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ABSTRACT

More sustainable transportation and mobility concepts, such as ridesharing, are gaining momentum in
modern smart cities. In many real-life scenarios, travel times among potential customers’ locations should
be modeled as random variables. This uncertainty makes it difficult to design efficient ridesharing schedules
and routing plans, since the risk of possible delays has to be considered as well. In this paper, we model
ridesharing as a stochastic team orienteering problem in which the trade-off between maximizing the
expected reward and the risk of incurring time delays is analyzed. In order to do so, we propose a
simulation-optimization approach that combines a simheuristic algorithm with survival analysis techniques.
The aforementioned methodology allows us to generate not only the probability that a given routing plan
will suffer a delay, but also gives us the probability that the routing plan experiences delays of different
sizes.

1 INTRODUCTION

Transportation and mobility (T&M) activities represent a key sector in modern cities, and they significantly
contribute to social and economic progress worldwide. The novel concepts of sharing and platform economy
have promoted the offer of pay-per-use T&M services. Likewise, the emergence of the on-demand economy
(services) and the rise of e-commerce (products) have boosted the number of pickups and deliveries in urban
and metropolitan areas. This, in turn, increases the need for efficient and sustainable T&M operations. In
modern cities, large quantities of data are gathered in real time via electronic devices located inside vehicles
and infrastructures (computer chips, sensors, traffic cameras, drones, etc.), transmitted over the internet,
and analyzed through intelligent algorithms that allow for predicting the evolution of traffic and making
informed decisions. This allows for saving energy consumption and citizens’ time, among other social,
environmental, and economic benefits. Modern T&M systems include heterogeneous fleets consisting of
traditional internal-combustion engine vehicles as well as other types of vehicles using ‘greener’ (less
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polluting) technologies, e.g.: bicycles, electric vehicles, plug-in hybrid vehicles, and even unmanned
or self-driving vehicles. The increasing incorporation of these low-emission vehicles in T&M activities
also raises additional challenges from the strategic, planning, operational, and environmental perspectives
(Almouhanna et al. 2020). For instance, the limited driving range and load capacity of most electric
vehicles impose additional constraints when designing efficient distribution and collection routes. Due to
the social consciousness about promoting sustainability in all transportation means, which includes the
need for reducing greenhouse gas emissions, mobility concepts such as ridesharing have gained enormous
popularity during the last years (Faulin et al. 2019). The shared mobility for people is an advantageous
approach in big cities, which usually present expensive prices and a high level of transportation demand. In
ridesharing, people can make use of lower prices and achieve less pollution (Dolati Neghabadi et al. 2021).
Since ridesharing mobility is going to be part of a shared activity performed by people in any modern
city, the optimization of the trip selection and the vehicle assignment is revealed as essential to improve
the customer experience in these scenarios (Martins et al. 2021). Since real-life travel times are random
in nature, this profile of excellence in mobility will only be achieved by suitable optimization models that
describe stochastic scenarios.

In this work, we model ridesharing operations as a stochastic team orienteering problem (TOP). Here,
a set of drivers departing from a origin O have to select and pick up a set of passengers on their way to
a destination location D. Each passenger will have to pay a fee for the trip (driver’s reward). Hence, the
goal is to maximize the total collected reward while taking into account constraints regarding the number
of available vehicles as well as deadlines (i.e., the maximum time at which each vehicle should reach its
destination). We also consider random traveling times, so the optimization problem becomes more realistic
but also stochastic and increasingly challenging. Figure 1 shows a simple ridesharing scenario, modeled
as a TOP. Nodes that are not included in any route are the non-visited ones (yellow nodes). Here, the
random variable that models the travel time between node i and node j is defined as Ti j = ti j +Di j, where
ti j represents the minimum time necessary to complete the arc connecting both nodes and Di j represents
a random delay that follows a given probability distribution (Weibull in this case).

Figure 1: Modeling ridesharing operations as a stochastic team orienteering problem.

