework with constraint solving techniques
to synthesize simulation models. The simulation models represent factory configurations that contain a fixed
number of machines that differ in their settings. The authors use constraint solving for filtering synthesized
configurations considering numerical constraints (e.g., total costs or processing time). In (Kallat et al.
2021), the authors use the CLS framework to synthesize simulation models representing block-stacking
warehouses. The synthesized simulation models structurally differ in their process logic. In order to enable
using the approach without programming knowledge, the authors developed a method for automatically
extracting components from existing simulation models. In their approach, the users modify the semantic
types of the extracted components and the synthesis goal in a user-friendly web application to achieve
new variants. While the previous work synthesized variants of the process logic within an agent, our
PoC synthesizes new compositions of agents. Further, we allow using our approach with a graphical user
interface without modifying the semantic types of components. Both approaches draw inspiration from
the work described in (Heineman et al. 2015), which migrates an existing software library into a product
line. This paper also follows the idea but presents a new approach for gradually migrating an existing
application into a product line.
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Some examples of approaches that generate simulation models based on a user configuration are in the
literature. Jain and Lechevalier (2016) implemented an approach to generate a multi-resolution simulation
model automatically. They are using AnyLogic 8 because it supports various simulation techniques. Our
work focuses on agent-based simulation, but we used the CLS framework on the discrete event level
in (Kallat et al. 2021). The authors in (Jain and Lechevalier 2016) use different standards, such as ISA-95,
ISA-88, or CMSD, depending on the resolution level as input data and configuration. While the idea of a
multi-resolution simulation model and using standards as input data are inventive, the authors admit that
their approach needs to be enhanced to support more complex simulation models. Our component-based
approach scales well to complex models since the complexity is distributed over different components.
Moreover, gradually migrating a simulation model enables the progressive generation of more and more
parts of a simulation model. Aiming for similar goals to our PoC (Kassen et al. 2021) use AnyLogic to
reduce the development time of digital shadows by using a generic model parameterized with production
and product data. Wincheringer et al. (2020) developed a generic warehouse simulation model that enables
the sales personnel to generate a warehouse variant based on a user configuration. In contrast, we use
a master simulation model initially not intended for automatic simulation model generation. Neyrinck
et al. (2015) also developed an approach for the sales personnel to generate appropriate simulation model
variants. The authors follow a component-based approach, too. They use skills to describe the components’
capabilities and the desired simulation model. They developed an algorithm for generating not only the
simulation model but also the documentation, wiring diagrams, or customer offers. This seems to be a
beneficial approach to support the whole sales process. However, their approach is limited to a specific
use case.

3 COMBINATORY LOGIC SYNTHESIS

This section describes the theoretical foundation of the combinatory logic synthesis with intersection types
and introduces its practical implementation in the form of the CLS framework.

3.1 Theoretical Concept: Combinatory Logic with Intersection Types

The idea behind combinatory logic synthesis is to synthesize a solution for a given requirement using com-
binatory logic (Hindley and Seldin 2008) from a set of given typed combinators (representing components)
called a repository Γ. Combinatory logic (CL) is based on a language of applicative terms e ::= X | (e e),
where X ranges over combinatory names and (e e) represents the application of one term to another (Rehof
2013). To define and control the process of combining components, they have an interface in the form of
an intersection type. The intersection type system (Rehof and Urzyczyn 2011) contains type expressions
t ::= A | t → t | t∩ t, where A represents a constant, t → t a function, and t∩ t an intersection. We use Greek
lowercase characters σ ,τ, . . . to symbolize types and Latin capital characters M,N, . . . for combinatory
logic terms. A component X with its related type τ is written X : τ .
For a component, a type can be understood as a property, whereas a function type A → B defines that a
component needs an inputs of type A to work and have property B. An intersection can be seen as an and
so that a component can have more than one property.
Based on the repository Γ, an inhabitation algorithm tries to find a composition of components that satisfies
a given target τ in the form of an intersection type written Γ ⊢? : τ by using the rules Variable and Modus
Ponens defined in equation (1).

