
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

USING DATA FARMING AND MACHINE LEARNING TO REDUCE RESPONSE TIME FOR
THE USER

Falk Stefan Pappert
Oliver Rose

Department of Computer Science
Universität der Bundeswehr München

Werner-Heisenberg-Weg 39
Neubiberg, 85577, GERMANY

ABSTRACT

Simulation in our area usually takes some time; even if a preexisting model just needs to be parameterized
there is still the run time, which will usually take at least a few minutes if not hours. In our current case,
a planner wanted to know for a given product mix situation and for an equipment group with specific
characteristics how much he can utilize the equipment without violating flow factor targets. Since the user
is usually asking the same question just with different parameters we are able to solve the waiting time
problem while still giving good decision support. Instead of simulating every scenario at the time the
user actually needs these answers, we use data farming to generate a large set of data points that are then
used to train a neural network. This neural network substitutes for the simulation and responds to the user
immediately.

1 INTRODUCTION

Capacity planning is a crucial task in industry. Robinson, Fowler, and Neacy (2003) point why accurate
capacity planning is important and yet difficult to achieve in the highly sophisticated semiconductor industry.
A planner faces numerous questions every day, being it short term operative question or long term strategic
ones considering future investments. A necessary starting point to be able to answer these questions is
knowledge about the available equipment capacity and how its utilization will influence the material flow.
Flow factors are used as a key performance indicator for the whole production system as well as smaller
subsections. They are calculated as

f low f actor =
actual cycle time
raw process time

.

Flow factors are a good performance indicator to evaluate a system, especially when producing many
different products with many different cycle times. In semiconductor industries it has become good practice
to aim for certain flow factors as a target of control. Having shorter production cycle times, and therefore more
production cycles, is highly important in the semiconductor industry, as it allows additional development
cycles for new and improved products - although this may decrease throughput. Also, manufacturing
products quickly is preferable as this provides additional flexibility and shorter delivery times to customers.
Flow factors are dependent on the system itself and its utilization. Operating curves show this relation for
a system, see Fayed and Dunnigan (2007) and Aurand and Miller (1997). An operating curve of a simple
system can be seen in Figure 1. Usually, there is an almost flat area where production is quite robust,
with a steep rise the closer utilization gets to 100%. At what point this rise starts and how steep it is very
dependent on the system at hand. Other characteristics can also change the operating curve of a system.
The operating curve of another still simple system is shown in Figure 2.

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 1707

Pappert and Rose

Figure 1: Operating curve of a simple equipment group without any special features.

Figure 2: Operating curve of an equipment group with a single equipment, batching and rare, but long,
breakdowns.

When comparing both systems operating curve, the most obvious change is the fall on the left side
of the second operating curve. This will typically be the case when looking at systems using some form
of batching. But there are also other differences, while the system represented by Figure 1 is relatively
stable until about 95% utilization we already see a steeper rise of the flow factor much earlier in the second
system. What is also quite interesting with the second system is the minimal possible flow factor. As we
can see, it is not possible to have the flow factor better than approximately 5, regardless of the utilization
point we would be running the system at. So, when trying to run the system at a lower flow factor, changing

1708

Pappert and Rose

utilization will have no sufficient effect. One would have to change the systems characteristics, e.g. change
the number of machines or lax batching rules.

When doing production planning constrained by desired flow factor values, it is important to first see
if these flow factor values are possible. If they are achievable, it is important to know how high a system
can be utilized without having to expect the flow factor target being violated. Hence, what our planner
needs is a way to determine the lowest possible flow factor of a given system, or at least if a given flow
factor is possible within that system. Additionally, the planner needs the utilization values which present
the limits under which a flow factor can still be achieved.

These two points of information limit the available capacity of the equipment for planning if flow
factor targets should not be violated. Although most equipment groups behave quite differently, based on
their characteristics, the underlying question stays the same. Traditionally, lookup tables were used to get
these information. Although reasonably fast, they lacked consideration of several important equipment
characteristics and therefore tended to be inaccurate. Simulating the system at several utilization points
to generate an operating curve could be a solution, but simulation typically takes a lot of time. There are
approaches to reduce the time to calculate operating curves by using only a few points (Byrne 2012). This
would still involve a lot of simulation effort, so a response would take some time. Our goal is to reduce
this time to an instant, so the planner does not need to wait for a result. At the same time, our system
should provide the planner with reliable information for the planning decisions.

