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ABSTRACT 

Supply chain (SC) optimization is essential for a firm to cope with everchanging market conditions and 
disruptions. New technologies have allowed for more advanced supply chain optimization. This paper uses 

system dynamics (SD) simulation to model the effects of data integration technologies on an antibiotic (AB) 
SC operation. The study aims to improve the AB SC to benefit all relevant stakeholders including the patient 
population. We evaluate how IT integration technologies can improve communication across the SC to 
mitigate or reduce the impact of the of disruptions on AB users. The presented model is under development 
and is subject to structural and parametric changes as discussions continue with stakeholders about the 
system structure and what data can be used and disclosed. Despite extensive SC optimization literature 

there has been a growing call of an evidence base to support decision making relating to national medicine 
policies.    

1 INTRODUCTION 

Today, the pharmaceutical industry is facing great challenge to maintain the availability of certain 
antibiotics (ABs) across global markets which are experiencing supply shortages and disruptions due to the 
complexities related to the supply chain (SC), and demand related disruptions including but not limited to 

the Covid pandemic, and the behavior related to the use of ABs. The vulnerability of supply chains is 
illustrated by upstream issues, such as the wider availability of raw material suppliers, influencing 
production, and from downstream influencing management decision makers from a business profitability 
perspective, all governed by policy structures (National Academies of Sciences 2022). In addition, the rise 
of antimicrobial resistance (Spellberg 2014; Stone et al. 2018) among patients to AB has made market 
conditions critical to industry producers.  

Antimicrobial resistance, humans’ resistance to antimicrobial agents especially anti-bacterial to treat 
infections is growing (Quadri et al. 2015; Nurse-Findlay et al. 2017; Tängdén et al. 2018). The concern is 
the overuse of antibiotics, to treat for example trivial conditions, increases the likelihood they become 
ineffective for treating more serious conditions. Not only are ABs becoming less effective it has led to the 
emergence of "superbugs". These are strains of bacteria that have developed resistance to many different 
types of ABs. With the rise of antimicrobial resistance, it is challenging to create business models that 

generate adequate sales figures and limit the consumption of the drug at the same time (Spellberg 2014). 
Many ABs are older “generic” drugs, they are no longer patent protected, and the profit margins are much 
lower than patented medicines. Increasing antibiotics resistance in the human bodies are posing new threats 
to the availability of the active pharmaceutical ingredients (APIs), the active substance which produces a 
medicines therapeutic effect, as the existing APIs become ineffective to treat the bacterial infections. Due 
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to a shortage of availability to particular medicines, doctors are forced to give less focused and efficient 
drugs, which can induce adverse effects and contribute to antibiotic resistance (Spellberg 2014).  

The SC complexities associated with supply and demand side interactions coupled with wider 

interconnectivity with multiple wider human, manufacturing, logistics systems illustrate that medicine SC 
need to be examined by tools that are capable of analyzing such complex systems, one such tool is System 
Dynamics (SD) (Sterman 2000).   

SD has been used to better understand real world behavior and to design and implement strategic 
policies for the purpose of improving the behavioral patterns of the system (Lertpattarapong 2002). SD 
analyzes nonlinear dynamic systems making it a powerful tool for studying the dynamics of SCs and policy 

designs to improve their operation. From a SD viewpoint, a SC consists of a structure interconnected 
concepts which create a system of feedback loops, which model users are able to explore to better 
understand why certain dynamic changes arise (Linnéusson et al. 2020). Feedback within a system provides 
information, often with a delay, to indicate how it is performing relative to desired state. Two types of 
feedback loops exist positive or negative. Positive feedback loops are self-reinforcing, identified with R or 
a “+” in casual loop diagrams (CLD), where an initial disturbance leads to further change, suggesting the 

presence of an unstable equilibrium. Negative feedback loops are self-correcting or balancing loops, 
identified with B or a “-”, following a disturbance, the system seeks to return to an equilibrium situation, 
e.g., a home heating system with a thermostat. The accurate identification of internal interactive 
relationships between system elements is key in a feedback system (Sterman 2000). In SD the produced 
models tend to focus on a macro model where the entities are aggregated into a number of variables 
connected by flows (Gustafsson and Sternad 2007).  

