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ABSTRACT 

Due to the nature of today's manufacturing industry, where enterprises are subjected to frequent changes 

and volatile markets, reconfigurable manufacturing systems (RMS) are crucial when addressing ramp-up 

and ramp-down scenarios derived from, among other challenges, increasingly shortened product lifecycles. 

Applying simulation-based optimization techniques to their designs under different production volume 

scenarios has become valuable when RMS becomes more complex. Apart from proposing the optimal 

solutions subject to various production volume changes, decision-makers can extract propositional 

knowledge to better understand the RMS design and support their decision-making through a knowledge 

discovery method by combining simulation-based optimization and data mining techniques. In particular, 

this study applies a novel flexible pattern mining algorithm to conduct post-optimality analysis on multi-

dimensional, multi-objective optimization datasets from an industrial-inspired application to discover the 

rules regarding how the tasks are assigned to the workstations constitute reasonable solutions for scalable 

RMS. 

1 INTRODUCTION 

In the current competitive market, manufacturing companies are frequently challenged by demand 

variations, and therefore they often need to address fluctuating production volumes. Consequently, the 

efficiency of a manufacturing system in reacting and adjusting its capacities and functionalities to cope with 

the volumes and demands changes constitutes a critical challenge for production organizations (Dou et al. 

2021; Koren et al. 2017; Koren and Shpitalni 2010). To tackle, among other challenges, those caused by 

the demand and volume changes, Koren et al. 1999 first introduced the concept of reconfigurable 

manufacturing systems (RMS). RMS are production systems capable of adding/removing resources and 

modifying their capabilities to efficiently cope with expected or unexpected market shifts (Diaz et al. 2020; 

Koren et al. 2018). In such a manner, RMS are responsive manufacturing systems that, cost-effectively 

through reconfigurations such as the arrangement of machines or the process plan, can provide the required 

functionalities for several demand periods (Diaz et al. 2021). In a nutshell, RMS are essential to the current 

manufacturing industry to achieve high flexibility, fluctuating production volumes, flexible batches, and 

the required short life cycles for today's competitive market (Bortolini et al. 2018). Studies suggest that this 

type of system provides better performance in terms of scalability, productivity, responsiveness, and cost 

when compared to traditional production systems (Freiheit et al. 2003; Gu 2017). 
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For decades, simulation techniques have successfully been applied within the manufacturing industry. 

Simulation has successfully become a powerful tool for designing, analyzing, and optimizing 

manufacturing systems (Mourtzis et al. 2014; Pehrsson et al. 2015). The complexity found in the dynamics 

scenarios of manufacturing systems can be assessed, modeled, and supported using simulation technology. 

When a simulation model is constructed, stakeholders and decision-makers better understand the systems 

(Mourtzis, 2020). Simulation tools are used to understand the behavior and performance of production 

systems under different scenarios defined by a set of input variables. However, as the complexity of 

manufacturing systems grows, the amount of input variables and feasible combinations increases 

exponentially. Against this backdrop, simulation-based optimization allows engineers and decision-makers 

to search in ample decision space for an optimal or near-optimal combination of input variables (Niño-

Pérez et al. 2018; Xu et al. 2016). Simulation-based multi-objective optimization (SMO) is used when 

several conflicting objectives are pursued. However, the use of SMO reveals a large amount of data, 

including the impact of the input variables on the studied scenarios. Most studies usually focus on finding 

the optimal solution for a specific case. Still, as the size of the manufacturing system and the number of 

scenarios that need to be considered increases, the number of input variables combination grows 

exponentially. A relatively recent research area within SMO is knowledge discovery, wherein data mining 

methods are applied to the optimization dataset to reveal underlying information about what constitutes a 

satisfactory solution according to different criteria from the generated Pareto-optimal front. These data 

mining methods support the extraction of patterns that can provide the decision-makers with a better 

understanding of solving the problem under different scenarios (e.g., production volumes) (Bandaru et al. 

2017). 