As traditional discrete event simulation seems to be to slow for the purpose at hand, a promising
approach to replicate behavior within a manufacturing context are artificial neural networks. Bergmann
et al. (2014) show the use of neural networks to replicate of manufacturing control strategies. Wörrlein et al.
(2019) discuss the application of neural networks to predict energy consumption of production equipment.
Detailed information on the implementation and technical realization of the system can be found in Pappert
and Rose (2021).

In the following section we will give a general overview of our approach. In Section 3 we discuss the
considered features in more detail, followed by an introduction to the model and evaluation, the training
of the neural network and results. Finally, in Section 8, we will take a look at future steps.

2 APPROACH

In planning, some questions arise repeatedly during a common work day – and waiting for an answer
would slow down work significantly These general questions, and the space of possible instances we could
be asked for, are known. We aim to build a system that is able to answer very similar questions with a
response time that is as low as possible while still providing sufficient answer quality to be useful.

A common approach to analyzing an equipment group would be to build a simulation model, include
all its features and run some simulations, analyze the results and supply the answers to the user. Because
of time criticality we have to change this common approach. The quality of the simulation response is
acceptable for our purpose, just the time to get it needs to be reduced as much as possible.

In Figure 3 we give an overview on the approach we are using to solve this runtime issue.
The traditional approach of tackling a problem with simulation is shown in the “challenge”-column:

i.e. design and implement a model, gather statistics and analyze the results. This approach can be speed
up slightly by providing a general model, that only needs to be parameterized and run by the user. Then,
most of the model building time would be moved to the time of building the system, when run time is not
that important. As running automatically generated models based on parameter sets still takes some time,
at least when looking at larger equipment groups with higher throughputs, automated model building can
just be a first step.

The step towards very fast response times is to not only put the model building to a point in time before
the application phase, but also move the running of the simulation before the application phase. With only
a few possible combinations, it would be quite simple to prepare all possible system configurations, and
look up the result from this data set. In our case the problem space is enormous, therefore running all

1709

Pappert and Rose

theoretically possible - or even practically feasible - configurations is not preparable in that way. What
we can do is prepare a lot of data points and infer the areas between our prepared points. And this is

Figure 3: Overview of the general idea.

what our approach boils down to: We run data farming for a large number of supporting points to capture
the problem space. Then we use these calculated data points to train a neural network. If the training is
successful, the neural network can immediately respond to the user. Simulation and training may take a
long time, but during the actual application, the response time of the system to user’s requests will be very
short.

3 FEATURES CONSIDERED

In this paper we use the terms feature, factor and level to describe characteristics of the equipment model.
With feature we describe a general characteristic that is considered within the model, like batching, dedication
or the number of tools in an equipment group. A features’ implementation is represented by a number of
factors. For batching this would be the maximum batch size, minimum batch percentage, and maximum
waiting time. With levels we describe the actual instance value of the factor used in a given scenario or
design point. In the example of “equipment count”, the levels could be 1, 10 or 15.

Starting with Robinson et al. (2003), Hopp and Spearman (1996) and a review of the previous planning
methods we defined the relevant features for our equipment group model. Values to represent our levels
are based on a fab dataset of our industrial partner, where we looked for natural clusters and selected
representatives of real instances to capture realistic working points. Table 1 gives an overview on our
currently considered features and factors and their number of levels.

Initially each of the features we planned to investigate were represented by a single factor (Pappert et al.
2017). For features like the number of equipment in the group this is simply done as a numerical factor

1710

Pappert and Rose

Table 1: Overview on features, factors and levels.

