
Proceedings of the 2022 Winter Simulation Conference 

B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and    
P. Lendermann, eds. 

MULTI-AGENT SYSTEM MODEL FOR DYNAMIC SCHEDULING IN FLEXIBILE JOB SHOP 

SUBJECT TO RANDOM MACHINE BREAKDOWN 

 
 

Akposeiyifa Ebufegha 
Simon Li 

 
Department of Mechanical and Manufacturing 

Engineering 

University of Calgary 

2500 University Dr NW 

Calgary, AB T2N 1N4, CANADA 

 

 
 
ABSTRACT 

This paper presents a model for dynamic scheduling in a smart manufacturing system that can be used in a 
manufacturing environment subject to random machine breakdown. We employ a multi-agent system 
(MAS) to schedule work on a system of machines in real-time. We propose that such a system should be 
less sensitive to unforeseen disruptions to the system whilst yielding good results with respect to the total 
flowtime for parts requested of the system. The approach employed is a completely reactive approach, and 
as such has the benefit of not requiring the determination of a nominal schedule. Rather, we take advantage 

of self-organizing nature of the MAS to guide work scheduling. To evaluate the efficacy of our proposed 
model, we compare its performance to that of a system using predictive-reactive scheduling to solve a 
furniture manufacturing problem. 

1 INTRODUCTION 

One common assumption with static job shop scheduling problems is that machines are always available 
throughout the production cycle. However, this assumption is unrealistic because machines may become 

unavailable due to preventative maintenance, breakdown or repair (Mehta and Uzsoy 1999). Addressing 
machine availability is important as unexpected machine unavailability may result in higher costs due to 
delays in delivery time, machine repair and material waste (Fazayeli et al. 2016). As such, mitigating the 
effects of machine unavailability by employing effective scheduling strategies is important, especially in a 
mass customization environment where customer satisfaction with and, perception of the manufacturer can 
be adversely affected by delays in product delivery. 

 As previously mentioned, there are three main causes of machine unavailability. These are preventative 
maintenance, breakdown and repair. For the purpose of this study, we will focus solely on machine 
breakdown and repair. This is because preventative maintenance is typically deterministic as the event is 
usually planned based on the facility planner’s knowledge of care for each machine. The start and end times 
for the machine unavailability period are known, and these periods occur at fixed intervals. As such, this 
information can be easily incorporated into the schedule by the planner. However, machine breakdown can 

occur randomly and at random intervals. This makes them difficult to account for whilst scheduling. They 
can occur due to misuse of the machine, or as a result of wear and tear even with proper use. Once a machine 
breaks down, it must be repaired before it can be used for further operations. This repair time is dependent 
on type of damage to the machine as well as the resources available to direct towards the issue.  
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 Literature on scheduling under uncertainty due to machine availability commonly focuses on 
completely reactive, predictive-reactive or robust proactive scheduling strategies. With respect to proactive 
scheduling, a common approach is to insert idle times into the schedule (Mehta and Uzsoy 1998; 

O’Donovan et al. 1999). This is inserting buffer space to the schedule for handling stochastic disruptions. 
The main issue with this approach is that you must decide how many idle times to insert and where in the 
schedule to insert them. Typically, surrogate measures of schedule predictability are developed to help 
determine the location and frequency of these idle time insertions. Other proactive approaches involve the 
use of heuristics or metaheuristics to solve multi-objective scheduling problems that attempts to maximize 
schedule stability and efficiency (Fazayeli et al. 2016; Wang et al. 2015;  Aloulou and Portmann 2005 ). 

The issue with these proactive approaches is twofold. The first is that they are computationally taxing and 
as such there are limitations on the problem sizes that can be solved feasibly. The other is that proactive 
schedules are developed assuming that all the information is accurate, any disruptions not accounted for in 
these assumptions may have significant negative impact on the schedule stability. 