X : τ ∈ Γ

Γ ⊢ M : τ
(Variable Rule)

Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ (M N) : τ
(Modus Ponens Rule) (1)

The Variable rule states that if a component X has the type τ in the repository, it can be inhabited from
the context that the term M = X has type τ . The Modus Ponens rules state that if a term M has a function
type σ → τ under inhabitation, and it exists a term N with the type σ under inhabitation as an argument,
the result of function application (M N) has the type τ under inhabitation.
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3.2 CLS Framework

The CLS framework (Bessai 2019) implements an inhabitation algorithm for combinatory logic with
intersection types in the programming language Scala. It returns an iteration of all found solutions for the
specified target and a repository. The components are not restricted to the programming language Scala
and can contain any program code. In CLS, it is possible to distinguish between two kinds of types in an
intersection. The first one is called a native type and represents the type of a component in Scala (e.g., Int,
String, etc.). The second one is called the semantic type and provides the possibility to define additional
information and restrictions about a component in the form of a simple string.

The framework was already used in different domains like path planning for machine operations (Schäfer
et al. 2021), machine scheduling (Mäckel et al. 2021), modular factory planning (Winkels et al. 2020),
and manufacturing simulation models (Kallat et al. 2020).

4 INDUSTRIAL USE CASE

The use case for machine manufacturers like TRUMPF is to demonstrate the performance of their complex
sheet metal manufacturing systems. This can be done by comparing different shop floor layouts, running a
simulation for each layout in a simulation scenario, and evaluating specific key performance indicators (KPIs)
like machine utilization, storage utilization, and throughput. The results are beneficial for dimensioning
new factories and optimizing existing factories to support fact-based decision-making (Winkels et al. 2018).
The 2D and 3D visualization and animation of the simulation can be convincing for customers investing
in new machines or new production lines and results in transparency and a high reliance on the simulation
results (Akpan and Brooks 2014).

The shop floors in our scenarios consist of a fully automated high bay storage system with up to 24
storage shelves for each storage tower. Raw material, intermediate or finished products can be stored on
pallets on the storage shelves. The number of towers is variable and depends on the shop floor layout.
At each tower, one of the following machines from the TRUMPF machine portfolio can be individually
placed:

• TruMatic with SheetMaster: An universal machine for punch and laser processes combined with
a SheetMaster to automatically load unprocessed material and unload and sort finished parts.

• TruBend Cell 5000: An universal automated bending cell for a wide range of parts.
• TruLaser Center 7030: A fully automated laser cutting machine.

The initial start point of the simulation is a storage system filled with raw material required to fulfill the
jobs running on different machines. Therefore the job portfolio can lead to an additional complexity level
of the simulation because all KPIs strongly depend on the chosen job portfolio. We aim to find solutions
that best fit the customer’s job portfolio concerning the chosen combination of KPIs.

5 POC WORKFLOW & SOFTWARE-ARCHITECTURE

Different components work together to synthesize a simulation model based on given configurations and
input data. Figure 2 shows the different components grouped in related layers — starting from the layer
that contains the Model Library blocks. The latter encapsulates the logic and visualization of all machine
models, their automation units, and storage components as re-usable blocks. Based on the Model Library, we
introduce an abstraction layer containing predefined machine models representing parametrized machines
and their automation units. We define components for the CLS framework based on the abstraction layer.
Further, we implemented components that produce paths within the simulation model’s visualization.
The set of components forms the repository. Based on the repository, CLS synthesizes the runnable
simulation model with the target type based on the chosen configuration from the graphical user interface
and is executed in the simulation environment. This approach follows the character of internal automatic
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Figure 2: Different elements that work together to synthesize a simulation model and which build on each
other - starting from the Model Library building blocks over the machine cells and CLS components to
the runnable simulation model.

simulation model generation. This means that the algorithms for generating a simulation model are executed
within a simulation environment (Bergmann and Strassburger 2015). The following subsections describe
the different parts and their interaction in detail.

5.1 Model Library

Automatic component-based synthesis of user-configured manufacturing simulation models requires a vital
standardization of several components to re-use them in different simulation projects. This is done by
implementing a Model Library that encapsulates the logic and visualization of all machine models, their
automation units, and storage components. Additionally, widely-used logic blocks (e.g., the logic of
palletizing parts) are also encapsulated as blocks in the Model Library. Simulation experts can use these
blocks and build their simulation models without creating machine models on their own. Model Library
blocks can be parametrized to be used in different scenarios and cover all common variations of the
TRUMPF portfolio.