Feature Factor # Levels Type
Batching MaxBatch 5 Quantitative

MinBatchPercentage 3 Quantitative
MaxWaitTime 1 Quantitative

Breakdown BreakdownCycleLength 5 Quantitative
BreakdownCapaLoss% 2 Quantitative

Dedication Dedication 4 Categorical
Equipment # ToolCount 6 Quantitative
Maintenance MaintenanceCycleLength 3 Quantitative

MaintCapaLoss% 2 Quantitative
Product Mix ProductMix 3 Categorical
Rework ReworkPercentage 3 Quantitative
Process Time RPT 6 Quantitative
Setup SetupDuration 3 Quantitative

with levels defining the values to be used in the simulation model. For more complex features we started
with categorical levels, and Defined parameter sets for each level. The problem with having categorical
levels defined in this way is the lack of a general way to find points between two levels. With our final
system we aim to answer general questions on equipment groups and not only for cases that luckily fit
exactly our precalculated scenarios. So instead of this one factor representing batching, we split them; For
example in the case of batching, the categorical parameter of the batch [max=300, min =270, wait=12h]
was split into three: the maximum batch size (300) defining the capacity of an equipment, a minimum
batch percentage (90%) threshold under which processing a batch may not be economically viable, and
the wait time (12h) to balance flow factor against economic viability for low volume products. With this
change, each factor becomes numerical, which makes it easy to find additional valid points between two
factor levels.

When splitting features into multiple factors, we aim for each factor representing a different aspect
of the feature and try to keep sets of factors as generic and meaningful as possible. . Again, looking at
batching, we moved from a fixed amount for the minimum to a percentage of the maximum. Not only does
this simplify finding valid factor level combinations, as in all valid level combinations the maximum needs
to be at least as large as the minimum. It also makes comparing combinations a lot easier, and thereby
is offering us the opportunity to analyze our resulting dataset with regard to ideas on the performance
influence of certain features. We also think this will provide us with a clearer idea of the cause for seen
changes in performance. This differentiation into aspects of a feature can also be shown with the feature
of breakdowns. Here we moved from a single factor with, each level representing a combination of a
fixed value for mean time between failure (MTBF) and mean time to repair (MTTR), to two factors: one
representing the cycle length of a breakdown cycle, the other the capacity loss due to the breakdown. This
enables us not only to see the impact of fixed values on the systems performance, but see the impact of
these concepts more clearly. With the change, we can now simply compare systems with different capacity
losses at the same cycle length, or systems with the same capacity loss at different cycle lengths instead
of looking at the feature as a whole. In the old system, a MTTR value almost exclusively had meaning in
relation to its MTBF value. A MTTR of 2h would not tell us much by itself without having an idea of
the MTBF. Breakdowns are also a good example of these aspects showing an effect on results. Imagine
two systems with a similar amount of capacity loss, e.g. 20% due to breakdowns. One system breaking
down every 4 hours for an hour, compared to a system with the same capacity loss, with breakdowns only
happening every 4 weeks but lasting a whole week. The impact of the cycle length becomes much easier
apparent compared to our previous approach.

1711

Pappert and Rose

In this paper we are representing all but two features with only quantitative factors: The remaining two
features are the product mix and dedication. The challenge with these features is finding good numerical
representations to capture the full complexity of the feature, while remaining individually meaningful. For
product mix a good factor could be the number of products, but we are still working on an elegant way to
describe the balance between the different volumes of the products.

4 THE MODEL

The simulation model is built in a factory simulator we created in-house. The simulator is written in java
and provides us with the opportunity to adapt every aspect. The model itself is a configurable model of
an equipment group. The model configuration depends on the factor setting of a given scenario. Different
parts of the model are responsible for implementing the defined features of a scenarios equipment group.
Figure 4 is giving a general overview of the model.

For each product there is a source, that generates lots with 24 wafers at a defined arrival rate. The rate
is based on the utilization point and the percentage part of the product generated in the product mix.

Figure 4: Model overview.