 The other approaches to address machine breakdown when scheduling are predictive-reactive and 

completely reactive scheduling strategies. These strategies focus on scheduling policy but can also involve 

rescheduling (Sun and Xue 2001). With completely reactive scheduling, there is no nominal schedule, and 

jobs are assigned to machines in real time. This approach usually involves establishing scheduling policies 

that govern work assignment using dispatching rules or some other artificial intelligence-based approaches 

(multi-agent systems, neural networks, etc.). With predictive-reactive approaches, a nominal schedule is 

first created, and rescheduling occurs in response to disturbances to the system. Rescheduling can be in the 

form of partial or complete schedule repair. Partial schedule repair involves rescheduling only affected 

tasks in the schedule whilst complete schedule repair involves rescheduling all tasks downstream of the 

disruption. Kutanoglu and Sabuncuoglu (2001) studied reactive scheduling policies based on rerouting jobs 

to their alternative machines when their primary machine fails. They find the best policy to employ is 

dependent on several factors such as machine utilization, mean times to failure and, mean repair times. 

They find that when downtimes are sufficiently long it is cost effective to reroute. However, if downtimes 

are short, it is best to wait at the primary machine. Merdan et al. (2011) use multi-agent system (MAS) 

simulation to assess the robustness of four different rescheduling policies. Similar to Kutanoglu and 

Sabuncuoglu (2001), they found that the best policy to employ is dependent on the mean time to failure 

(MTTF) and meant time to repair (MTTR). However, they also found that when using MAS, the Complete 

Rerouting rescheduling policy outperformed all other rescheduling policies. Moratori et al. (2010), in their 

investigation into dynamic scheduling strategies, show that right-shifting is optimal with respect to schedule 

stability but comparable to total rescheduling with respect to schedule performance.  

 From our review of the literature, predictive-reactive scheduling appears to be the best approach for 

dynamic scheduling. This is because these approaches are designed with the potential uncertainties in mind 

but also have policies in place for handling unforeseen disruptions. As such, we will be comparing our 

chosen approach to predictive reactive approach. Our application of predictive-reactive scheduling will 

handle disruptions by right-shifting. We chose right-shifting as it offers optimal schedule stability with 

good schedule performance whilst being easy and intuitive to implement on a real shop floor. 
 Regardless of the model or approach utilized, there is a need to establish a robustness measure as the 
basis of evaluating the effectiveness of their proposed solutions. Most literature use a variety of approaches 
to scheduling with machine breakdown. However, they all seem to focus on similar objectives; minimizing 
makespan, tardiness, completion times or flowtime (Ahmadi et al. 2016; Xiong et al. 2013; Fayazeli et al. 

2016). From our review of the literature, minimizing makespan appears to be the common objective used 
for this problem. However, our research will focus on the minimization of both the total flowtime and its 
variability. This is because the flowtime includes the makespan. 
 Our proposed solution can be classified as under a completely reactive scheduling strategy. It is an 
extension of the model proposed by Ebufegha and Li (2021) to include machine breakdown. It involves 
using an MAS to schedule jobs in the facility in real-time (without need for a nominal schedule) based on 

current system state and the global objective of minimizing order completion time or total flow time for the 
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order. As such, our focus is to determine how the objectives of the individual agents within the system that 
will result in the best system performance for any given input scenario. We will compare our approach 
against a predictive-reactive scheduling strategy that uses right-shifting. Our comparison will be against 

right-shifting the schedule by the machine downtime as it has been shown outperform dispatching rules as 
well as rescheduling by partial or complete schedule repair (Yamamoto and Nof 1985; Abumaizar and 
Svestka 1997). 

2 MODEL DESCRIPTION 

The smart manufacturing system (SMS) is a cyber-physical production system. A cyber-physical 
production system commonly consists of a physical layer (smart machines, transporters and parts), a 

network layer (industrial Wireless Area Network  or Local Area Network), cloud layer (software as a 
service, cloud storage, etc.), and supervisory and control layer (human interface with the system) (Wang et 
al. 2016).  
 This system is defined by the autonomy of the components that comprise the physical layer. As such, 
we have chosen to breakdown our model into two domains: the physical domain, and the agent domain. A 
breakdown of our SMS model components can be seen in Figure 1. The physical domain is comprised of 

the physical resources. Whereas the agent domain consists of the agents that make decisions for these 
resources. In this model description, we will primarily focus on parts and machines. We assume that there 
are no other resource constraints and that all communication between the system’s agents occurs in real-
time. 