As a management tool, SD helps system owners and policy makers study how the underlying structure 
and the parameters of the system lead to behavioral patterns (Lertpattarapong 2002), some of which may 
appear counterintuitive. In a dynamic SC several parameters can be incorporated into an SD model to 
understand how these affect a certain subject or core issue. Discrete event simulation (DES) and agent based 
simulation (ABS) were considered to model an AB SC as they are both powerful modeling tools (Law 
2014). DES models tend to focus on operational level problems representing processes in detail, e.g. 

following the production process of individual tablets or boxes of tablets, and the data requirements, and 
incorporating holistic effects caused by feedback may be more challenging (Sterman 2000; Law 2014). Due 
to scope of the project as determined through discussions with stakeholders and the research project it was 
deemed more appropriate to model at a strategic level in the first instance which may be more suitable in 
SD (Sterman 2000; Law 2014). ABS like DES tends to focus on an individual and the data requirements as 
a result can be greater (Silverman 2018). In ABS the behavior and interactions between agents, results in 

system wide behavior emerging from these interactions. 
In this case, to optimize an AB SC, a study on AB shortage was conducted within a collaboration 

platform PLATINEA: (Platform for innovation of existing antibiotics) in Sweden. This platform consists 
of several stakeholders including representatives from industry, government, hospitals, and academia 
collaborating to find solutions to the ABs shortage problem. It has identified and defined several policy 
interventions which could be applied to the supply chain to mitigate shortages or reduce their impact. One 

policy intervention identified was to integrate data through a computer system, to achieve better 
coordination and transparency across the SC and to reduce shortage. We use SD to investigate how AB 
shortages may be reduced through the use data integration technologies. The technologies tested are sharing 
Point of Sale (POS) data and implementing an Electronic Data Interchange (EDI) connection between the 
supplier and the contract manufacturing organization (CMO). EDI is a technology used for buyer-seller 
cooperation to respond more rapidly to consumer demand (Vrbová et al. 2018). The technology establishes 

a link between the firms through a computer-to-computer electronic communication. POS data is used as a 
technology that measures how much of the product the customer is buying on a transactional level, then 
this data is sent back electronically into chosen categories of the firm (inventory, sales etc.) (Simon 2008). 
During interviews and meetings PLATINEA stakeholders, it was suggested that the sharing of POS data 
and the use of EDI could enable better secure communication to reduce bullwhip and other ripple effects 
across the SC.  
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The remainder of the paper is structured as follows. Section 2 provides a brief literature review of 
selected system dynamics used in supply chain literature. The SD model development and validation as 
well as the data used are presented in section 3. Initial scenario analysis and selected results are presented 

in section 4. We conclude the paper in section 5 with a discussion of the key theoretical, modeling, policy 
insights and suggestions for future research/work. 

2 LITERATURE REVIEW 

We acknowledge the much wider SC literature available, utilizing a variety of theoretical perspectives 
including mathematical and simulation modeling techniques and we recommend (Li and Chan 2013; Vieira 
et al. 2020; Liao and Widowati 2021; Mustafee et al. 2021).  

Previous scholars have applied SD to SCs since the early 2000s (Lertpattarapong 2002; Wu et al. 2006; 
Rebs et al. 2019). Several SD models have been presented at the Winter Simulation Conference to 
demonstrate the efficacy of the approach applied to SC research including but not limited to (Orcun et al. 
2006; Briano et al. 2010; Behdani 2012; Aslam and Ng 2015; Li et al. 2015; Tan et al. 2017). Orcun et al. 
(2006) illustrated how SD captured the behavior of production systems at high utilization. This is essential 
as pharmaceutical manufacturers seek to operate as efficiently as possible to maximize profits. An SD 

model of short life cycle products e.g. toys, or electronic devices to examined improvements to SC 
resilience to an example disruption at a single SC echelon consisting of three stages of production (raw 
materials, semi-finished products, and finished products) (Briano et al. 2010). Although not short life 
products AB SC resilience to disruptions is essential to maintain population health and to decrease the 
likelihood of AB resistance caused by needing to use substitute AB when the primary AB is unavailable. 