From the source, lots move to a queue controlled by a dispatching controller. This controller decides
for each lot when and to which equipment to go. In the current setup of the model lots are basically
dispatched using FIFO (First in first out), when possible. Since some of our models consider dedication, the
controller is also responsible for sending only lots to an equipment that is defined as being able to handle
the given product. Equally, for scenarios requiring different setups for different products, the controller
decides when a product change should be done. The logic to change a current setup is enforcing a setup to
be used for a minimum number of lots and then allowing to switch to another setup based on the current
situation in the queue. We use this basic setup rule, as it needs to work reasonably well with small and
large equipment numbers. Furthermore, it works with only a few products as well as many and on a wide
range of utilization points. This approach does not perfectly balance capacity loss, due to setup times and
the wish for small flow factors, but it is easily applicable to all scenarios. The last feature the controller
implements is batching. Our batching considers three parameters: a maximum batch size, a minimum batch
size and a maximal waiting time. A batch is only send if at least a minimal number of wafers participate in
the batch. Since some of our scenarios have very unbalanced product mixes, we define a maximal waiting
time after which a batch can be started even though the minimum threshold has not yet been reached.

From the queue, the lots or batches are send to a specific equipment dependent on the before mentioned
decisions by the controller. The equipment does not differentiate between lots and batches and will simply
process the arriving group of wafers as one. If the previous wafers needed a different setup state the

1712

Pappert and Rose

equipment will automatically change its setup. This is because the decision to change the setup state is
implicit in the controller sending wafers of another product to this equipment. A feature directly handled
by the equipment is the process duration, which is modelled as a fixed time, depending on the scenario and
a small distributed offset to account for slight changes in processing time or an operator not being able to
pick up material immediately. Capacity losses due to breakdowns and maintenance are also modelled at
the equipment. Following the equipment a merge block will undo batching to regroup the wafers into their
original lots. A rework gate is used to randomly send lots back into the queue of the dispatch controller.
This models a test step which may send a certain percentage of lots for rework on an equipment using
additional capacity.

Once the lots have successfully passed the rework gate they are processed for data collection in a sink.

5 EVALUATION AND SIMULATION

With the generic model described in Section 4 we could automatically generate a model representing a
single point in the parameter space of our factor levels. But before we can actually run a simulation, we
need to know the load required to reach a targeted utilization point. With the large parameter space we
are looking at, it would not be feasible to simply try different loading amounts, and find good loading
amounts iteratively. Reasonable loading heavily depends on the capacity of a given scenario. Think about
a scenario with only a single machine, that can process a single lot at a time within an hour. This would
leave us with an equipment group being utilized at 100% with just 24 lots per day. On the other end of
the spectrum we are looking at equipment groups with 20 machines, running possible batches of up to 300
wafers and only needing 15 minutes per batch. For this equipment group 100% utilization would mean
24000 lots per day. Simply trying different loading points would cause us to waste quite a number of
simulation runs just to find a good starting point. The load of the simulated model has a big impact on run
time, and overloading will slow down the simulation speed even more. With more work in process (WIP)
in the model, and longer queues, simulations tend to take longer. So overshooting, while trying to find a
starting point of the model, gets even more expensive in computing time than running the scenario at a
good utilization point.

To solve this issue we do a static capacity analysis when starting to analyze a new scenario. The
impact on capacity of most features is fairly easy to calculate, as we have done with the short calculation
of our example above. Looking at number of equipment, batch size and the processing time for a single
production run determines the theoretical capacity limit. From this we have to subtract capacity losses of
other features like breakdowns. The capacity loss due to a feature like setup is very hard to predict, as this
is heavily dependent on the exact rule followed to issue setups. Two things played into our hand when
trying to handle this issue, both coming from the application of the system. First, there are not that many
types of equipment that need a consideration of setups. Therefore the impact of model inaccuracies does
not invalidate the approach for the largest portion of the equipment park. Second, planners at our partner
usually don’t consider capacity loss due to setup when estimating utilization for similar reasons. Thus the
capacity loss and the dynamic effects of setups are modeled in the system, and the returned values fulfill
the expected purpose since their meaning is the same in the model and for the user of the system.

