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ABSTRACT 

In this study, real-time scheduling is narrowed to the selection of one job to be processed from the queue 

of a machine when the machine becomes idle. It is considered to be one kind of sequential decision-

making. Deep reinforcement learning with simulation has been widely used to make such decisions for 

most environments where the action space is either continuous or discrete but limited in size. However, in 

the real-time scheduling environment, the number of actions is the number of jobs in the queue which are 

varying over time. Moreover, if jobs arrive randomly, it is impossible to fix the actions. The action space 

is dynamic and stochastic. To overcome the difficulties raised by this, the action space is transformed into 

a featured action space. Actions are distinguished by their features. To apply the featured action space, 

three innovative structures of neural networks are proposed and compared with each other. 

1 INTRODUCTION 

Whenever a machine becomes idle during manufacturing, we need to decide which job in the queue 

should be processed first. Also, once a job arrives at a preemptive machine, we need to decide if the job 

on the machine can be interrupted. These are real-time scheduling. The goal is that all decisions together 

will result in a good performance of the manufacturing system, such as shorter cycle times, less tardiness, 

and so on. In reinforcement learning, agents learn how to make decisions in different situations through 

interacting with the environment to maximize a numerical reward signal received from the environment. 

The agents are not told which decisions to take but instead must discover which decisions yield the most 

reward by trying them or by the experience of the past trials. Deep reinforcement learning is the most 

popular algorithm in reinforcement learning now, which replaces the Q table with one or more neural 

networks and extends state space to featured state space in which the states are described by features. 

Because the states of a manufacturing site cannot be easily cataloged and put into the Q table due to the 

complexity of the manufacturing, deep reinforcement learning is much more suitable for real-time 

scheduling environments with complex and implicit state space. The factors concerned most can be 

included in the state features, like current WIP (work in process), work loading, resource availability, and 

so on. 

 In our previous study by Zhang et al. (2017), we already used simulation and reinforcement learning 

to do real-time scheduling. Jobs in the queue form an action set. Selecting one job to process is regarded 

as taking action from the set. The reward function comprises the critical ratio of the selected job and the 

global job holding cost. Since it is difficult to connect to a real system, a simulation environment is built. 

The learning procedure interacts with the simulation and learns the scheduling knowledge. Two 
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simulation-based algorithms are introduced: simulation-based value iteration and simulation-based Q-

learning. The simulation explores the state space and accomplishes state transitions. The value function is 

parameterized and estimated by using a feedforward neural network. In another study by Xie et al. (2019), 

we tried to answer two more detailed questions: how to quantify states and actions and how to define 

reward functions. Many experiments are carried out to investigate the influence of their definitions on the 

algorithm. The experimental results show that unnecessary features can only make the state space even 

larger and worsen the performance. So, taking only the necessary information as state features is always 

the right choice.  

 However, in both studies, we didn’t mention too much about the action space. For different action 

spaces, we need to design different structures of neural networks. The learning algorithms are also 

different correspondingly. For example, if the action space is discrete, one neural network is needed with 

the state as inputs and Q values of all actions as outputs. The number of outputs equals the number of 

actions. Q-learning is usually used in this case (Hester et al., 2018).  For continuous action space, two 

neural networks are created usually. One neural network inputs the state and outputs the distribution of 

actions. Actions are sampled from the distribution. Another neural network inputs the state and the 

sampled action and outputs the Q value. The most used learning algorithm for this is actor-critic learning 

(Grondman et al., 2012).  

 In real-time scheduling, the actions are jobs in the queue. Since the jobs arrive in the system randomly 

and the queue changes over time, the action set is dynamic and stochastic. If we want to include all jobs in 

the action set, it can be very huge in the long run as jobs keep arriving. In this study, we are going to 

tackle the problem raised by this kind of action space in the real-time scheduling environment and design 

the corresponding neural networks. The remaining contents of this paper are structured as follows: some 

common action spaces are discussed in Section 2; a featured action space similar to the featured state 

space is introduced to address the actions in the real-time scheduling environment in Section 3; In Section 

4, we will propose several neural networks structures which are just fit to the featured action space. The 

experiments are carried out in Section 5 to evaluate the structures. The study is concluded in the last 

section. 