Regarding the design of manufacturing systems, knowledge discovery methods have been successfully 

applied to extract patterns and rules between the capabilities of the system and product features. In (Kou 

and Xi 2018), it has been shown how association rules extracted from historical datasets can significantly 

impact production development effectiveness. Still, as commented recently in (Tripathi et al. 2021), data 

mining and knowledge discovery methods are challenging areas for future research and the evolution of 

manufacturing systems. RMS have a significant impact and act as an enabler on today's so-needed 

changeable and reconfigurable intelligent manufacturing systems (ElMaraghy et al. 2021). Due to the 

intrinsic complexity of RMS, an increasing number of researchers underscore the importance of applying 

SMO to tackle the design problems of RMS (Barrera Diaz et al. 2021; Bensmaine et al. 2013; Bortolini et 

al. 2018; Diaz et al. 2020; Renzi et al. 2014). As today's product lifecycles are becoming shorter and shorter, 

manufacturing systems evolve to become not only more flexible to be re-configurated more frequently but 

also more complex. Therefore, optimization problems generate an ever-increasing amount of data, making 

knowledge capturing and decision-making a more complicated task (Algeddawy and Elmaraghy 2011; Diaz 

et al. 2021). Accordingly, due to the nature of today's manufacturing industry being subjected to frequent 

changes and volatile markets, data mining and knowledge discovery methods have become even more 

crucial for RMS applications (ElMaraghy et al. 2021; Koren et al. 2018). Knowledge discovery methods 

are necessary for supporting engineers and decision-makers for two main reasons. Firstly, because many 

decision variables need to be considered when optimizing RMS, setting up a new optimization scenario can 

be considerably time-consuming. In this regard, gathering knowledge from previous optimizations can 

support understanding new scenarios without running further optimizations. Secondly, the analysis of SMO 

results can be simplified by the rules extracted from the optimization. These rules can be used to reveal 

how different decision variables affect the overall performance of the system.  

One of the main challenging areas of RMS is the process planning and how to reconfigure the tasks to 

the workstations (WSs) under different scenarios. To this extent, this study uses the multi-objective 

optimization datasets from an industrial-inspired application to apply data mining methods and discover 

how the tasks assigned to WSs constitute reasonable solutions for a scalable RMS that need to be analyzed 

under different production volumes scenarios. This knowledge will be extracted and represented in rules 

from the best trade-off solutions between the optimization objectives, namely throughput (THP) and 

Leadtime (LT). Consequently, this study aims at proposing a methodology to conduct post-optimality 
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analysis on multi-dimensional, multi-objective optimization datasets by applying a novel flexible pattern 

mining algorithm in an RMS application. The remaining of the paper is structured as follows. Section 2 

describes the understanding of the main RMS design challenges, SMO, and Knowledge Discovery. Section 

3 presents the methods of this study and the studied case. Section 4 presents the findings and discusses the 

insight that facilitated the proposed process. Conclusions and future work can be found in Section 5. 

2 LITERATURE REVIEW 

2.1 Reconfigurable Manufacturing Systems Challenges 

RMS can be explained as the capability of a production system to change and reallocate its components 

effectively and efficiently to fulfill several new predictable or unpredictable restrictions/conditions of a 

system as many times as required (Goyal et al. 2012). Researchers support the idea that manufacturing 

organizations should be equipped with RMS that can rapidly be reconfigured to cope with changing markets 

and customers' needs to respond to a volatile market (Koren and Shpitalni 2010; Rösiö and Säfsten 2013). 

However, the RMS design and management are underdeveloped and involve crucial challenges in the 

research community (Andersen et al. 2018). These aspects include three main areas named the system 

configuration, the components of the system, and the process planning (Koren et al. 2018). The system 

configuration tackles the physical arrangement of machines and affects the overall performance and the 

functionality and scalability aspects of the system (Diaz et al. 2020; Koren et al. 1998). Most of the research 

focused on this area deals with the machine assignment to WSs. The components of the system refer to the 

required type and number of resources, e.g., machines and buffers, to achieve the desired production 

capacity and are considered a critical aspect for capacity planning and scalability (Koren et al. 2018). The 

majority of the research in this area focuses on optimizing the number of machines in the system. Lastly, 

the process planning area refers to how tasks are balanced throughout the RMS and assigned to the WSs, 

having a significant impact on the reconfigurations of the system to handle fluctuating production volumes 

(Azab et al. 2007; ElMaraghy 2007). Previous research in this area mainly focuses on optimizing the task 

assignment to WSs. Consequently, for an RMS to cope with fluctuating production volumes, it needs to 

address the previously explained areas and change its configuration by re-assigning, adding, or removing 

resources and rebalancing the tasks in the system (Koren et al. 2017; Wang and Koren 2012). These 

challenges constitute complex NP-hard problems that can be aided by simulation and optimization 

techniques (Bortolini et al. 2018; Delorme et al. 2016; Diaz et al. 2021; Michalos et al. 2012).  