Based on the calculated capacity, we can calculate the needed load to reach specific utilizations of
the model. And with these, we can start looking for interesting points in the operating curve. The first
point we look for is the utilization point with the minimum possible flow factor. With this point found, we
know if the FF thresholds we look for are possible with the current scenario. Additionally, we can limit
our search for the thresholds to the right part of the operating curve. Although the flow factor may rise
with lower utilizations, for example due to batching, we are usually aiming to utilize equipment as high
as possible. An equipment group facing cycle time issues due to batches not filling up fast enough is not
a hard limitation of the available equipment capacity, but more of a control issue.

After finding the point with the lowest flow factor a search for the thresholds is done. Each of these
searches uses a search strategy akin to binary search. To reduce the number of unnecessarily calculated

1713

Pappert and Rose

points, all previously calculated points for a scenario are used to find the best next point to evaluate in the
search for a threshold or the lowest point.

As we do have statistical influence in our model, we need to consider several simulation replications
for a single utilization point. The number of replications per utilization point is determined on the fly
during the evaluation, to avoid unnecessary simulation runs. For all evaluated utilization points we first
run a small set of replications. Based on these, we calculate the half length of the confidence interval and
mean and compare their quotient with the relative error we aim for, similarly to Law and Kelton (2000).
If the error is still larger we start another set of replications. This is done until the relative error is smaller
than the quotient.

On average this has led to 825 simulation runs to determine the location of the lowest point and 3
thresholds for a scenario. Based on our old single factor per feature approach we were looking at 460000
data points just to generate the supporting data for our training. Which meant about 380 million simulation
runs. While evaluating single design points on a normal office PC is still feasible, it took our server several
weeks just for this data set. With the switch to multi factor features, we are able to continue using this
data set as a base set. Additionally, we get a lot of new level combinations. This change gives us the
opportunity to address many more data points as were previously possible With the increasing number of
design points we cannot simply calculate all points, but have to choose the most valuable ones for our
training. We have to decide which areas of our design are represented sufficiently and which areas may
benefit from further supporting points.

6 TRAINING

With the numerous data points we generate a trained neural network. In the beginning we were using neural
networks in R, for more information on R see Verzani (2014). But training took quite long, usually hours
or even days. With larger networks we got to a point, where training would run into to memory issues and
the training basically stopped working reliably. To tackle these issues we decided to switch our training
environment to Keras (Géron 2019) using the Tensorflow library (Abadi et al. 2016). With this change
we were able to utilize two major benefits. First, changing the environment from R to Python allowed us
to use a lot of other libraries from the quite active machine learning community in Python. The second
big advantage came with the option to use graphic processors for training. So, without much additional
effort beyond rewriting our training script in Python, we reduced training times to the area of seconds and
minutes. A big benefit of these highly reduced training times is the opportunity to test a lot more network
configurations to find good architectures working well for our topic.

When training, we generally aim to reduce mean squared error (MSE). Although this is able to compare
the success of different training runs it does not tell much about the applicability of our results for the actual
use case. To evaluate this, we defined a histogram showing training results graphically: it shows us the
distance of our test set from the actual simulated values. These graphs are a representation of the training’s
success and help us by enabling us to immediately evaluate a network with regard to its applicability in
practice. What we want to get from the trained network is the utilization threshold for a targeted flow
factor for a given equipment configuration. So what we expect is a value between 0 and 100 representing
utilization in percent. On the x-axis we display the distance from the prediction of the trained network to
the one from the simulation. Results are put into bins of 1%. So the first bar represents up to 1% deviation,
the second bin up to 2% deviation and so on. On the y-axis we count the number of test scenarios that have
a specific deviation. An ideal result would have a very large bar at 0 and show no additional data points.

Figure 5 is an example of one resulting graph, from a – as we thought at the time – quite successfully trained
network compared to other networks based on MSE. Looking at the training results in this representation
easily shows that the results would not be usable at all. some deviation occurring in few cases might be
acceptable. But a deviation occurring regularly of 10% to 20% would make the prediction not usable for
any planning or investment decision, let alone the predictions with more than 60% deviation.

1714

Pappert and Rose

Figure 5: Training result graph example.