2 TYPES OF ACTION SPACES 

There are many different types of action spaces from different environment domains. The three most 

common types will be discussed here. 

2.1 Discrete action space 

Discrete action space is the most used space. It is usually just a set of actions, 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑝}. The 

size of the set p is fixed and quite limited. For example, in the grid world game, the action set A = {up, 

down, left, right}. Deep Q-learning is often used to handle such action space (Mnih et al., 2013). Ａmore 

general form is a multi-dimension discrete action space that consists of a series of discrete action spaces 

with a different number of actions in each, 𝑎 = (𝑏1, 𝑏2, … ). For instance, a game controller has four keys 

K1, K2, K3, and K4, and one handler H. The keys can be either pressed or not pressed. The handler can 

switch in four directions. The action on the game controller 𝑎 = (𝑏K1, 𝑏K2, 𝑏K3, 𝑏K4, 𝑏H) , where 
𝑏K1, 𝑏K2, 𝑏K3, 𝑏K4 ∈ 𝐵𝐾 , 𝑏H ∈ 𝐵𝐻  , 𝐵𝐾 = {𝑛𝑜𝑝𝑒, 𝑝𝑟𝑒𝑠𝑠𝑒𝑑} and 𝐵𝐻 = {𝑛𝑜𝑝𝑒, 𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡}. An 

asynchronous and deterministic variant of the asynchronous advantage actor-critic learning can deal with 

this kind of action space  (Mnih et al., 2016). 

2.2 Continuous action space 

In continuous action space, an action is a real number. The action set 𝐴 = {𝑎|𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑚𝑎𝑥}. The 

number can also be unbounded. Obviously, the size of the action set is infinite. For example, in a 

“Moving” game where an agent tries to find a target area starting from a random point in a sandbox 
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environment, the actions are the turn angle, 0 ≤ 𝑎 < 360. If we consider the movement in a 3D box, the 

action space becomes multi-dimensional.  The action will be a vector 𝑎 = (𝑥, 𝑦, 𝑧), and the action set  

𝐴 = {(𝑥, 𝑦, 𝑧)|𝑚𝑖𝑛𝑥 ≤ 𝑥 ≤ 𝑚𝑎𝑥𝑥 , 𝑚𝑖𝑛𝑦 ≤ 𝑦 ≤ 𝑚𝑎𝑥𝑦 , 𝑚𝑖𝑛𝑧 ≤ 𝑧 ≤ 𝑚𝑎𝑥𝑧}. A deep deterministic policy 

gradient (DDPG) agent is dedicated to such action space (Lillicrap et al., 2015).  

2.3 Parameterized action space 

For Parameterized action space, the action space is discrete, and the action set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑝}. The 

difference is that each action has parameters. After selecting one action, we still need to determine its 

parameters. The parameters can be either discrete or continuous. For example, in a soccer game, there are 

four mutually exclusive discrete actions: Dash, Turn, Tackle, and Kick. Agents must select one of these 

four to execute. Each action has 1-2 continuously valued parameters which must also be specified. An 

agent must select both the discrete action it wishes to execute as well as the continuously valued 

parameters required by that action. Hausknecht et al. (2015) proposed some algorithms to solve the 

problem with such action space. 

3 FEATURED ACTION SPACE 

As mentioned before, the action set is dynamic and stochastic in a real-time scheduling environment. The 

three common action spaces cannot represent such an action set and the standard deep reinforcement 

learning cannot solve problems with such an action set too.  