2.1 Physical  Domain of the Smart Manufacturing System 

Our model focuses the system dynamics and characteristics of machines and parts. We consider these two 
elements (parts, and machines) to be the “core” elements of physical domain of SMS. In this section, we 
will provide a description of these how we modelled these elements in this research. 

2.1.1 Machines 

Allow M = {m1, m2, …, mm} to represent the set of all m machines in the system. Also, allow O = {o1, o2, 
…, oo} to represent the set of all operations that can be performed within a manufacturing system. Each 

machine in the system is capable of at least one operation and may be capable of multiple different 
operations. The machine, however, can only perform one operation on one part at a time.  

SMS Model

Physical 
Domain

Parts Machine

Agent 
Domain

Part Agents
Machine 
Agents

Supervisory 
Agent

Figure 1: Overview of SMS model components. 
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 A machine’s ability to execute an operation is part specific. A machine being capable of performing an 
operation does not mean it should be able to service all parts that require that operation. They can be capable 
of performing an operation for one part but not the other. For example, one drill press may only be able to 

fit a fixed set of bit sizes. Therefore, any part requiring a hole larger or smaller than the bits this drill press 
can hold cannot be processed on this machine. 

 Our model allows for duplicate and similar machines to exist within the system. Duplicate machines 

are machines that can perform the same operations for the same set of parts and have the same set up and 

processing times for each operation they can perform. Similar machines are may either vary in the set of 

common operations they can perform or have varying set up and processing times or both. It is important 

to note that in our model, the notation for operation refers specifically to the operation being performed and 

makes no inference to the machine being used to execute the operation. For example, if o1 refers to the 

operation drilling, and {m1, o1} is the notation for perform drilling at machine m1. Then, similarly, {m2, o1} 

would be the notation for perform drilling at machine m2. 
 The work a machine must complete is held in the queue for that machine. When a part is sent to a 
machine for an operation, the part is first placed  into a queue. This queue is a set of parts that have requested 

an operation from the machine and are waiting to be served by the machine. The order in which parts are 
released from the queue is dependent on the dispatching policy used by the system. In our system, we use 
a First-In-First-Out policy for parts in the queue. The queue length is the number of parts ahead of a given 
part in the queue. The queue length, along with the processing time left on the part being served by the 
machine, determines the amount of time that the part will have to wait to be serviced by a machine, this is 
the wait time. A machine will continue to perform value-adding operations on parts until its queue is empty. 

 The overall system dynamics for a machine are shown in Figure 2. When a machine in assigned a part 
to work on, the part enters into that machine’s queue. It waits in the queue to be serviced by the machine. 
Once the part can exit the queue, the machine is setup to service the part. After which, the part is serviced 
by the machine. Once the part is serviced by the machine, it is released from the machine to transported to 
its next machine in its processing path or held in a buffer space. This process continues until the production 
cycle ends. 

  
 The key attributes that determine how well a machine performs an operation are the set up and 
processing times. Set up time is the time spent preparing a machine to perform an operation on a part. Once, 
set up is completed, the operation can be executed on the part. The time required to complete the operation 
on part using a given machine is the processing time on that machine. Both set up and processing times are 
specific to the machine the operation is being performed on, and the type of part being operated on. Whilst 

set up and processing times are machine and part specific, it is important to note that two machines may be 
capable of performing the same operation for the same part but not have the same set up and processing 
times. This is because different machines may have different physical specifications. For example, two 
different drill presses may have different securing mechanisms and as a result require different set up times 
to perform the same operation on the same part type. 
 In real life manufacturing environments, the set up and processing times can vary from with each 