2.2 Simulation-Based Multi-Objective Optimization and Knowledge Discovery 

2.2.1 Simulation-Based Multi-Objective Optimization and Multi-Criteria Decision Making 

Multi-Objective Optimization (MOO) is a widely known research area focused on optimizing several 

conflicting objectives. Scalarization and posteriori are some of the most used MOO methods. Scalarization 

methods include ε-constraint and weighted sum method, among others. Posteriori methods generate a set 

of trade-off or non-dominated solutions which form the Pareto-optimal front, representing that optimizing 

one of the objectives degrades another. The rest of the solutions found in the objective space are known as 

dominated solutions as they are inferior to the non-dominated solutions in all the considered objectives. 

Thus, decision-makers often need support to simplify the selection of the best choice among all the available 

alternatives. Multi-Objective Evolutionary Algorithms (MOEAs) are among the most commonly used 

algorithms for generating the Pareto-optimal front (Deb 2014; Touzout and Benyoucef 2018). Accordingly, 

SMO can be seen as a combination of simulation and optimization. The intersection of these two powerful 

techniques has shown advantages compared to analytical optimizations or applied separately (Barrera Diaz 

et al. 2021; Jian and Henderson 2015). From a simulation perspective, SMO considers the variability and 

randomness found in RMS, avoiding simplifying the problem, which might result in inaccurate solutions. 

From an optimization perspective, SMO allows for solving more complex or impractical issues that would 
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not be attainable by only simulation techniques (Carson and Maria 1997). The general representation of an 

SMO problem consists of several conflicting objectives defined by the objective function, possibly 

subjected to several equality and inequality constraints. 

In practical scenarios, a single solution has to be chosen among all the near Pareto-optimal solutions 

generated by MOEAs. This task is not trivial since it often involves considering qualitative aspects of 

candidate solutions as perceived by one or more domain experts (decision-makers). Several methods have 

been developed within Multi-Criteria Decision Making (MCDM) to handle this task. These can broadly be 

classified into a priori, posteriori and interactive methods (Agrawal and Srikant 1995). A priori methods 

assume that the decision maker’s preference is available before the optimization run, which is incorporated 

in the optimization algorithm to focus the searching process. While this drastically reduces the 

computational effort needed to find the most preferred solution, the decision-makers cannot always be 

expected to know what they want at the outset, especially in optimization scenarios that are unfamiliar to 

them. On the other hand, posteriori methods generate and present a representative Pareto-optimal front to 

the decision-makers. Its advantage over a priori methods is that the decision-makers can get a complete 

picture of all the available trade-off solutions in the objective space. Interactive methods aim to balance 

finding multiple trade-off solutions and the computational cost needed to find the complete Pareto front by 

interacting with the decision-maker who can provide his/her preference to guide the search and then narrow 

down the number of solutions to be considered during the optimization process. This implicitly entails an 

iterative process as the decision-maker is allowed to change and update the preferences during the 

optimization. While such approaches are more practical than a priori methods, they also increase the 

cognitive load on the decision-makers, which is a vital aspect to consider for practical decision-making 

activities.  

2.2.2 Knowledge Discovery and Flexible Pattern Mining 

Much of the literature on multi-criteria decision support is focused on assisting the decision-maker in 

visualizing and navigating the objective space. In practical optimization scenarios, it can be argued that a 

more informed decision requires not only finding a solution that conforms to the decision-maker’s 

preferences but also knowledge about how those preferences affect the decision variables. Specifically, the 

decision-maker may be interested in knowing how different variable values change with preferences and 

what are the most important variables within a given region of preferences. Such knowledge can be 

extracted from solutions of an MOEA using various data mining and machine learning techniques (Bandaru 

et al. 2017). While some traditional data mining methods can be used directly with MOO data, they often 

need to be customized to consider that MOO data consists of two distinct spaces, the objective space and 

the decision space. The decision-maker provides preference in the objective space, while the knowledge 

about the variables exists in the decision space. Moreover, knowledge discovery in MOO also requires the 

methods to be interactive so that the decision-makers can realize the impact of changing their preferences. 