In order to deal with the stochastic TOP described above, we combine survival analysis concepts with a
simheuristic algorithm (Chica et al. 2020). This combination allows us to obtain, for each proposed routing
plan, its corresponding survival function, i.e.: the probabilities associated with delays of different sizes.
Being able to generate the survival function associated with one routing plan allows us not only to compute
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the probability of that plan suffering a delay (i.e., with its last route being completed after tmax, so that the
finishing time does not belong to the region of punctuality), but also to estimate the probability of suffering
a delay of a given size (e.g., what is the probability of exceeding tmax by more than 5 minutes). Obviously,
this can be quite useful when choosing a solution plan among several promising ones with different survival
functions. Hence, the main contribution of this paper is twofold: (i) it proposes a simheuristic algorithm
for solving a stochastic version of the ridesharing problem; and (ii) it shows how survival analysis can be
employed to provide probabilistic (richer) information during the risk analysis.

The remaining sections of the paper are structured as follows: Section 2 briefly reviews related articles,
while Section 3 defines and introduces the problem to solve. Section 4 describes the proposed simheuristic
algorithm and its structure. Section 5 carries out a series of computational experiments to illustrate the
performance of the proposed algorithm, while Section 6 analyzes the obtained results. Finally, the main
findings and future research lines are given in Section 7.

2 RELATED WORK ON RIDESHARING PROBLEMS

Ridesharing is defined as the sharing of a vehicle driven by the owner, who makes available to other
passengers going to the same destination the use of the available passenger capacity of his vehicle. It
provides several proven benefits, such as decreasing the number of cars on the road and thus reducing
traffic congestion, maximizing the actual use of vehicle capacity, and reducing the carbon footprint. Due
to the benefits and increased public awareness of the environment, research on this topic has increased in
recent years. The benefits have been described in Twumasi-Boakye et al. (2021) through a simulation for
the city of Ann Arbor (USA), the economic and environmental effects have been analyzed for Kuwait in
AlKheder (2021), highlighting the reduction in gas emissions in three scenarios, and in New York City by
Barann et al. (2017) demonstrating the reduction of gas emissions and the total travel distance of all taxi
rides. The effects of ridesharing were analyzed for the city of Shenzhen (China) by Tang et al. (2021) and
the findings indicated that it replaces buses and cabs for short-distance trips in the center of the city, and in
surrounding areas, it replaces buses and assists in accessing metro stations. Ridesharing also has an impact
in areas where public transport is not fully deployed and driving is almost the only solution to move around
the city, as is the case in Thessaloniki (Greece), where Ayfantopoulou et al. (2021) have evaluated the
initial step of ridesharing implementation in the area. However, ridesharing is not only useful in densely
populated areas, but in the rural environment it can be a very useful tool with high impact (Elting and
Ehmke 2021).

Ridesharing can be classified as static or dynamic, depending on whether all passenger requests are
known in advance or requests are added when passengers are already en-route. The different variants
and applications of ridesharing have been detailed in a thorough review in Martins et al. (2021). Since
ridesharing is considered a shared service that contributes to reducing the demand for vehicles on urban
road networks, cases are usually studied mainly for cars, but the problem of bus ridesharing has also
been studied by increasing vehicle capacity in highly populated cities such as Shanghai using exact and
approximate algorithms to optimize the ride-matching service (Liu et al. 2019). The first works addressed
the resolution of the problem by exact methods. Prominent among them are Agatz et al. (2011), who use
an exact method based on a moving horizon strategy, in which drivers and suppliers are matched with the
aim of maximizing the profits obtained by the suppliers. If several vehicles are considered, Hosni et al.
(2014) proposes a solution based on the Lagrangian decomposition method for multi-vehicle ridesharing
systems, in which both the passengers assigned to each vehicle and the routes to choose to reach the
destination are optimized. Liang et al. (2020) also propose a solution approach based on a customized
Lagrangian relaxation algorithm in order to identify a near-optimal solution for the automated ridesharing
taxi problem, including the traffic congestion caused by them. Numerical experiments carried out for the
city of Delft (The Netherlands) show that quality solutions can be obtained and that the penalty for delay
in the profit target is an effective control parameter to ensure the quality of service while at the same time
being profitable for the system. For complex systems involving stochastic scenarios, Naoum-Sawaya et al.
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(2015) presents an exact integer programming model for solving a stochastic carpool problem, where the
random variable is whether or not the vehicle is available at the time of the request. More recently, Li and
Chung (2020) addressed travel time uncertainty, where they present an improved mixed-integer method
for solving the problem which considers, in addition to route design and passenger/vehicle assignment,
passenger meeting points and their preferred time slots. However, the long computation times made it
necessary to transform it into a hybrid heuristic that uses an insertion algorithm with tabu search. Other
works that use exact methods to solve variants of ridesharing systems are Masoud and Jayakrishnan (2017)
and Chen et al. (2019).