repetition of the same operation on the same machine. This could be due to the differences in the operator 
capabilities or other stochastic factors that influence operator performance (fatigue, errors, skill difference, 
experience, shift changes, etc.). As such these times are best represented in the form of a distribution. In 
this research, we have decided to represent them in the form of an exponential distribution. From our review 
of the literature, we found that an exponential distribution is the most commonly used. Also, an exponential 
distribution only requires the mean time to complete a task. This information can easily be obtained from a 

floor manager. 
 Our model allows for machine unavailability due to machine breakdown and repair. If breakdown 
occurs whilst a part is being worked on, we assume that the part is undamaged and will wait for the machine 
to be repaired to get the work it requires finished. For each machine, we assume we know the mean time to 
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failure (MTTF) and the mean time to repair (MTTR). We represent both these variables in the form of an 
exponential distribution. This is typical in the literature  on machine breakdown (Kececioglu 2002). 
 

 

2.1.2 Parts 

We represent the set of distinct parts (or different part types) that can be produced by a system using P = 
{p1, p2, …, pp}. By distinct parts, we mean that the parts are not perfect duplicates of each other. In our 
model, we have chosen to treat variants of parts as different part types that the system can produce. For 

example, parts p1 and p2 can both be tabletops. However, p1 could have a different surface finish than p2 but 
otherwise be exactly the same. In our model, they would be treated as two different types of part.  
 Producing a part requires the execution of a subset of the operations that the system’s machine can 
perform. This subset of operations must be executed in a specific sequence and each operation in this subset 
must be completed. However, each part may have multiple operation sequences that can be used to produce 
them. Each of these operation sequences (processing routes) can be used interchangeably during the 

production cycle. For example, Figure 3 shows the possibilities for work in process (WIP) flowing through 
a six-machine system. WIP enters the system and is assigned a route to follow, at each machine an operation 
is performed that alters the WIP (depicted in Figure 3 by a change in color). In this example, there are three 
possible machine route paths and two possible operation sequences. Two machine routes use operations o1 
and o5, and the other uses operations o3 and o4. The machine routes using operations o1 and o5 use entirely 
different machines to perform the same operations. These machines may be duplicates (same processing 

and setup times) or similar (different processing or setup times). 

Figure 2: Machine system dynamics during normal operation. 
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 The operations that make up the operation sequence required to produce a part are not defined by the 
specific machine performing the operation. By this we mean, if a part requires drilling to be performed, the 
requirement does not specify which machine must be used to perform this operation. As such, any machine 

in the system that can perform drilling can be used to perform the operation. Knowing the operation 
sequence required to process a part does not convey the information on how long each operation would 
take. This information can only be obtained by knowing the machine used as well as the part and operation 
required. We will also need to know the machine route being used. In this research, we distinguish between 
the operation sequence a part follows and the machine route path through which it flows through the system. 
In our model, we assume that all operation sequence options in a given part’s process plan  network are 

available to be used interchangeably during the production period. This means that the specific operation 
sequence chosen to make a specific type of part may be different at different times during the production 
cycle depending on the system status (machine availability, part arrival times, etc.). It is assumed that during 
the production period, we can use alternate sequences if the system machines’ statuses with respect to 
availability make it viable. 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 

 
 
 

 

2.2 Agent Domain of the Smart Manufacturing System 

The approach we use employs a hybrid control architecture which combine elements of heterarchical and 

hierarchical control. It is developed based on contract net protocol (Smith 1980) and the extension to 

contract net protocol presented by Wei et al. (2007). We use a hybrid control architecture as it has been 

shown to provide the best compromise between system performance of hierarchical control and the reduced 

sensitivity to stochastic disturbances exhibited by heterarchical control structures (Barbosa et al. 2015). 

This protocol is similar to an auction, with agents auctioning and bidding on operations. An overview of 

each agent’s functions, inputs and outputs can be seen in Figure 4. Figure 4 also shows the information 

flow between each agent.  