The choice of modeling approach, SD or DES, and how that influences SC model design decisions is 

important to consider (Behdani 2012). To address limitations of specific modeling approaches, hybrid 
simulation approaches (Brailsford et al. 2019), combining DES (Law 2014), SD and ABS (Silverman 2018) 
for SC system analysis to capture the complexity of  SC have been proposed (Umeda and Zhang 2010). 
Tan et al. (2017) constructed a hybrid simulation model of a multi echelon SCs where the wider system 
was represented using SD and the target firm was modeled as an ABM. A SC case consisting of three 
retailers, two manufacturers and one part supplier were presented and disruption management policies 

evaluated. Aslam and Ng (2015) combined SD and multi-objective optimization to investigate different 
manufacturing strategies for an industrial partner, to minimize the total system work in progress (WIP) and 
the total delivery delay. Hybrid approaches such as these are where we would like to develop our model in 
the future, but our first step is to produce an adequate working SD model to engage with stakeholders. 

Closest to our current prototype model is Li et al. (2015) who used SD to analyze the impact of 
information sharing in a generalizable three echelon SC to mitigate risk. In this model three decision making 

rules were assessed 1) no information sharing, 2) partial information sharing, and 3) full information sharing. 
We utilize this generic approach, simplify it, and apply it to an AB medicine supply chain case. The 
scenarios we analyze focus on no information sharing and full information sharing. 

Modeling and simulation research on pharmaceutical SCs tends to focus on one or two echelons, e.g., 
the supplier and the wholesaler, and fails to take a systems view of the supply chain (Settanni et al. 2017). 
The selected generic SD models presented focus on one or two echelons as does this paper, there are a few 

exceptions (Li et al. 2015; Tan et al. 2017), but it is not as widespread as it should be (Settanni et al. 2017). 
We plan to expand the model to incorporate the wider system through discussions with stakeholders. This 
paper adds to the system view literature of SC within pharmaceutical SCs. This paper as part of the wider 
PLATINEA project examines the systemic effects of disruptions and interventions to mitigate and respond 
to them. The paper illustrates in the first instance the effects of better transparency/communication between 
system actors on supply level measures (service levels). This is the first step of a wider modeling project 

with the goal of illustrating the approach to system owners to support decision making. 
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3 A SYSTEM DYNAMICS AB SUPPLY CHAIN MODEL 

A four echelon AB SC SD model was created capturing the 1) the “customers”, the hospitals who acquire 
the AB to meet the need of the patients that they serve, 2) a contract manufacturing organization (CMO), 

which is the firm that produces the AB to be used in hospitals from the API, 3) an API producer, that takes 
excipients, other non-active pharmaceutical substances, to combine with active substances to produce the 
API and 4) the API producers suppliers, those who provide the excipients and other components to the API 
producer required to produce the API. The customers and the API producer’s suppliers are treated 
exogenously in this iteration of the model. A high-level, overview of the stock flow diagram, the 
quantitative SD model is provided in Figure 1.  

Figure 1 is a simplification of the model and only the key relationships and mechanics will be described. 
A brief explanation of stock flow diagram is as follows. The boxes with solid borders and capitalized text 
are stocks, which are used to record the level of a variable/factor of interest over time, e.g., the amount of 
inventory, or the number of outstanding orders. These stocks are filled and drained via rates, which are the 
arrows entering and exiting a stock (with an “egg timer” in the middle of them), connecting stocks to other 
stocks or connecting them to cloud like symbols. The cloud like symbols if not connected to other model 

components via arrows are exogenous to the system representing inputs from outside or outputs to outside 
of the scope of the model. Those texts which are neither stocks nor rates are either auxiliary variables or 
variables. These variables are connected to rates and stocks to influence the flow of material and or 
information through the stock flow diagram and ultimately how the model behaves. For a more 
comprehensive explanation of stock flow model mechanics consult (Sterman 2000; Morecroft 2015).   