Flexible Pattern Mining (FPM) is a recent interactive data mining method designed with the goal of 

knowledge discovery in MOO and multi-criteria decision support. FPM uses the popular Apriori algorithm 

(Agrawal and Srikant 1995) to discover discriminative decision rules in the MOO data that distinguish 

between a chosen selected set (typically preferred solutions) and an unselected set (typically all other 

solutions). The Apriori algorithm was developed for extracting frequent itemsets (items that are often 

bought together) from market basket data. Hence, it treats all variables as categorical and extracts 

knowledge in the form of patterns. The main difference in FPM is the way the MOO data is processed to 

convert continuous and discrete variables into categorical features that can then be handled by the Apriori 

algorithm. Thus, FPM is able to extract complex decision rules formed by singular rules of the form 𝑥ₜ >
 𝑐, 𝑥ₜ <  𝑐 or 𝑥ₜ =  𝑐, where 𝑥ₜ can be any of the variables in the MOO data and 𝑐 is a value for that 

variable from the data. Each decision rule is associated with a selected significance (𝑠𝑖𝑔) and an unselected 

significance (𝑢𝑛𝑠𝑖𝑔), indicating the percentage of solutions that follow the decision rule in the selected and 

unselected sets. Thus, a highly discriminative rule should have a very high 𝑠𝑖𝑔 value, and a meager 𝑢𝑛𝑠𝑖𝑔 
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value. An example of such a discriminative rule is [𝑥₁ >  4.2 ∧  𝑥₅ <  10.5 ∧  𝑥₆ =  2] with 𝑠𝑖𝑔 =
90% and 𝑢𝑛𝑠𝑖𝑔 = 5%. It indicates that 90% of the solutions in the selected set have 𝑥₁, 𝑥₅ and 𝑥₆ values 

as specified by the rule, while this is true for only 5% of solutions in the unselected set. If the selected set 

consists of preferred solutions, this decision rule informs the decision-maker that variables 𝑥₁, 𝑥₅, and 𝑥₆ 

are critical to determining whether a solution is desirable or undesirable. 

3 METHOD AND PROBLEM FORMULATION 

3.1 An Interactive and Iterative Methodology 

 

Figure 1: SMO-KDO Methodology. 

The unique concept proposed in this research is Knowledge-Driven Optimization (KDO) – instead of 

merely capturing knowledge from experiences (e.g., in the form of rules of thumb) or experiments by using 

physical equipment, extracting knowledge for decision support is achieved through systematically 

exploring and analyzing (e.g., using data mining and visualization techniques) multiple optimal solutions 

(designs/configurations/settings) generated via MOO on simulation models. The conceptual framework of 

the double-loop SMO-KDO methodology is schematically described in Figure 1. Within this 

methodological framework, there are six processes: (1) Problem Formulation; (2) Simulation; (3) MOO; 

(4) Knowledge Discovery; (5) Visualization, and (6) Decision-Making. The numbered labels in Figure 1 

are purposed to identify the nine interactive and iterative loops among the processes, but their number order 

describes a typical workflow of such a methodology. By interactive, it means that there are always some 

users, like a decision-maker (or a group of decision-makers) with a team of simulation/production 

engineers, who interact with each other and control these processes. On the other hand, iterative means that 

any process and any loop can be re-visited and run multiple times until the user is satisfied with the results 

that can be fed into the other processes or to support the final decision.  

3.2 Problem Formulation 

The datasets used to show the applicability of the SMO-KDO methodology come from an industrial 

application study in the Swedish automotive industry. The case is based on a 4-cylinder crankshaft 

production that manufactures two product families, part 1 (4cylP) and part 2 (4cyLD). The production line 
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consists of 18 WSs, wherein 3 are reconfigurable WSs placed in the bottleneck of the line. Unlike in the 

rest of the line, these 3 consecutive reconfigurable WSs can add, remove and relocate machines to cope 

with production changes up to a maximum of 5 machines per WS. The considered multi-part flow line 

(MPFL) needs to produce two parts at specific volumes. As the demand fluctuates, the system 

configuration, components of the system, and process planning of the reconfigurable WSs change to meet 

the new production scenario. These changes affect not only the layout and the total number of machines 

needed in the aforementioned WSs, but also the assignment of tasks to them. Due to the company's interest 

in specific scenarios, the SMO was applied to a total of 12 scenarios considering different production 

proportions and the number of machines in the reconfigurable WSs. The scenarios consisted of modifying 

the production proportions of part 1 and part 2 from 80/20 (80 % part 1 and 20 % part 2), the opposite case 

20/80, and considering two more cases in between, i.e., 60/40 and 40/60, respectively. In addition, each of 

these proportions needed to be studied for 7, 8, and 9 machines in the reconfigurable WSs, making 12 

different scenarios. Figure 2 shows the precedence of the tasks for both parts in the reconfigurable WSs.  