Although we managed to reduce training times with our switch to Keras, finding good network
architectures has still been a very labor intensive iterative process, which beckons the question of automation.
Our manual results before starting the search for automation can be seen in Figure 6. Almost half of the
test set is perfectly predicted and about a third is at most 2% off. This leaves about a sixth of the test cases
that are not predicted as good as we would like.

Figure 6: Manual training results.

We started exploring two approaches of automating this process. The first approach we looked at was
neuro-evolution. Here, the basic idea is to have an evolutionary algorithm do the parameter search for our
network architecture search. More information on this approach can be found in Stanley et al. (2019).

1715

Pappert and Rose

Although being a promising approach at first, results differed from run to run and we were not able to even
replicate the quality of results from our manual process. Of course, there are many ways and parameters
for this approach to improve search results and to adjust for a given problem. But this just seemed to move
the issue of the parameter search one meta level higher, without improving our initial problem.

The second approach we looked at for automating the network search is using AutoKeras. AutoKeras
is an AutoML system based on Keras introduced in Jin et al. (2019). The goal is to automate most steps
getting from the data to the trained model. First results are quite promising as shown in Figure 7. We
are looking to further improve our previous results. As AutoML systems provide a large set of parameter
options we see the opportunity of future improvements.

Figure 7: Training results using AutoKeras.

7 RESULTS

With our research, we are trying to reach three goals. The first is to be able to use the compiled data for
future analyses, to better understand the effects of different factors and their combinations on an equipment
group. With our changes to the representation of features and the way we are splitting features into factors
with independent meaning, we have taken a large step in this direction and are now looking at a growing
data set we can use for future analysis.

The major goals of our research have been to provide the planners with sufficiently high quality
responses to their questions within a very short time frame. We can reach the goal of very short response
times with our current approach. Querying the trained network for a response takes less than a second on
an office computer with a modern graphics card. Even for systems that cannot support modern graphics
cards, the trained network could be put on specialized hardware that can store a trained network and be
easily plugged in at an USB port for a quite low cost. The goal of sufficiently good responses is still not
entirely reached. Although our predictions are better than the historical system, we still see some room
for improvement.

8 OUTLOOK

As we have mentioned in the last section we are already very happy with the response time of our system
and do not see much need to improve on its current performance. Still, there are several things where we

1716

Pappert and Rose

still see room for future research. Although we already get quite good results we would like to improve
the result quality. To this end, we see several paths to be taken in the future.

First and foremost is an analysis of the points we could not predict very well. This analyses comes
with two purposes. First, from a practical point, it is important to know if the cases that are hard to predict
represent cases that are likely to be seen in a real fab situation. With our huge space of possible equipment
group configurations not all configurations are similarly likely to be considered. If these cases are unlikely
fringe cases, the usefulness of the (prediction) system would be reduced much less than if they are highly
likely or even currently existing/ used in the fab of our industrial partner. Second is information on whether
there is any form of systematic issue that causes prediction problems for a certain kind of configurations.
Finding a systematic issue may help us remove the systematic issue and thereby improve prediction quality
significantly.

There are two general options to improve the system. The first option is to improve the data base used
for training. The simplest way, just adding more and more levels and train with an even larger design,
has very hard limits that we have nearly reached. Another way would be to find areas with less than ideal
prediction and add very few additional points in these regions with the hope of a local improvement.

The second option is to improve responses by having a more successful training approach. As we have
mentioned before there are numerous parameters for AutoKeras that could be tweaked, and there are other
approaches to find good network layouts and training parameter sets that may fit better to our problem.

ACKNOWLEDGMENTS

We would like to thank Heiderose Stein for her valuable and constructive suggestions during the writing
of this paper.

REFERENCES
Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,

J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. 2016. “TensorFlow: a system for Large-Scale machine learning”. In 12th USENIX symposium on operating
systems design and implementation (OSDI 16), 265–283. Savannah, GA: USENIX Association.

Aurand, S. S., and P. J. Miller. 1997. “The operating curve: a method to measure and benchmark manufacturing line productivity”.
In 1997 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop ASMC 97 Proceedings, 391–397.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Bergmann, S., S. Stelzer, and S. Strassburger. 2014. “On the use of artificial neural networks in simulation-based manufacturing
control”. Journal of Simulation 8(1):76–90.