Figure 3: Machine route options for sample part in 6 machine system. 
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 In our model, we assume that the infrastructure for collecting information (sensors) and communicating 

(an industrial network, transmitters, receivers, etc.) the real time status of the system is available. This status 

information includes the current status of the system’s machines (idle or busy), the current location of all 

WIP and the current processing stage each WIP is at. We also assume that the capacity to store and process 

this information is available (Software-as-a-Service, Infrastructure-as-a-Service, Platform-as-a-Service). 

The question is, how should we use this information to schedule work? We propose using an agent-based 

approach. This requires determining the types of agents present in the system and the rules that govern their 

interaction. There are three types of agents that exist in our model: (1) part agents (PA), (2) machine agents 

(MA), and (3) the supervisory agent (SA).   

 For each part that is requested from the system, we have a PA. The PA’s objective is to minimize the 

total flow time for the part it represents. This is the total of the time spent in transit (TT), and the time spent 

waiting (WT) and being processed (PT) on each machine in the system. We model the PA to be analogous 

to a subcontractor. It issues tenders for the next operation required by the part the PA represents. These 

tenders are bid on by the MA’s who then return their bids. These bids are in the form of the estimated flow 

time (FT) required to complete the operation requested on the bidding machine. This is a summation of the 

estimated transfer times (TT), wait times (WT), processing times (PT), and set up times (ST). Once all bids 

are received, the PA decides the machine it wants to assign work to as well as a ranked list of alternate 

machines. This decision is made by selecting the lowest bid. The objective function that guides the PA 

decision making is as follows: 
 

min𝐹𝑇𝑃  

𝐹𝑇𝑃 = 𝑇𝑇𝑃 +∑(𝑊𝑇𝑖𝑝 + 𝑆𝑇𝑖𝑝 + 𝑃𝑇𝑖𝑝)

𝑚

𝑖=1

 

Each machine in the system has its own MA. The MA is analogous to a contractor in that it bids on the 

operations requested by all PA’s on behalf of its machine. Its objective is to maximize the its machine’s 

machine utilization (MU). As such, it tries to increase the amount of work assigned to its machine whilst 

minimizing idle time. MA’s are free to bid on work only if the machine is available, otherwise they cannot 

bid on work. A machine is considered to be unavailable if the machine is down due to break down and 

waiting for repairs to be completed. The objective of the MA is as follows: 

 
min𝑀𝑈𝑚  

The SA is analogous to a referee. If there is a conflict (i.e. two PA’s awarding work to the same 

machine), the SA intervenes. Its objective is to ensure that system does not deviate too much from the global 

objective of minimizing total flowtime. To do this, the SA requests and reviews a ranked list of alternate 

machines provided by the PAs and then assigns work based on minimizing the maximum flowtime (FT) 

for all parts (p) currently in the system whenever there is conflict. The objective function the SA uses is as 

follows: 

min(max(𝐹𝑇1, 𝐹𝑇2, …𝐹𝑇𝑝))  

 The auction process is continuous, with PA’s initiating and closing tenders for work, and MA’s bidding 
on work with SA’s supervising all decisions. If at one point in time. no MA bids on a PA’s work request, 
then the PA must wait and re-announce the work. In the meantime, the part is held in storage until it can be 

processed. Note, it is assumed that there will always be sufficient storage capacity for work-in-process 
(WIP) in the system. 
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3 SIMULATION EXPERIMENTS – EXAMPLE PROBLEM DESCRIPTION 

In this study, the example problem used is based on a furniture manufacturing facility presented by Suzic 
et al. (2012). This facility consists of eleven (11) machines that can be used in the production of sixteen 

(16) different parts. These 16 parts are used in the manufacture of five (5) products. These products are 
shelves, wardrobes, horizontal dressers, vertical dressers, and computer tables. For the sake of this study, 
we focus purely on the parts being ordered from the system and ignore the products that can be assembled 
from the requested parts.  
 We have made two modifications to the base problem. The first is that we assigned each operation a 
distribution to represent its setup and processing times for each machine. The second modification is 

assigning each machine a MTTR and MTTF values. All machines are assumed to have the same MTTF 
and MTTR. The variables are represented using an exponential distribution. There are three levels for both 
variables; low, medium, and high. These mean values assigned to these levels can be seen in Table 1 below: 

 

Table 1: High, medium and low settings for MTTF and MTTR (in time units). 