 To make the action set deterministic and reduce its size, we propose to convert the action space to a 

featured action space where actions are described by their features 𝑎 = {𝑦1
𝑎 , 𝑦2

𝑎 , … , 𝑦𝑛
𝑎}. y is one feature 

and n is the number of features. The features can be extracted by domain knowledge. For instance, the 

processing time and waiting time of jobs are the most important factors in job selection, both can be the 

features of actions. The number of features n is fixed. Moreover, the actions with the same features will 

be considered to be the same action. This can reduce the size of the action set. Figure 1 demonstrates the 

transformation. 

 

Figure 1: Conversion from action space to featured action space. 

 The featured action space is like the multi-dimensional action space. Each feature refers to one 

dimension, but the meaning is different. In multi-dimensional spaces, each dimension represents one sub-

action. When making decisions, we must determine each sub-action. The sets or range of sub-actions are 

fixed and known in advance. However, features are only the information to describe actions in the 

featured action space. We use actions’ features to decide which action should be taken. The values of 

features may only be obtained just before the decision-making, e.g., waiting times of jobs. Because 

decisions are made only at some discrete time points, the waiting times are discrete too. It is impossible to 

know the waiting times in advance, thus, we cannot create a set of waiting times. This is the main 
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difference between the featured action space and the multi-dimensional action space where a finite or 

infinite set is always able to be created ahead.  

4 STRUCTURES OF NEURAL NETWORKS 

To introduce the featured action space to deep reinforcement learning, we either transform the featured 

action space into a fixed action space where the number of actions is fixed or modify the structure of 

neural networks, especially the inputs and outputs to adapt the space. If the space is transformed into a 

fixed action space, a neural network with the normal structure can be applied, as detailed in Section 4.1. 

Without the transformation, the number of actions in the featured action space is not fixed. The normal 

structure is not applicable. Thus, a new structure (Structure I) is presented in Section 4.2 where both state 

and action are the inputs of neural networks and Q value of the state and action is the output. To reduce 

the computation time of Structure I, a two-phase structure (Structure II) is addressed in Section 4.3 where 

a neural network outputs weights of action features according to a state (input) and then an equation 

calculates the Q value of one action in the state from the weights and values of the action’s features. 

Based on Structure II, Structure III is introduced in Section 4.4. Structure III is also a two-phase structure, 

but the equation (the second phase) in Structure II is now replaced by another neural network. 

4.1 Normal structure 

As mentioned before, the number of actions is fixed in most use cases of reinforcement learning. Thus, 

the normal structure of neural networks is like Figure 2, in which the input number equals the number (m) 

of features X in the state space where state 𝑠 = {𝑥1
𝑠 , 𝑥2

𝑠 , … , 𝑥𝑚
𝑠 }. The output number is the number of 

actions. The output refers to the Q values of each action.   

 

 

Figure 2: A normal structure of neural networks. 

 To apply this structure in our study, the featured action space must be transformed into a fixed action 

space. We can just divide the featured action space into several areas. Each area represents one theoretical 

action. Jobs whose features are all within one area will be the same action. To divide the space, <min, 

max, step > are usually defined on each feature and cut the feature to small pieces by the step. Any 

combination among the pieces of features denotes one theoretical action. If the size of one feature, i.e., the 

number of possible values, is quite limited, the values can be used directly without cutting. We can also 

use any cluster algorithms to divide the featured action space. In practice, it is very often that not all 

theoretical actions appear in decision-making. The invalid action masking technique can handle this 

problem (Huang and Ontañón, 2020). 

4.2 Structure I 

Instead of space transformation, we can also adjust the structure of neural networks to fit the featured 

action space. We can just input state s and action a together into the neural networks and output the value 

Q(s, a), shown in Figure 3. This can avoid the division of the action space and the invalid action masking 
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because we just select among the valid actions. In this structure, the number of inputs is 𝑚 + 𝑛 and the 

number of outputs is 1. The number of jobs in the queue has nothing to do with the structure. 

 

 

Figure 3: Demonstration of structure I. 

 When selecting one job from a queue, we just need to calculate the Q value for each action and select 

the action with the greatest value. When estimating the reward received from the future, we can just input 

the next state and each action in the next action set into the neural network and adopt the greatest Q value 

as the future reward. The disadvantage is that more computation is required. 