5.2 Abstraction Layer

As mentioned before, the Model Library is built up in a very modular way. The initial scope of this use
case considers predefined arrangements of Model Library elements to incorporate an abstraction layer that
exposes reduced complexity. This layer contains machine cells that represent specific machine configurations.
For instance, one machine cell wraps a TRUMPF cutting machine with a TRUMPF automation unit for
automatically loading and unloading the machine and a storage cart to deliver or return material from and to
the storage. We implemented these machine cells manually in the simulation tool using the corresponding
Model Library blocks. Then, we wrap the machine cells into components that are used for component-based
synthesis. This is a one-time effort.

5.3 Repository and Target Type

The repository consists of 14 software components covering different parts of the simulation model. A
reference to the simulation model’s root agent allows software components to access model variables. The
components’ implementation uses this reference to read model-specific data and adapt their embedded
code. Moreover, we can add new elements to the model by integrating a machine cell factory (in the sense
of object-oriented programming) in the simulation model to create new agents. The software components
can access the information of the user-defined configuration and use it to adjust their implementation.

The top-level component generates and integrates different parts of the model. It manipulates the
model directly and additionally exposes selected model contents. Due to a missing API functionality, some
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operations can only be performed in the scope of the simulation tool, i.e., they are not admissible through
external code. Therefore, the synthesis procedure uses a context data object that holds relevant model
information. It contains machine cells and adapted simulation objects required for the current model.

Context ∩ IsComplete → TruMaticMachineCell → TruBendCellMachineCell →
TruLaserCenterMachineCell → InputData → TopLevelComponent

(2)

The semantic type of this software component is shown in equation (2). This type expression states
that the term yields a program with type TopLevelComponent when supplied with suitable arguments.
These consist of a simulation model context object, three lists of machine agent objects, and the user
configuration.

The context is a central aspect of collecting the changes required to handle the side-effects of software
components. The data structure contains a use-case-specific selection of the information required to
manipulate the simulation model. For instance, it provides an object of the class ConfigSetup, which
holds the relevant information to initialize the given simulation models. The class is part of the model
library, and the repository can integrate this library due to Scala’s JVM compatibility. Furthermore, the
context integrates worker agents and a corresponding graphical element for visual representation, which
is used to define material flows, resource flows, and the construction of the visual paths. The context
also references the UI modeling areas as the simulation engine requires this information when adding new
elements to the model. Moreover, it references a storage object of the model library and contains references
to the included machines as a list of AnyLogic agents.

Context ∩ IsEmpty → BasicStorage ∩ HasStorageTowers →Con f igSetup →
WorkerHome →Worker →ViewArea →Context ∩ IsComplete

(3)

The top-level component in equation (2) requires a context object that holds the required data for the
model construction. The semantic types IsEmpty and IsComplete distinguish between context states, where
the semantic type IsComplete denotes an object that results from an initialization procedure. A software
component encapsulates this procedure, and its semantic type is displayed in equation (3). It requires
an empty context object and the context data as arguments, and it returns a complete context object that
contains suitable values provided by the repository.

Every machine type has its software component that fills a list with agents according to the user
configuration. It requires the user configuration as an argument and uses the contained information to
construct the list. The list of wrappers is used to call the simulation model’s machine cell factory, which
adds agents to the corresponding agent population in the process. After generating these agents, the software
components manipulate their properties to set the agents’ position and orientation.

5.4 Integration in Simulation Environment

The superior goal is to provide an application that allows executing the simulation model without installing
the simulation tool or other programs. Therefore, we can use the AnyLogic 8 export functionality to export
a simulation model into a standalone application. We can include the synthesis framework and the model
library as dependencies. In the following subsection, we introduce the simulation model that is exported.
Then, we present the graphical user interface that allows a user to configure the factory shop floor, perform
the synthesis, and run the simulation.