 

Figure 2: Precedency graphs. 

Each scenario was optimized using NSGA II and 15000 iterations. An SMO software called Facts 

Analyzer (Ng et al. 2011), which integrates a discrete-event simulation (DES) engine and several 

optimization algorithms, was used to model the studied manufacturing line and run the optimizations. Two 

conflicting optimization objectives were used: 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓1 = 𝑇𝐻(𝑥): 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑗𝑜𝑏𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟) ,                                       (1) 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 =  𝐿𝑇(𝑥) ∶  𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒.                                                  (2) 

 

Accordingly, in this study, we have applied FPM method to the decision space of the generated datasets 

to find patterns and rules in the tasks assignment that could support decision-makers in understanding how 

they impact the studied scenarios and how this could help setting-up future optimizations scenarios. To 

extract the knowledge about the influence and interaction of the tasks under different scenarios, we compare 

the Pareto-optimal solutions to the rest. This comparison was applied to eight different sets of Pareto-

optimal solutions according to various criteria such as the number of machines or production proportion, 

as shown in the results sections.  
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4 RESULTS 

This section explains the knowledge discovery process, followed by the presentation and discussion of the 

results. The formulation of the simulation model resulted in many duplicated solutions; therefore, to not 

bias the resulting knowledge, it is first necessary to process the data and remove all duplicate solutions. 

Further, due to the problem formulation of task allocation as Boolean values, the task allocation variables 

were combined into one integer value per task, representing the station the task was assigned to. The values 

1, 2, or 3 represent if the study was performed in the first, second, or third reconfigurable WS on the line. 

Finally, non-dominated sorting is applied to find the Pareto-optimal solutions. These three data processing 

steps were performed for each of the twelve scenarios before combining them into a single dataset. This 

study's data processing and analysis were performed using the openly available decision support tool KDO-

Mimer1, which facilitates knowledge discovery in MOO. 

The combined results from the optimizations can be seen in Figure 3. The left-hand side of the Figure 

shows all twelve datasets combined in a 2D scatter plot where the axes represent the objectives of the 

optimizations. The dark red, green, and blue represent the non-dominated optimal solutions for 7, 8, and 9 

machines, respectively. The 3D scatter plot presented on the right-hand side shows a better visualization of 

the twelve scenarios where the axes represent the optimization objectives (THP), the total numbers of 

machines used in the reconfigurable WSs, and the different proportions studied. 

 

 

Figure 3: Combined datasets and the studied scenarios. 

Figure 4 illustrates how the Pareto-optimal solutions P are grouped into eight subsets to be compared 

with the dominated solutions D according to different proportions and numbers of machines. The FPM 

procedure requires a selected and an unselected set of solutions. We combine all other cases in the first 

considered case and use the Pareto-optimal solutions from all scenarios as the selected set and all remaining 

dominated solutions as the unselected set. Next, we consider the three cases for the different number of 

machines. We use the Pareto-optimal solutions from all scenarios where the number of machines used 

matches the case as the selected set and the remaining solutions as the unselected set. For the last four cases, 

 
1 https://assar.his.se/mimer/html 
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we consider the scenarios where the proportions are the same, in the same way. Figure 4 demonstrates the 

selected set (gray) and unselected set (white) for the eight different scenarios. By dividing the different 

scenarios this way, we hope to find specific rules related to the specific proportions and numbers of 

machines. 

 

Figure 4: FPM selected and unselected set of solutions. 

While the rules generated separately from these different cases can give insights into optimal task 

allocations for each case, it is interesting to note that the combined case can generate more general rules 

that apply invariantly to the system, no matter the number of machines or the proportion used. The three 

cases for the different number of machines will generate rules describing the optimal task allocation for a 

specific number of machines, regardless of the proportion. Finally, the four cases for the different 

proportions will generate rules relating to the optimal task allocation for a particular proportion, irrespective 

of the number of machines. 

To generate the rules, we ran the FPM procedure with a minimum allowed significance of 90% to find 

only rules that accurately describe the selected set. Then the rules were filtered using the sliders to the right 

of the graph-interface to find the single rule-interaction with the highest ratio between the significance and 

unselected significance values. In this way, the rules accurately describe the difference between the selected 

and unselected sets. The resulting rules from each case can be found in Table 1. In this table, the "T" 

represents tasks from part 1 while "P" represents tasks from part 2. 