The distributors place orders for antibiotics “customers order rate”. These orders are added to the 

“Order Backlog” stock via the “order rate”. The orders are also used by the CMO to forecast production 
requirements and to set desired levels of finished goods inventory (FGI), work in process (WIP) inventory 
and the relevant levels of raw materials (RM), see the “CMO Order Forecast” stock and the associated rate. 
The “CMO Order Forecast” influences the “CMO desired inventory levels”, which incorporate several 
auxiliary variables and variables to represent the required dynamics. The customers’ orders are satisfied by 
the “CMO FGI shipment rate”, which is determined by the “CMO order fulfilment ratio” which is a ratio 

of the “CMO desired shipment rate” and the “CMO maximum shipment rate”, e.g., as the CMO FGI 
shipment rate increases the “Order Backlog” decreases.  

An equivalent process happens at the API producer level but the customer order rate in this instance, 
are orders placed by the CMO, see “CMO RM requirements” in Figure 1. The “CMO RM requirements” is 
the amount of API required by the CMO to meet its production targets. The orders from the CMO are added 
to the CMO Order Backlog stock and the process to satisfy the orders is the same as the CMO production 

process subject to different parameter settings, which influence the production rate due to process times 
and other delays. The key parameters are presented in section 3.2. A simplifying assumption at the API 
level in this iteration of the model is that its suppliers replace exactly the RM used to produce the API (API 
RM delivery rate = API RM usage rate). 

The shaded areas in Figure 1 represent a) the parts of the model used in the scenario analysis, with the 
value of those variables highlighted in black with white text, being changed, and b) the parts of the model 

highlighted in grey indicated those where outputs are collected to evaluate the SC performance with respect 
to the scenarios that are presented and discussed in section 4. 
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Figure 1: High-level model overview. Black variables indicate those used to test the scenarios analysis. 
Grey stocks and variables indicate presented outputs. Dashed variables denote visualization simplification.  

3.1 Model Development 

The model was built in VENSIM PLE 9.2.3. Due to the relative size and complexity of the model is split 
into multiple VENSIM views. The model and causal loop diagrams used to formulate the scope and 
boundaries of the model are available upon request. The dashed variables contain several auxiliary variables 
that link stocks and rates, including desired values and differences between actual and desired states to drive 
model behavior. Table 1 describes the key model rates. The model runs for 100 weeks in 0.125-time steps. 

Due to the sensitive nature of medicine supply chains, in terms of regulatory and commercial 

requirements, the ongoing collection and negotiation of access to data, limited model validation has been 
performed. The validation tests performed include extreme value tests, face validated, including limited 
sensitivity analysis. Ongoing model development and validation will continue as better data become 
available, in terms of historical data and information about the behavior of the system from stakeholders.  
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Table 1: Model rates The RM usage rates refer to multiple variables and auxiliaries not presented for 
simplification purposes.  DELAY3: Vensim function that returns a 3rd order exponential delay of the input 

Name Value/Equation 

CMO forecast change (customer order rate - CMO Order Forecast)/ average time to adapt 
CMO forecast 

order rate customer order rate 

CMO order fulfilment rate CMO FGI shipment rate 

CMO FGI shipment rate CMO desired shipment rate * CMO order fulfilment ratio 

CMO production rate DELAY3(CMO RM usage rate, CMO manufacturing cycle time) 

CMO RM usage rate Complex set of equations involving differences between desired and 
actual inventory levels triggering production and ordering, considering 
various variables (constraints). See table 2 for a list of the variables. 