Since ridesharing problems are NP-hard, exact methods are generally used for smaller instances, while
heuristics and metaheuristics are used for larger instances. Among the most used metaheuristic approaches
to solve this problem are tabu search (Li et al. 2018), local search (Chen et al. 2019), etc. In this regard,
Jung et al. (2016) combine a nearest vehicle dispatch algorithm, a hybrid-simulated annealing, and an
insertion heuristic to solve a dynamic shared-taxi dispatch problem. To solve the variant of the problem
with time-dependent travel time uncertainty, Long et al. (2018) use Monte-Carlo simulation (MCS) to
estimate the cost of the trip and the time of departure. For the same ridesharing variant, Li and Chung
(2020) present a new deterministic formulation as a mixed-integer optimization problem. However, due to
the long computation time required to solve an instance with just 44 nodes, the authors proposed a hybrid
method based on an insertion algorithm together with a tabu search method. For the case of sharing a taxi
between a passenger and parcels with speed window considerations, Do et al. (2018) make a classification
of these speed windows by different zones and congestion levels during a day resulting in a dynamic model.
To solve it they used a greedy algorithm combined with a local search. On the basis of experimental
data from Tokyo taxis, they analyzed the total profit, the cumulative travel time at the end of the day,
and the number of shared requests. Wang and Li (2021) show that the shared taxi system solved using a
heuristic algorithm and an approximate algorithm succeeded in reducing the number of trips in two real
datasets by approximately 30%. Reinforcement learning is also being employed to deal with ridesharing
optimization (Qin et al. 2021). In addition to the customer-vehicle matching, there is also the pricing and
dispatching decisions (Haliem et al. 2021), which refers to the use of directing drivers to the areas with the
highest demand. Hence, for instance, Kim et al. (2022) propose the use of reinforced learning for shared
autonomous electric vehicles. Notice, however, that the described articles refer either to simulation or to
optimization approaches, but there is a lack of studies combining both. This is precisely what our work
achieves by proposing a simheuristic algorithm.

3 PROBLEM DESCRIPTION

The urban ridesharing problem is conceived for its implementation in smart cities. In our case, this system
can be represented by an origin-destination graph G = (V,A), in which V includes an origin O, a destination
D, and a set of pick-up points for users P. Each of the nodes v ∈V included within the network is defined
by a coordinate (xv,yv). In addition, each of the arcs (i, j) ∈ A has an associated travel time ti j > 0. There
is a vehicle v ∈V for each of the drivers c ∈C. Each of these vehicles is associated with a single origin O
and a single destination D. At the beginning (t = 0), each vehicle v ∈V is available at the origin. Starting
from there, it should reach its destination D, either on or before of a pre-established arrival time, atv.
Related to the pick-up points p ∈ P, each of them has an associated number of passengers np, available at
t = 0, to be picked up. Also, each of them has the same destination D, and an associated reward rp, which
is offered as a fee to the driver. This reward is proportional to the distance between the collection point
and the destination. A solution to this deterministic version of the problem consists in determining a set
of routes R (|V |= |R|), to be covered by each vehicle and driver. The objective is, therefore, to maximize
the reward obtained, within the established deadline for the routes to be completed.

In the stochastic version of the problem considered here, travel times are modeled as positive random
variables Ti j. These random travel times will follow a probability distribution with known mean E[Ti j]> 0.
Hence, our main goal will be to maximize the expected reward collected by the fleet of vehicles, while
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trying not to exceed the deadline pre-established for the arrival times. However, since the travel times are
now random, delays might occur and some of the vehicles might arrive late to their destination. Whenever
this happens, we will consider that a route failure has occurred and, as a consequence of this failure, the
reward collected in that route is lost. Notice that other, less severe, penalty costs can also be applied, but
for the experiments considered in this paper we have assumed an all-or-nothing value for the collected
reward. In addition to this main goal, we will also be interested in obtaining probabilistic information
about the size of the possible delays associated with each solution or routing plan.