5.4.1 Template Simulation Model

We implemented a simulation model that we use as a template. To use the Model Library and the synthesis
module, we add both as dependencies to the simulation model. The simulation model template contains
static elements and dynamic elements. Static elements occur in every variant of the simulation model
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and shall not be modified. An example for static elements are resource pools within a simulation model.
In our use case, we have a resource pool that contains workers. The number of workers is identical in
each configuration. Nevertheless, we need to reinitialize static elements after synthesis because the model
structure has changed. The dynamic elements, for instance, machine cells, differ in each variant depending
on the user configuration. We synthesize the dynamic elements and add them during the synthesis runtime
or simulation runtime.

However, we recognize that adding individual machine cells after the simulation has started is hardly
realizable in the used simulation tool. As a solution, we use populations that store the dynamic elements.
Populations are comparable to lists, which can solely be filled with a pre-defined agent type. Therefore,
our simulation model template contains several populations for each machine type. All populations are
initially empty. After or during synthesis, we add the synthesized machine cells into the corresponding
population.

5.4.2 Graphical User Interface and Input Data

To reduce the costs per simulation model, people with little knowledge about simulation should be able to
create custom shop floor layouts, run the simulation and visualize the production process. This requires a
simple to use graphical user interface (see Figure 3) that makes it possible to generate various simulation
models depending on the number of selected storage towers and different types of machines. In the scenario
we consider in this PoC, up to 144 storage towers can be placed in two rows connected by a storage-retrieval
machine. The PoC supports the three types of machines from the machine portfolio of TRUMPF TruMatic,
TruBend Cell 5000, and TruLaser Center 7030. Each machine has an individual name for identification
and a source and destination storage tower to collect raw material and store the processed parts. A user
can specify only the source storage tower. The destination storage tower is automatically set depending
on the type of the machine and so the resulting space it needs. In this concept, the punch laser machine
and bending machine use the storage tower next to the source storage tower, whereas the laser machine
uses the same store towers for source and destination. To run the simulation model, it needs additional
information about the different jobs the machines should execute. In this case, an XML file is defined with
definitions of different jobs and process steps the different machines should perform.

Figure 3: Graphical User Interface to control and specify the synthesized simulation model. The displayed
case shows the configuration for a simulation model with 40 storage towers, two TruMatic with SheetMaster,
two TruBend Cell 5000, and two TruLaser Center 7030 of the company TRUMPF.
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5.5 Generating Simulation Models

The process of generating a simulation model variant takes place in the simulation model as well as in the
CLS module. Figure 4 summarizes the process of generating a simulation model. First, a user configures
the desired system within the graphical user interface of our simulation model. After starting the simulation,
the startup routine of the simulation model instantiates our CLS implementation. Then, the startup routine
calls our synthesis routine and passes the user configuration and a reference on the root agent as arguments.
The synthesis routine instantiates the repository and performs the synthesis using the top-level component’s
target goal as synthesis goal. As mentioned before, the synthesis generates machine cells and performs
adaptions on the simulation model by adding them to the corresponding populations. As already said, we
call several initialization functions after synthesis. Then, the simulation starts and performs the simulation.
We want to emphasize that we do not require any further user input after the configuration.
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Figure 4: Process of automatic simulation model generation with Combinatory Logic Synthesizer.

6 EXPERIMENTS

We perform experiments using our PoC to demonstrate the ability to generate various configurations that
differ in their number of machines and storage towers. The number of each machine type varies from
2 to 5 resulting in 4× 4× 4 = 64 configurations. Further, we vary the number of storage towers by the
factors 1.0 and 1.2, which results in 64×2 = 128 total configurations. Figure 5 shows four exemplary 2D
visualizations of shop floor simulation models. We use the same set of jobs for all shop floor layouts and
simulation scenarios to reduce the complexity. It contains 30 jobs irrespective of the number of machines.
This leads to a situation where the machine utilization is higher in a configuration with fewer machines
because each machine processes more jobs. Since the simulations show no stochastic effects, we achieve
deterministic simulation results. Therefore, it is sufficient to run a simulation once for each configuration.