 

We used the openly available decision support software KDO-Mimer to generate the results. A snapshot 

from KDO-Mimer showing the graph-interface for filtering FPM rules can be found in Figure 5. The upper 

Table 1: Resulting Rules. 
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part of  Figure 5 shows the selection from Figure 4 (d), and the bottom part shows the selection from Figure 

4 (f). The graph-interface in KDO-Mimer offers the decision-makers a holistic overview of the rules and 

allows them to more easily compare the results compared to solely presenting the rules in a table. 

 

 

Figure 5: KDO-Mimer interface for filtering FPM rules. 

4.1 Knowledge Discussion  

In this study, we aimed to use data mining in twelve MOO datasets of an RMS to discover knowledge that 

could lead to a better understanding of the systems and therefore be applied in future scenarios. Looking at 

the general rules in Table 1, we can appreciate that all found rules have more conditions applied to part 1 

than part 2. This fact can be explained due to part 1 having more tasks to be performed than part 2 or due 

to the nature of the precedence tree being more restrictive and leaving less freedom when assigning tasks 

to WSs.  This implies that engineers could prioritize assigning the tasks of part 1 over part 2 when studying 

new scenarios. However, as expected, we can see that the higher number of part 2 tasks involved in a rule 

would be when producing 20% of part 1 and 80% of part 2. However, even for such an extreme scenario, 

we can see a higher involvement of tasks of part 1 than part 2.  

One aspect not considered in the data mining but important to focus on when discussing the rules is the 

arrangement of the machines in the reconfigurable WSs. The machines configuration was another aspect 
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included with task allocation as input variables in all optimization scenarios. The optimal configurations 

obtained in the reconfigurable WSs starting from 80/20 to the opposite proportion were: 1-2-4; 1-2-4;  2-1-

4;  2-2-3 for seven machines; 1-2-5;  1-2-5; 2-2-4;  2-3-3 for eight machines; and 2-2-5;  2-2-5;  2-2-5;  2-

3-4 for nine machines. Having this information, we can observe the implication of the rules on the different 

configurations due to the dependency between the number of tasks assigned to each WSs and the number 

of machines in it. One example is the number of tasks assigned to the first reconfigurable WS (tasks equal 

to 1 in the rules). There are either 2, 1, or 0 tasks assigned to the first reconfigurable WS in all found rules. 

However, two machines were placed in the first reconfigurable WS in all the scenarios where nine machines 

were employed. Consequently, the greatest number of tasks possible found in the rules (two tasks) were 

assigned there. 

Another interesting aspect extracted from this method is the importance of some tasks. It can be 

observed in Table 1 that most of the tasks included in the extracted rules are often found in many of the 

rules implying the relevance of these tasks for the overall system. In other words, decision-makers can use 

these rules to understand which tasks are more critical to the overall performance of the RMS.  

5 CONCLUSIONS AND FUTURE WORK 

Due to the nature of today's manufacturing industry, where enterprises are subjected to frequent changes 

and volatile markets, RMS are becoming crucial and more sophisticated. Consequently, the optimization 

of RMS generates an ever-increasing amount of output data, making knowledge capturing a challenging 

task for engineers and decision-makers. Thus, knowledge discovery and data mining techniques have 

become important for RMS applications. Therefore, this study used the MOO datasets from an industrial-

inspired application to apply data mining methods and discover how the tasks assigned to WSs constitute 

reasonable solutions for a scalable RMS that need to be analyzed under different production volume 

scenarios. The use of SMO to optimize RMS explores the search space seeking feasible solutions to find 

the optimal system configuration avoiding a manual and time-consuming trial and error process. The 

presented method showed how data mining and FPM could be applied to the generated data sets and support 

a better understanding of the behaviors of the RMS and its variables under different scenarios providing the 

decision-makers with critical factors to improve and understand the system. Using this method in an MPFL 

identified which product to prioritize when deciding on the tasks allocation and which tasks are more critical 

to the overall performance of the system when optimizing THP and LT. The applicability of the presented 

method is not limited to RMS; it should nevertheless be beneficial to be applied to many other applications 

where MOO generates large data sets regarding changing scenarios. The extracted knowledge can be 

applied to future scenarios and save time and effort by reducing the search space of the optimization. 

Therefore, the authors propose using the gained knowledge in future related optimization scenarios as future 

work. Such a process of utilizing the extracted knowledge within SMO in future optimization is known as 

off-line KDO. By expanding this study and applying off-line KDO, it is interesting to further investigate 

how the performance of the MOO algorithms can be boosted in RMS applications.  
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