CMO RM delivery rate API FGI shipment rate 

API forecast change ((1-share POS) * CMO order rate + share POS * customer order rate * 
CMO material usage per unit) – API Order Forecast) / average time to 
adapt API forecast 

CMO order rate CMO RM requirements 

API order fulfilment rate API FGI shipment rate 

API FGI shipment rate API desired shipment rate * API order fulfilment ratio 

API production rate DELAY3(API RM usage rate, API manufacturing cycle time) 

API RM usage rate Complex set of equations involving differences between desired and 
actual inventory levels triggering production and ordering, considering 
various variables (constraints). See table 2 for a list of the variables. 

API RM delivery rate API RM usage rate (this is exogenous to the system and assumed in the 

first instance to be available). 

3.2 Data Collection 

Data have been collected from an anonymized antibiotic product from a CMO. Sales data for all antibiotics 
in Sweden, by packages and value (SEK) in Pharmacy, Hospital or mix was collected in months for the 
period 2013-2019. Due to limitations and restriction some data could not be collected therefore estimates 

provided by key stakeholders were used. The data provided by stakeholders and estimated and the model 
variables they relate to is presented in Table 2. Due to the structure of the model and that the CMO and the 
API stock flow diagram models share a similar structure, rather than add them as separate rows the “CMO” 
and “API” columns in Table 2 relate to the values of the respective variable for that organization.  

The variables used in the model and their purposes are briefly summarized. The “customer order rate” 
is the average weekly orders received by the CMO from hospitals. The “share POS” is a binary variable 

indicating whether CMO forecasts can be shared with the API producer. The “step height” is used in a step 
function to increase the customer order rate by a given factor which happens at model time defined by “step 
time” in weeks. The “target delivery delay” is the desired time the CMO/API would like to deliver their 
products to their customers. The “average time to adapt forecast” is the time it takes the CMO/API to adjust 
their forecasts based on changes in ordering rates. The “inventory adjustment time” is the time the 
CMO/API need to adjust FGI to a desired level. The “(inventory) safety stock coverage” is the number of 

weeks demand of FGI the CMO/API would like to have in reserve. The “manufacturing cycle time”, is the 
average time it takes to transform WIP to FGI in the CMO/API. The “material inventory adjustment time” 
is the time the CMO/API need to adjust RM to a desired level, via ordering from the upstream SC echelon. 
The “material safety stock coverage” is the number of weeks demand of RM the CMO/API would like to 
have in reserve. The “material usage per unit” is the amount of RM required to produce a unit of FGI at the 
CMO/API. The “materials delivery delay perception time” is the delay in perceiving and responding to 

changes in supplier lead time at the API level. The “minimum material inventory coverage” is the minimum 
time required to prepare and utilize RM at the CMO/API. The “minimum order processing time” is the 
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minimum time required to process and ship a customer order at the CMO/API. The “supply line adjustment 
time” is the average time to adjust the supply line to the desired level at the API level. The “WIP adjustment 
time” is the average time required to adjust the WIP inventory to the desired level at the CMO/API.  

Table 2: Model variables. If equivalent CMO and API SFDs variables presented in the CMO and API 
columns, if not the value is present in the Value column. Source: E = estimate; S = Scenario; R = Real. 
Scenario values are indicated in brackets and the scenario number is indicated by the superscripted text.  

Variable name Value CMO API Unit Source 

customer order rate 10,000   Widgets/week E 

share POS S2 0 (1)   Dimensionless S 

step height S1, S2, S3 0 (0.2)   Dimensionless S 

step time S1, S2, S3 5   Weeks S 

target delivery delay S3  2 (1) 2 Weeks R/S 

average time to adapt forecast  8 8 Weeks E 

inventory adjustment time  8 8 Weeks E 

(inventory) safety stock coverage  2 2 Weeks E 

manufacturing cycle time  8 8 Weeks R 

material inventory adjustment time  2 2 Weeks E 

material safety stock coverage  1 1 Weeks E 

material usage per unit  1 1 Material/Widget E 

materials delivery delay perception time   4 Weeks E 

minimum material inventory coverage  1 1 Weeks E 

minimum order processing time  2 2 Weeks E 

supply line adjustment time   2 Weeks E 

WIP adjustment time  2 2 Weeks E 

4 MODEL SCENARIOS AND RESULTS  

In our scenario analysis, SC performance from the customer to the API producer, presented in Figure 1 is 