4 A SIMHEURISTIC APPROACH

To solve the stochastic optimization problem described in the previous section, we have developed a
simheuristic algorithm that extends a biased-randomized constructive heuristic. The main concepts of our
methodology are explained next.

4.1 A Biased-Randomized Algorithm for the Deterministic Problem

Given an origin O, a destination D, and a set of pick-up points P with their respective rewards, we will
start by building an efficiency list of edges ei j (pairs of pick-up points). As proposed in Panadero et al.
(2020), this list is then sorted using an efficiency criterion, which is defined as a linear combination of
the travel time required to traverse each edge ei j and the aggregated reward generated by visiting the two
extreme nodes, i and j. In our experiments, Euclidean distances are used as travel times between each pair
of nodes. The low level details and a Python implementation of these concepts are provided in Listing 1.
The function generateeffList receives as parameters the set of nodes and a tuning parameter α ∈ (0,1),
which is chosen as the one that best performs for each instance. In lines 3 and 4 the starting and finishing
depot are set. From line 6 to line 14 the edges connecting the origin O with each pick-up point p ∈ P, as
well as the edges connecting p ∈ P with the destination D, are defined. From this point on, we initialize the
efficiency list and, for each pair of nodes (i, j) ∈ A, with {i, j} /∈ {O,D}, the ‘enriched savings’ (efficiency
criterion) are computed as follows. First, we compute the cost of the edge as the Euclidean distance (lines
29 and 30). Then, the reward of the edge is computed to be incorporated in the efficiency value (lines 35
and 38) for each of the edge’s directions. In line 43 the efficiency list is sorted from higher to lower, and
finally returned by the function. Notice that the formula implemented in lines 35 and 38 can be expressed
as: si j = α(tid + t0 j − ti j)+ (1−α)(ri + r j), where ti j represents the traveling time between i and j, d is
the destination node, and (ri + r j) accounts for the aggregated reward.

The starting point is a ‘dummy’ solution, which assigns one vehicle v ∈V per node. Next, an iterative
merging process starts: edges are selected from the sorted list and the associated routes are merged as far as
this merge does not violate any capacity or time constraint. Finally, the list of merged routes is decreasingly
sorted according to the total reward. Routes with the highest rewards are selected, and the number of
selected routes equals the number of available vehicles in the fleet. This constitutes a first routing plan
for the deterministic version of the problem. The greedy heuristic described above can be extended into a
probabilistic algorithm by using a skewed probability distribution during the edge-selection process. This
allows us to quickly generate a huge number of alternative solutions, all of them based on the efficiency crite-
rion defined by the heuristic, but using a pseudo-greedy behavior instead of a greedy one (Belloso et al. 2019).
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1 ””” C o n s t r u c t edges wi th c o s t s and e f f i c i e n c y l i s t from nodes ”””
2 d e f g e n e r a t e e f f L i s t ( nodes , a l p h a ) :
3 s t a r t = nodes [ 0 ] # f i r s t node i s t h e s t a r t d e p o t
4 f i n i s h = nodes [ −1] # l a s t node i s t h e f i n i s h d e p o t
5

6 f o r node i n nodes [ 1 : − 1 ] : # e x c l u d e s bo th d e p o t s
7 snEdge = Edge ( s t a r t , node ) # c r e a t e s t h e ( s t a r t , node ) edge ( a r c )
8 nfEdge = Edge ( node , f i n i s h )
9 # compute t h e E u c l i d e a n d i s t a n c e as c o s t

10 snEdge . c o s t = math . s q r t ( ( node . x − s t a r t . x ) **2 + ( node . y − s t a r t . y ) **2)
11 nfEdge . c o s t = math . s q r t ( ( node . x − f i n i s h . x ) **2 + ( node . y − f i n i s h . y ) **2)
12 # save i n node a r e f e r e n c e t o t h e ( depot , node ) edge ( a r c )
13 node . dnEdge = snEdge
14 node . ndEdge = nfEdge
15