LEVEL MTTF MTTR 

Low 9 1 

Medium 6 7 

High 3 14 

 
 In the scenario we examine, an order of six distinct types of parts is requested from the two systems 
consisting of the same set of machines at time zero (T = 0). These are parts p1, p2, p3, p4, p5, and p6. The 
machines in both systems are in the same layout, and have the same capabilities with the same performance. 

One system using predictive-reactive scheduling. First a nominal schedule is designed with the objective 

Figure 4: Agent behavior (Ebufegha and Li 2021). 
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of minimizing the total flowtime for all parts requested. In the event of a disruption, the affected operations 
are right-shifted to the time when the machine becomes available again. The second system employs our 
proposed approach. Here, the schedule is determined in real-time using our MAS. Both systems are tasked 

to process the order, and are subject to the same machine breakdown conditions. Their performance is 
compared with respect to their order completion times and the variability in their performance. 

3.1 Simulation Experiment Conditions 

Simulation experiments were run for the predictive-reactive schedule, and our MAS-based approach. The 
simulations for both systems are run using a script developed in MATLAB R2021a. The conditions for the 
experiments are as follows: 

 

• We execute a full factorial (32) experiment 

o All 9 combinations for levels of MTTF and MTTR are run 

• Each experiment has 100 repetitions 

3.2 Experiment Results 

Table 2 shows the results for the simulation experiments run using both scheduling approaches. The key 

measures used to evaluate the results of the experiments are the mean and standard deviations. An analysis 
of variance (ANOVA) has been performed on the means to establish whether or not the means are the same.  
 Figure 5 shows the main effects plots for the simulation experiments. The top left plot depicts the effect 
of scheduling approach on the mean completion time for each different level of MTTF. The top right plot 
depicts the effect of scheduling approach on the standard deviation of completion time for each different 
level of MTTF. The bottom left plot depicts the effect of scheduling approach on the mean completion time 

for each different level of MTTR. The bottom right plot depicts the effect of scheduling approach on the 
standard deviation of completion time for each different level of MTTR. 
 

Table 2: Simulation experiment results for machine breakdown. 

MTTF 

Level 

MTTR 

Level 

Predictive-Reactive 

Approach 

MAS Approach 

P-Value 
 

(H0: µ1 = µ2) 
Mean 
(µ1) 

Standard 

Dev. 
(σ1) 

Mean 
(µ2) 

Standard 

Dev. 
(σ2) 

LO LO 13.26 1.80 12.79 2.23 0.052 

MED LO 14.47 2.23 13.65 2.70 0.011 

HI LO 16.53 2.59 16.27 3.17 0.640 

LO MED 36.88 17.27 31.21 11.81 0.004 

MED MED 46.48 17.11 33.86 11.52 0.000 

HI MED 60.78 13.57 51.24 16.53 0.000 

LO HI 63.11 33.07 49.26 24.53 0.000 

MED HI 74.72 29.36 64.01 30.82 0.007 

HI HI 118.58 34.42 97.60 37.13 0.000 
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3.3 Discussion 

The results of our experiments, as seen in Table 2, show that our proposed approach to dynamic scheduling 
yields lower mean completion times in all simulation scenarios examined for the part demand given. There 
is no discernable pattern with respect to the standard deviations. In some instances, the standard deviation 
is higher for our proposed approach that with the predictive-reactive approach. On the surface, this suggests 
that our proposed approach outperforms predictive-reactive scheduling for this specific problem. 