The workflow is identical as described in Section 5; the only difference is that we automate the
user-configuration process using the experiment functionality in AnyLogic 8. We enhanced our template
simulation model with a function that automatically assigns machines to storage towers considering the
required space of each machine and ensuring a valid layout. Further, we determine the initial number of
storage towers, raw material, and pallets considering the number of machines in a configuration. This allows
us to generate user configurations as input for our synthesis and to test them by running the corresponding
synthesized simulation model. Each simulation run stops when all jobs are finished.

Table 1 shows the simulation results of selected configurations. Each row represents a configuration
with the number of machines and storage towers, the utilization of each machine type, and the utilization
of the storage-retrieval machine.

In our work, we implemented the PoC with an emphasis on demonstrating the ability to start with an
existing master simulation model to generate a large number of variants. Therefore, a detailed analysis of
the simulation results and a subsequent optimization concerning selected target functions are left for future
work. Nevertheless, the results lead to initial conclusions for our fictive job portfolio. For instance, the
results indicate that the single storage-retrieval machine seems to be the bottleneck since the utilization
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Figure 5: Screenshots of the 2D visualization of generated simulation model variants which represent shop
floors with various instances of each machine type and a storage system with a varying number of towers.
The paths for the workers are also synthesized.

Table 1: Results of the simulation runs of synthesized simulation models. The results contain the number
of machines and storage towers, the utilization of the different machines, and the utilization of the storage-
retrieval machine (SRM) for each configuration.

Shop Floor Configuration Machine Utilization
TruMatic TruBend TruLaser Storage TruMatic TruBend TruLaser SRM

Cell Center Towers Cell Center Utilization
2 2 2 48 52.8 % 80.0 % 71.2 % 72.2 %
2 2 2 58 49.9 % 83.7 % 70.0 % 73.2 %
3 4 2 72 47.3 % 69.8 % 66.0 % 78.7 %
3 4 2 86 51.2 % 69.5 % 62.9 % 80.3 %
5 5 5 120 30.1 % 61.5 % 45.7 % 91.6 %
5 5 5 144 30.9 % 62.8 % 51.9 % 93.0 %

is very high while the utilization of the machines is very low and diminishing in scenarios with a higher
number of machines. This leads to situations where machines have to wait for material, which decreases
their utilization.

The whole generation process (including synthesis) of a simulation model variant took three seconds
on average, and the complete process of generating and simulating 128 configurations took seven minutes.
We ran the experiment on a workstation computer equipped with an Intel i7 processor and 64 GB RAM.

7 CONCLUSION AND FUTURE WORK

This paper presents a proof of concept for gradually migrating a master simulation model for shop floor
layouts of machines into a product line of different simulation models to explore and find suitable solutions.
The approach uses combinatory logic with intersection types to define a set of components that forms the basis
for the Combinatory Logic Synthesizer framework to synthesize new solutions. To control and specify the
synthesis process’s configuration, we provide a graphical user interface for easy use without any knowledge
about simulation design or combinatory logic. Further, we performed several simulation experiments to
demonstrate various possible solutions for a given specification based on the logical dependencies and
structural variance. The downside of this approach is the needed additional up-front work and time to wrap
code in components and specify the semantic layer of the repository. However, these costs are amortizable

1850



Kallat, Hetzler, Mages, Mieth, Rehof, Riest, and Schäfer

for problem domains that expose a high degree of variability. In addition, these abstractions make adding
additional components like new machines, storage systems, or other needed agents easy without interfering
with existing ones.

Based on the experience of this work and to drive automation even further, we plan to automate phases
of a simulation study, such as data collection or analysis of simulation runs. Moreover, we investigate to
automate the wrapping of the simulation building blocks components in the sense of (Kallat et al. 2021).
For instance, our proof of concept could overtake a part of this wrapping by automatically composing Model
Library blocks into machine cells. This would compensate for the up-front costs for creating, specifying, and
wrapping the components. Combinatory Logic Synthesizer can be used to enable optimization procedures
using constraint solver (Kallat et al. 2020) and machine-learning techniques. Schäfer et al. (2022) propose
a methodology to explore the algorithmic design space of sampling-based motion planning programs.
Similarly, future work could aim to synthesize and execute simulation models in an active-learning loop.
The extracted KPIs train a machine-learning model to determine optimal manufacturing configurations and
solutions.
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