evaluated with these model outputs: 1) CMO order fulfilment ratio, 2) CMO delivery delay, 3) API FGI 
shipment rate, 4) API order fulfilment ratio, 5) API delivery delay, and the levels of the stocks 6) API FGI, 
7) API WIP, and 8) API RM. The order fulfilment ratio = table for order fulfilment (maximum shipment 
rate / desired shipment rate), where table for order fulfilment is a function defining the non-linear 
relationship between shipment rate variables, which impact the shipment rates from the CMO and the API 
producer as, shipment rates = desired shipment rate x order fulfilment ratio. The Delivery delay = Backlog 

/ Order fulfilment rate, is influenced by the order fulfilment ratio as, shipment rate = order fulfilment rate. 

4.1 Model Scenarios  

In the model we test a 20% step increase in customer orders (demand) after week 5 using a step function to 
increase weekly orders from 10,000 to 12,000 units per week. This scenario was chosen to investigate the 
effect on the CMO, and the API producer. Due to low profit margins and small demand for certain ABs, 
we assume that a competitor may exit the market increasing the demand for the CMO’s product, which is 

a concern of public health agencies. The scenarios tested and potential interventions of sharing POS data 
(customer orders) between the CMO and the API producer for better production planning at the API 
producer (S2) and using EDI data to reduce the time it takes the CMO to satisfy customer orders (S3) are 
summarized in Table 3.  
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Table 3: Scenarios investigated. See Table 3 for scenario parameter values 

Scenario Description Model change 

Base (B) Base case None 

Scenario 1 (S1) 20 % increase in demand A competitor leaves the market 

Scenario 2 (S2) POS & 20 % increase in demand Better forecasting at the API producer 

Scenario 3 (S3) EDI & 20 % increase in demand Reduce CMO target delivery time 

4.2 Model Results 

In the base case the model starts in equilibrium, we assume static demand of 10,000 orders/week. Figure 2 

presents the CMO’s delivery delay for each scenario. Scenarios S1 and S2 exhibit similar behavior, with 
S2 taking slightly longer to recover due to reduced material delivery rate from the API producer because of 
POS data sharing. Implementing EDI (S2) reduces the CMO’s target delivery delay from 2 to 1 week, this 
results in an expedited delivery. The delivery delay spikes at 2.10 (week 14.25), 2.10 (week 14.375), 1.07 
(week 13.875) and returns to pre-disruption levels in weeks 28.125, 29.375, 27.625 for S1, S2, and S3 
respectively. S3 has a higher percentage of increase in Delivery Delay relative to the pre-disruption Delivery 

Delay of 7.37 % compared to 5.11% for S1 and 5.13% for S2 but recovers to pre-disruption levels quicker. 

 

Figure 2: CMO’s order delivery delay. 
 

As the API producer’s production planning process is based on forecasts of the CMO’s customer order 
rate, this results in the clear bullwhip behavior exhibited for S1 and S3 in Figure 3. The bullwhip effect is 
stronger for S3 as the CMO is satisfying the customer’s orders more rapidly which exacerbates the effect. 
The sharing of POS information between the CMO and the API Producer (S2) helps to lessen the bullwhip 
effect. The new shipment rate from week 5 is 12,000. It takes 85.625 weeks for S1 and S2 and 85.5 weeks 
for S3 to reach this value, note this is outside the presented time horizon. The maximum and minimum 

values for scenarios and the percentage above or below the required values are calculated. Note that the 
min values are calculated from week 12 onwards. For S1 the max of 19,319 (+61.00%) occurs at week 
18.625 and the min of 6,528,12 (-45.60%) occurs at week 22.375. For S2 the max of 14,205 (+18.37%) 
occurs at week 29.75 and the min of 10,843 (-9.64%) occurs at week 35.75. For S3 the max 20,713 
(+72.61%) occurs at week 18.625 and the min of 4,469 (-62.76%) occurs at week 23.125. 
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Figure 3: API FGI shipment rate. 
 