4.3 Structure II 

From Structure I, we can see that state s must be input into the neural network every time that we 

compute the Q value of an action. To prevent this from happening, we assume that the state influences Q 

value indirectly while action influences directly. The Q value is a sum of weighted action features 

𝑄(𝑠, 𝑎) = 𝑤𝑦1𝑦1
𝑎 + 𝑤𝑦2𝑦2

𝑎 +⋯+𝑤𝑦𝑛𝑦𝑛
𝑎, where the weight of each feature is determined by the state. 

Thus, we create a neural network. The input is a state, and the output is the weights of all features in that 

state. The structure is shown in Figure 4. The features are standardized by removing the mean and scaling 

to unit variance. In this structure, the number of inputs is 𝑚 and the number of outputs is n. When 

comparing different actions in a state, the weights are calculated only once and used in the equation for 

every action. We can also use this structure to figure out which features in action space dominate 

decision-making.   

 

 

Figure 4: Demonstration of structure II. 

1735



Xie, Zhang, and Rose 

 

 

4.4 Structure III 

In this structure, instead of the linear summation of weighted action features in Structure II, the weighted 

action features are input into another neural network and the neural network outputs the Q value, shown 

in Figure 5. The Q value and action features have nonlinear relations. The input number is n and the 

output number is 1. To use this structure, we need to use the neural network in Structure II to calculate the 

weights first.  

 

 

Figure 5: Demonstration of structure III. 

5 ALGORITHM 

Luckily, deep Q-learning agents are suitable for all four types of structures. A simple algorithm is shown 

in Figure 6. The simulation will run many times for updating the neural network. Simulation is advanced 

from one decision-making point to the next. At each point, state s, action set A(s), selected action a, and 

reward r are recorded. The neural networks are updated based on the previous state, previous action, 

current state, current action set, and current reward. 
 

initialize neural network Q arbitrarily 

𝑖 ← 0 

loop (𝑖 < 𝐸𝑝𝑖𝑠𝑜𝑑𝑒_𝑁𝑢𝑚) 

set previous state s null− =  and previous action a null− =  

 initialize simulation 

 while ( not sim_end) 

  advance simulation to the next decision-making point 

 s  current state, ( )A s  jobs in the queue  

 If s− is not null, Then 

  ' ( )( | , ) max ( , ')( , ) a A sr s aQ a s Q ss a−



− − − +
, 

  Update neural networks Q with pattern  

  
( ),  ,  ,,s a Q s a− − − − 

 
 End If 

 Select a job through  -greedy,  

   

* ( )argmax ( , *)

( ( ))

a A s Q s a
a

random A s otherwise

  
= 
  

 s s−  , a a−   

 

 𝑖 ← 𝑖 + 1 

 

Figure 6: Algorithm of deep Q-learning based on simulation. 
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  𝐸𝑝𝑖𝑠𝑜𝑑𝑒_𝑁𝑢𝑚 denotes the number of simulation runs. γ is the discount ratio. ε is the probability to 

select an action by the current Q values. ζ is a random number within [0,1] generated before every 

selection. 

6 EXPERIMENTS 

6.1 Simulation environment 

A simple discrete-event simulator is developed in Python for the experiments. Two types of special 

events: decision-making events and decision-made events, facilitate the learning process between the 

simulator and agent. Once a decision needs to be made in the simulation, a decision-making event is 

triggered and the simulation engine is paused. The agent responds to the event and makes decisions. Once 

the decision is made, the agent adds a decision-made event to the top of the event list of the simulator and 

resumes the engine. The simulator will respond to the event and take the decision and continue running to 

the next decision-making point. This implementation enables the simulator to be wrapped into a Gym 

environment which is the most popular environment interface for reinforcement learning. The algorithms 

developed for the Gym environment can be potentially used to solve our problem by using the simulator. 