16 e f f L i s t = [ ]
17 f o r i i n r a n g e ( 1 , l e n ( nodes ) − 2) : # e x c l u d e s t h e s t a r t and f i n i s h d e p o t s
18 iNode = nodes [ i ]
19 f o r j i n r a n g e ( i + 1 , l e n ( nodes ) − 1) :
20 jNode = nodes [ j ]
21 i j E d g e = Edge ( iNode , jNode ) # c r e a t e s t h e ( i , j ) edge
22 j i E d g e = Edge ( jNode , iNode )
23 i j E d g e . invEdge = j i E d g e # s e t s t h e i n v e r s e edge ( a r c )
24 j i E d g e . invEdge = i j E d g e
25 # compute t h e E u c l i d e a n d i s t a n c e as c o s t
26 i j E d g e . c o s t = math . s q r t ( ( jNode . x−iNode . x ) **2 + ( jNode . y−iNode . y ) **2)
27 j i E d g e . c o s t = i j E d g e . c o s t # assume symmet r i c c o s t s
28 # compute e f f i c i e n c y as p r o p o s e d i n Panadero e t a l . ( 2 0 2 0 )
29 i j S a v i n g s = iNode . ndEdge . c o s t + jNode . dnEdge . c o s t − i j E d g e . c o s t
30 edgeReward = iNode . reward + jNode . reward
31 i j E d g e . s a v i n g s = i j S a v i n g s
32 i j E d g e . e f f i c i e n c y = a l p h a * i j S a v i n g s + (1 − a l p h a ) * edgeReward
33 j i S a v i n g s = jNode . ndEdge . c o s t + iNode . dnEdge . c o s t − j i E d g e . c o s t
34 j i E d g e . s a v i n g s = j i S a v i n g s
35 j i E d g e . e f f i c i e n c y = a l p h a * j i S a v i n g s + (1 − a l p h a ) * edgeReward
36 # save bo th edges i n t h e e f f i c i e n c y l i s t
37 e f f L i s t . append ( i j E d g e )
38 e f f L i s t . append ( j i E d g e )
39 # s o r t t h e l i s t o f edges from h i g h e r t o lower e f f i c i e n c y
40 e f f L i s t . s o r t ( key= o p e r a t o r . a t t r g e t t e r ( ” e f f i c i e n c y ” ) , r e v e r s e =True )
41

42 r e t u r n e f f L i s t

Listing 1: Computing the efficiency list.

4.2 A Simheuristic for the Stochastic Problem

In order to address the stochastic version of the problem, the biased-randomized algorithm described
before can now be extended into a full simheuristic approach. This can be achieved by introducing the
biased-randomized algorithm into a multi-start framework and then making use of a simulation component
that provides estimates on the expected time employed by each ‘promising’ solution proposed by the
optimization component (Hatami et al. 2018). Listing 2 provides a basic example of how this simulation
component could be implemented in Python. First, we initialize the stochastic profit of the solution, the list
of simulated results, and a variable totProfit. Then, in line 6 we start the simulation runs. For each run, we
compute the time each route in the current solution takes to be completed, as well as the simulated profit for
the solution. To achieve this, we iterate over the routes of the solution. For each edge ei j in a route, we add
the reward of node j in the edge. Also, we generate a random value for the travel time Ti j, according to the
corresponding probability distribution (line 16). The stochastic value is then added to the edge travel time,
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and this result is accumulated into the route travel time. Now, in line 19 we define a penalty cost: if the travel
time of the route is greater than the pre-established deadline (maxRouteCost), then the profit of that specific
route will be reset to 0 (i.e., if the route fails and suffer a delay, no reward is gained). In lines 25 and 26, we
update the maximum travel time inside a solution. Finally, the average reward is computed and stored in
line 29. Rabe et al. (2020) offers a discussion on how more advanced simheuristic algorithms can be designed.