The API producer’s order fulfilment ratio falls to 37.79%, 16.64% and 32.53% for S1, S2, and S3 

respectively. In addition to these drops the time order fulfilment ratio recovers to 100% in weeks 20.875, 
39.875 and 20.875. Sharing of POS data (S2) results is detrimental order fulfilment ratio due to the increased 
delivery delay. The delay increases from 2 weeks to 5.29 weeks (164.59%), 12.02 weeks (500.85%) and 

6.15 weeks (207.40%) for S1, S2, and S3 respectively. Figure 4 presents the API FGI inventory for each 
scenario, with the bullwhip behavior clearly evident in S1 and S3. The initial inventory following the 
disruption the drops for each scenario with lows of 26,657 (-44.46%), 24,477 (-49.01%) and 26,456 (-
44.88%), for S1, S2, and S3 respectively. These lows occur at weeks 11.375, 12.875, 11.25. Unlike S2 
which mitigates the bullwhip effect, resulting in a lower API order fulfilment ratio as production does not 
start to rise until week 34. The peak inventories were 79,562 (65.6%), 48,353 (0.7%), and 91,400 (90.4%) 

respectively. The highs occur at weeks 24.75, 48, 25.125. The scenarios approach the new equilibrium of 
48,000 but there is continued fluctuation. 

 

Figure 4: API FGI. 
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Due to the increased customer order rate and the drop in FGI, in S1 and S3 the amount API WIP 
increases rapidly as the forecasts do not include the POS data, presented in Figure 5. The peaks for API 
WIP are 182,138 (89.7%), 114,538 (19.3%), and 198,218 (106.5%) for S1, S2, and S3 respectively. These 

peaks occur in weeks 17.000, 31.125, and 16.625. The min values of 54,742 (-43.0%), 95,448 (-0.6%), and 
41,869 (-56.4%) for S1, S2, and S3. These min values occur in weeks 25.875, 48.25, and 26.625. 

 

Figure 5: API WIP. 

The API RM for each scenario is shown in Figure 6, with bullwhip behavior clearly evident in S1 and 
S3. The material inventory peaks at 51,793 (115.8%), 30,500 (27.1%), and 58,339 (143.1%) for S1, S2 and 
S3 respectively. These peaks occur in weeks 15.875, 11.75, and 15.625. 

 

Figure 6: API RM. 
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enduring or temporary change in consumer demand. The inventories at the suppliers are either excessive or 
insufficient to satisfy demand. However sharing POS data electronically with suppliers, eliminates delays 
and distortions in the information suppliers need to plan production and capacity lowering variance in 
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inventories and material deliveries, resulting in a more stable SC, reducing the bullwhip effect (Croson and 
Donohue 2009). EDI yielded good results in the downstream, significantly improving firm’s delivery delay, 
better serving the patient population, with however few downward effects on the upstream. Overall, this 

study showed that the two technologies helped in different ways improving visibility in the supply chain 
sharing POS provided better results in terms of stability whereas EDI reduced the firm’s delivery delay. 

The model makes several simplifying assumptions with respect to the structure of this complex system, 
the data used to parameterize the model, and the feedback mechanisms represented, which are continuously 
reviewed with the platform partners. PLATINEA has access to better quality data but due to non-disclosure 
agreements and other contractual obligations, we are not able to disseminate this information.  

This paper assesses the effects of a demand disruption at a specific point in the AB SC. The PLATINEA 
project has identified several other interventions to respond to disruptions and to mitigate the effect of them. 
Simulation and mathematical modeling are valuable tools to quantify the effects of disruptions and 
interventions to manage or prevent them, and we anticipate that the current SD model could be expanded 
to look at several of these. Additionally, one could explore alternative modeling and simulation approaches 
such as DES (Doroudi et al. 2018) or hybrid modeling (Viana et al. 2021) to address specific problems. 
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