Byrne, N. M. 2012. A framework for generating operational characteristic curves for semiconductor manufacturing systems
using flexible and reusable discrete event simulations. Ph.D. thesis, Dublin City University. https://doras.dcu.ie/16922/1/
PhDThesisNeillByrneBoundVersion20120427.pdf.

Fayed, A., and B. Dunnigan. 2007. “Characterizing the Operating Curve—how can semiconductor fabs grade themselves?”. In
2007 International Symposium on Semiconductor Manufacturing, 1–4. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Géron, A. 2019. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. 2nd ed. Sebastopol: ” O’Reilly Media,
Inc.”.

Hopp, and Spearman. 1996. Factory Physics. 3rd ed. New York: McGraw-Hill.
Jin, H., Q. Song, and X. Hu. 2019. “Auto-keras: An efficient neural architecture search system”. In Proceedings of the 25th

ACM SIGKDD international conference on knowledge discovery & data mining, 1946–1956. New York, USA: Association
for Computing Machinery.

Law, A. M., and W. D. Kelton. 2000. Simulation Modeling & Analysis. 3rd ed. New York: McGraw-Hill, Inc.
Pappert, F. S., and O. Rose. 2021. “Reducing Response Time with Data Farming and Machine Learning.”. Simulation Notes

Europe 31(2):87–94.
Pappert, F. S., O. Rose, F. Suhrke, and J. Mager. 2017. “Simulation based approach to calculate utilization limits in Opto

semiconductor frontends”. In 2017 Winter Simulation Conference (WSC), 3888–3898. Institute of Electrical and Electronics
Engineers, Inc.

1717

https://doras.dcu.ie/16922/1/PhDThesisNeillByrneBoundVersion20120427.pdf
https://doras.dcu.ie/16922/1/PhDThesisNeillByrneBoundVersion20120427.pdf

Pappert and Rose

Robinson, J., J. Fowler, and E. Neacy. 2003. “Capacity Loss Factors in Semiconductor Manufacturing”. http://www.fabtime.
com/abs CapPlan.shtml, accessed 27.04.2022.

Stanley, K. O., J. Clune, J. Lehman, and R. Miikkulainen. 2019. “Designing neural networks through neuroevolution”. Nature
Machine Intelligence 1(1):24–35.

Verzani, J. 2014. Using R for introductory statistics. 2nd ed. CRC Press.
Wörrlein, B., S. Bergmann, N. Feldkamp, S. Straßburger, M. Putz, and A. Schlegel. 2019. “Deep-Learning-basierte Prognose

von Stromverbrauch für die hybride Simulation”. Simulation in Produktion und Logistik 2019:121–131.

AUTHOR BIOGRAPHIES
FALK STEFAN PAPPERT is Research Assistant and PhD student at Universität der Bundeswehr as a member of the
scientific staff of Prof. Dr. Oliver Rose at the Chair of Modeling and Simulation. His focus is on conceptual mod-
elling approaches to simulation-based scheduling and optimization of production systems. He has received his M.S. degree
in Computer Science from Dresden University of Technology. He is a member of GI. His email address is falk.pappert@unibw.de.

OLIVER ROSE holds the Chair for Modeling and Simulation at the Department of Computer Science of the Universität der
Bundeswehr Munich, Germany. He received a M.S. degree in applied mathematics and a Ph.D. degree in computer science
from Würzburg University, Germany. His research focuses on the operational modeling, analysis and material flow control of
complex manufacturing facilities, in particular, semiconductor factories. He is a member of INFORMS Simulation Society,
ASIM, and GI. His email address is oliver.rose@unibw.de.

1718

http://www.fabtime.com/abs_CapPlan.shtml
http://www.fabtime.com/abs_CapPlan.shtml
mailto://falk.pappert@unibw.de
mailto://oliver.rose@unibw.de

	INTRODUCTION
	APPROACH
	FEATURES CONSIDERED
	THE MODEL
	EVALUATION AND SIMULATION
	TRAINING
	RESULTS
	OUTLOOK