1 d e f s i m u l a t i o n ( s o l , n S i m u l a t i o n s , maxRouteCost , t e s t ) :
2 s o l . s t o c h a s t i c P r o f i t = 0
3 s o l . s i m R e s u l t s = [ ]
4 t o t P r o f i t = 0
5

6 f o r i i n r a n g e ( 0 , n S i m u l a t i o n s ) :
7 maxTimeSol = 0
8 s i m P r o f i t = 0
9 f o r r o u t e i n s o l . r o u t e s : # i t e r a t i n g ove r t h e r o u t e s

10 p r o f i t = 0
11 r o u t e C o s t = 0
12 f o r e i n r o u t e . edges : # i t e r a t i n g ove r each edge
13 c u s t o m e r = e . end
14 c u s t P r o f i t = c u s t o m e r . r eward
15 i f c u s t P r o f i t > 0 :
16 d e l t a = g e t S t o c h a s t i c V a l u e ( s c a l e = t e s t . s c a l e , shape = t e s t . shape )
17 s t o c h R o u t e = e . c o s t + d e l t a # s t o c h a s t i c t r a v e l t ime
18 r o u t e C o s t += s t o c h R o u t e # a c c u m u l a t i n g s t o c h a s t i c t r a v e l t ime
19 i f r o u t e C o s t > maxRouteCost :
20 p r o f i t = 0 # p e n a l t y c o s t
21 b r e a k
22 e l s e :
23 p r o f i t += c u s t P r o f i t
24 s i m P r o f i t += p r o f i t # u p d a t i n g s o l u t i o n p r o f i t
25 i f r o u t e C o s t > maxTimeSol :
26 maxTimeSol = r o u t e C o s t # u p d a t e maximum r o u t e t r a v e l t ime
27 t o t P r o f i t += s i m P r o f i t
28 t o t P r o f i t = t o t P r o f i t / n S i m u l a t i o n s # comput ing a v e r a g e
29 s o l . s t o c h a s t i c P r o f i t = t o t P r o f i t

Listing 2: Implementing the simulation component in Python.

5 COMPUTATIONAL EXPERIMENTS

The proposed simheuristic has been implemented using Python 3.7 and tested on a standard PC with a
multi-core processor Intel i7 and 16 GB of RAM. To perform the experiments, we have extended to the
stochastic scenario the well-known deterministic benchmarks for the TOP proposed in Chao et al. (1996).
The deterministic benchmark used contains a total of 320 instances, which are distributed in 7 subsets. The
instances are identified following the nomenclature ‘pa.b.c’, where ‘a’ represents the subset, ‘b’ defines the
number of available vehicles, and ‘c’ identifies the specific instance under study. To extend these instances
into a stochastic scenario, instead of the original deterministic travel times, ti j > 0, we have considered
random travel times, Ti j. These random travel times increase the deterministic ones by adding a random
delay associated with each edge, D > 0, i.e.: Ti j = ti j +D. In the context of the numerical example included
next, we will assume that these delays will follow a Weibull distribution with parameters α and β . The
Weibull probability distribution has been selected since, due to its flexibility, it can model almost any
random variable with positive values. Due to the existence of random travel times, some vehicles might
reach their destination once the deadline is over. Hence, we will be interested not only in maximizing
the expected reward collected, but also in considering the reliability of the proposed solution (i.e., the
probability that the corresponding routing plan can be completed on or before the pre-established deadline).
In addition, we will also use the simulation outcome, in combination with the Kaplan-Meier estimator, to
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obtain the survival function associated with each ‘elite’ solution. In this context, elite solutions are the
three best solutions obtained by the simheuristic, in terms of the expected reward collected. The survival
function will give us valuable information about the probability that each considered plan can be completed
on or before any future time. This allows us to answer questions such as “what is the probability that all
customers reach their destination up to 5 minutes after the deadline?”

Table 1 shows a summary of the computational results. For each instance, the value associated with
our best deterministic (OBD) solution refers to the best-found value in a deterministic scenario. When
this solution is employed in a stochastic scenario, we obtain the OBD-S expected (average) value. The
table also provides the expected value associated with our best solution (OBS) under a stochastic scenario,
i.e., the one obtained by our simheuristic approach. Notice that OBS outperforms OBD-S, which supports
the need for employing our simulation-optimization approach in order to take into account the existing
uncertainty in the travel times. This effect can be clearly visualized in Figure 2, where OBD acts as a
baseline for an ideal (but unrealistic) scenario without uncertainty, and OBS can provide better values than
those provided by OBD when the latter is utilized in a stochastic scenario (OBD-S).