 An analysis of variance (ANOVA) was performed to confirm our initial findings. We used a null 
hypothesis of means being equal to determine whether the difference between the MAS-based approach 
and the predictive-reactive approach was statistically significant. The results of the ANOVA show that 
when MTTR is medium or high, the difference in the mean completion times are statistically significant (P 
< 0.05). This is true regardless of the MTTF level. However, this is not the case when MTTR is low. When 
MTTR is low, the statistical significance of the difference in mean completion times is dependent on MTTF 

level. With low MTTR and MTTF, the difference is the means is not statistically significant. However, this 
is a borderline case with P = 0.052. This result suggests that more information is needed to draw any 
conclusions. With low MTTR and medium MTTF, we see that the difference in the mean completion times 
is statistically significant (P = 0.011). With low MTTR and high MTTR, we see that the difference in the 
means are not statistically significant with P = 0.640 (P>0.05).  
 The main effects plot for completion times (seen in Figure 5) show that regardless of the setting for 

MTTF (low, medium or high), the MAS approach outperforms the predictive-reactive scheduling approach 
used. The slope for all three settings are basically parallel, suggesting that there is no interaction between 
the factors. We see that as MTTF increases, the completion time increases. The main effect plot for mean 

Figure 5: Main effects plots derived from simulation experiment data. 
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completion times looking at MTTR, suggests that our approach yields lower completion times regardless 
of the level of the MTTR. There is an interaction between the level of the MTTR and the scheduling 
approach used. The plots suggest that the MAS-based approach is less sensitive to changes in the level of 

MTTR. This can be seen as the slope increases as the level of MTTR increases. 
 Examining the main effect plots for the standard deviations for the completion times with respect to 
MTTF, we see that our MAS-based approach is more sensitive to changes in the level of MTTF than the 
predictive reactive approach. We can also see that the mean of the standard deviation is lower for the MAS 
approach than that for the predictive-reactive approach. This means that we should expect lower standard 
deviations using MAS but it will increase rapidly with MTTF level. The main effect plot for standard 

deviation of the completion times with respect to the MTTR show that the MAS approach has lower 
standard deviations. It also suggests that the MAS approach standard deviation is less sensitive to the level 
of MTTR than the predictive-reactive scheduling. 
 Overall, the results of our experiments suggest that the MAS approach we propose outperforms 
predictive-reactive scheduling in a manufacturing environment subject to random machine breakdown with 
respect to schedule stability and performance for the problem being examined. Our analysis suggests that 

the MAS scheduling approach yields lower mean completion times, and standard deviations. However, it 
is important to note that these results are preliminary. As such, it cannot be definitively said that our MAS-
based approach would outperform predictive-reactive scheduling in most cases. Rather, the results of our 
experiments suggest that there are conditions under which our approach outperforms predictive-reactive 
scheduling. As such, further research is required.  

4 CONCLUSION 

In this paper, we present a MAS model for smart manufacturing systems that can be used for manufacturing 
environments subject to random machine breakdown. The model presented primarily focuses on dynamics 
of the parts and machines within system and agent intelligences that govern their interactions. Our intent 
was to develop a robust system capable of handling disruptions due to uncertainties arising from machine 
availability. The objective of our proposed model is to minimize the total flowtime for parts in the system 
and the variability in the system performance with different levels of uncertainty. 

 As a preliminary investigation, we compared the performance of our proposed system to one using 
predictive-reactive scheduling. Both systems were comprised of the same machines in the same layout, and 
were subject to the same machine reliability. Both systems were required to produce the same order of parts 
with the order arriving at each system at time zero (T = 0). The results of the investigation suggest that the 
MAS-approach outperforms the predictive-reactive scheduling approach with respect to stability and 
performance. 

 However, it is important to note that these results only suggest that our approach outperforms 
predictive-reactive scheduling under the conditions of the specific problem being examined. To draw a 
more conclusive observations, more experiments need to run under more varied experimental conditions 
(different problem sizes, different order mixes, different numbers of duplicate machines, etc.). That being 
said, it is our current hypothesis that our proposed approach is a viable approach from developing a robust 
manufacturing system. 
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