 A deterministic and dynamic single-machine model is used to validate the structures and algorithm 

proposed in Sections 4 and 5. In the model, two types of products are produced on one machine and 

interarrival times of jobs are 10 and 100 minutes. Processing times for two types of products are 9 and 10 

minutes. Preemption is allowed on the machine, i.e., a started job on the machine can be interrupted by 

another more urgent job and resumed later. If we assume that the current job is always put back into the 

queue when new lots arrive, the preemption decisions are merged into the job selection. The objective is 

to minimize the average cycle time. According to the scheduling theory, the optimal rule is always to 

select jobs with Shortest (remaining) Process Time (SPT). This is also the reason we selected this model. 

Because we can always see how much room is left for improvement. 

 Three features are considered in the state space: queue length, queue time, and average WIP. Two 

features are in the action space: remaining processing time and waiting time. Immediate rewards are 

calculated from a sum of time-weighted WIP levels, 𝑟 = 𝐵 − ∑ 𝑡𝑖
𝐿
𝑖=1 𝑊𝐼𝑃𝑖 , where B is a big enough 

number that makes sure r is always positive; t is the duration in which WIP does not change; L is the 

number of WIP changes between two decision-making. The reason we give the constant interarrival times 

is to use the standard learning algorithms and compare them with others. In the standard algorithm, 110 

jobs released in 1000 minutes form the action set and are filtered by the release times in the algorithm. 

6.2 Experimental results 

The following scenarios are designed for the experiment, shown in Table 1. Scenario 1 just uses the 

optimal decision rule SPT to generate the optimal scheduling. Scenario 2 adopts the normal neural 

network structure and the fixed action space. Scenario 3 transformed the featured action space into 

another new action space to apply the normal structure. Scenarios 4-6  use the featured action space 

directly with structures I- III.  

 Deep Q-learning agents interact with the simulation environment and learn scheduling in Scenarios 2-

6 respectively. 𝐸𝑝𝑖𝑠𝑜𝑑𝑒_𝑁𝑢𝑚  is 1000 and the simulation length is 1000 minutes for all scenarios. The 

well-trained agents are then used as decision rules in the simulation. For all scenarios, an average cycle 

time is calculated and listed in Table 2. From the result, we can see that the average cycle times from 

Structure I, II, and III almost reach the optimal value from SPT. However, the normal structure with the 

transformed action space is the worst one because of the transformation from the featured action space to 

the new action space. The normal structure with the fixed action space can also reach the optimal value. 

This means reinforcement learning can solve the deterministic scheduling very well. However, the action 

space can never be fixed in real-time scheduling in practice.  Addition work is done for Structure III to 

check the weights of each action feature at all decision-making points. At 96.3% of decision-making 
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points, the weights of processing times are greater than the weights of waiting times. The behavior of the 

agent follows the SPT rule in most states. 

Table 1: Experimental scenarios. 

Scenario Decision Rule Action Space Structure 

1 SPT - - 

2 agent action space (fixed) normal 

3 agent action space (transformed) normal 

4 agent featured structure I 

5 agent featured structure II 

6 agent featured structure III 

Table 2: Experimental results. 

Scenario Key Info Avg. Cycle Time (min) 

1 SPT (optimal) 13.62 

2 normal (fixed) 13.78 

3 normal (transformed) 14.87 

4 structure I (featured) 13.70 

5 structure II (featured) 13.91 

6 structure III (featured) 13.70 

7 CONCLUSIONS 

Because the action space in the real-time scheduling environment is stochastic and dynamic, the standard 

algorithms cannot be used to solve the problem. We transform the action space into the featured action 

space and proposed three types of neural network structures to calculate Q values from the featured action 

space. The structures are no longer dependent on the number of actions. The experiment shows that deep 

Q-learning with all three structures can achieve almost optimal scheduling. In addition, we need domain 

knowledge to extract features from the real system, this makes the agents not a black box anymore. 

Especially, we can know from Structure II and III which features are the most important for decision-

making. This knowledge can be used directly in practice.  
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