Deterministic Scenario Stochastic Scenario
Instance OBD OBD Time (s) OBD-S OBS OBS Time (s)

p1.2.i 130 0.2 125.2 128.7 8.7
p2.2.d 160 52.1 73.6 80 112.7
p2.2.i 230 18.8 52.8 152.8 72.2
p2.4.e 70 42.5 58.8 62.8 94.6
p3.2.r 780 27.85 69.9 677 97
p3.4.g 220 31.8 155.7 165.5 111.5
p5.3.f 110 39.9 64.2 102 111.8
p5.4.g 140 13.6 109 139.5 86.2

Average: 230.0 28.3 88.7 188.5 86.8

Table 1: Rewards obtained by each approach and scenario.

6 SURVIVAL ANALYSIS OF RESULTS

In this section, we will study further the results provided by the simulation component in combination with
the Kaplan-Meier estimator that allows us to build the survival function of each routing plan, i.e., a function
that returns, for each target time, the probability that the routing plan has not yet been completed (notice
that, in this case, we are interested in routing plans with a low probability of survival by the deadline).
Hence, this survival function provides probabilistic information on the duration of each routing plan, which
allows us to compare different routing plans not only in terms of expected reward but also in terms of
the probability that they have been completed at any target time in the future. For our analysis we will
focus on the top 3 solutions that our approach generated for instances p2.4.e and p2.2.d. For instance
p2.4.e, Figure 3 represents the survival functions associated with each of the top 3 stochastic solutions
obtained (all of them with the same expected reward of 70). In order to enhance the visualization of the
curves, we have subtracted 3 units from the times associated with each solution. Notice that Sol3 clearly
outperforms Sol2 at any target time. In turn, Sol2 also outperforms Sol1 at any target time. Thus, for
instance, the survival function of Sol3 at target time 4.8 (1.8 in the graph since we subtracted 3 time units)
takes a value around 25%. In other words, the probability that this routing plan can finish on or before the
aforementioned target time is about 0.75. However, for Sol1 and Sol2 this probability is nearly 0.

Similarly, for instance p2.2.d, Figure 4 represents the top 3 stochastic solution. For a better visualization,
we have subtracted 12 units from the times of the solutions. Notice that, at target time 12.65 (0.65 in
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Figure 2: Percentage gaps of OBD-S and OBS w.r.t. OBD.

Figure 3: Survival function for instance P2.4.e.
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the graph), Sol2 will have a higher probability of not being completed yet than Sol3. However, by time
13.40, Sol2 will have a much lower probability of not having finished (around 0.3) than Sol3 (around 0.9).
Note also that Sol2 always outperforms Sol1 (i.e., for any target time, Sol2 will have ended with a higher
probability than Sol1).

Figure 4: Survival function for instance P2.2.d.

7 CONCLUSIONS AND FUTURE WORK

In this paper, a stochastic version of the ridesharing problem with random travel times is considered.
Ridesharing operations are modeled as a team orienteering problem. Here, drivers have to select which
customers should be picked up in order to maximize the expected reward collected. At the same time,
drivers should be able to reach their destination on or before a pre-established deadline. Of course the
existence of random travel times might originate delays in some routing plans. Depending on their size,
these delays might be associated with a penalty cost that jeopardizes the benefits of the driver.

In order to provide high-quality solutions to this challenging stochastic optimization problem, we
combine a simheuristic algorithm with concepts from survival analysis. Thus, our optimization-simulation
approach is not just able to generate ‘elite’ solutions with high expected rewards, but it also offers probabilistic
information about the size of the delays associated with each of these elite solutions. This information might
be valuable for managers since they have a more complete understanding of the probabilistic behavior or
each proposed routing plan. Hence, questions such as “what is the probability that a specific routing plan
causes some of our customers to be late by more than 10 minutes” can be properly answered. Regarding
future work, we plan to carry out the following extensions: (i) to consider a more realistic scenario in which
correlations among delays might occur –e.g., when a geographical area becomes congested, all paths in
the area will be subject to high delays; and (ii) to extend the simheuristic approach by including a machine
learning component that makes use of the simulation feedback to better guide the metaheuristic search in
the space of solutions to the stochastic ridesharing problem.
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