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ABSTRACT

The planning of complex logistic systems must ensure collision- and deadlock-free operation of the logistic
system. Problem-specific rule-based algorithms used so far are inflexible with respect to infrastructure
changes and scale poorly with systems that grow larger. This paper shows a first approach to handle
logistic deadlocks with machine learning. We present a conceptual approach on how to handle logistic
deadlocks with artificial neural networks. The paper also provides a technical implementation with a single
agent approach based on reinforcement learning with deep Q-networks. A discrete event simulation of an
automated guided vehicle system is used as the learning environment. The first results show that artificial
neural networks can learn to handle deadlock capable logistic systems with low complexity.

1 PROBLEM AND MOTIVATION

Due to the increased use of automated systems in production and logistics, the planning and control of
the respective systems are becoming more complex. As a result, the use of resources within the system
becomes opaquer and more dynamic. This makes it more difficult to detect circular dependencies in demand
on resources in planning. The missing detection of circular dependencies can lead to more occurrences of
deadlocks in the automated material flow systems, which can bring the entire logistics system to a standstill
through chain reactions. Deadlocks occur when at least two processes wait for each other in the form of
a circular reference and cannot perform the next process step due to infeasible conditions (Coffman et al.
1971; Tanenbaum 2015). There are several types of deadlocks. This paper will only consider so-called
resource deadlocks (Tanenbaum 2015) and will be simplistically referred to as deadlock in the following.
Deadlocks can also occur when not all resources in a system are used (Coffman et al. 1971).

Simulation models can help detect deadlocks and develop appropriate solution strategies. Due to the
numerous random experiments, even very improbable unusual cases can be discovered, which are not
apparent from the outset or analytically determinable in a complex logistics system. In logistics, deadlocks
are often handled with problem-specific control rules (Mayer and Furmans 2010; Müller, Schmidt, and
Reggelin 2019) or with preventive, deterministic measures through planning and reservation of resources
(Kim et al. 2006; Lienert and Fottner 2017). There needs to be sufficient information about the current
situation in a logistic system for the reservation systems to ensure a correct scheduling of the reservation
slots.

Both approaches require a central control approach and scale poorly with larger scaled systems. For
large systems, it is difficult to achieve complete coverage of all deadlock situations with problem-specific
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control rules, since there may be unusual cases that occur only very rarely and are therefore not detected
in advance of planning. Reservation systems, on the other hand, with their deterministic approach, move
further away from reality for larger systems, as special disturbance events are more likely to occur. Creating
optimal reservation schedules can lead to high computation times when many processes and resources
result in numerous possible combinations of resource reservations. Furthermore, the changing availability
of processes and resources due to the dynamics of the logistics scenario provides new optimal solutions
even more frequently, so that recalculations of the reservation plan become necessary even more often.

Decentralized control approaches in logistics that promise such scalability have so far also relied on
problem-specific avoidance rules through optimization algorithms for deadlocks (Schönung et al. 2011;
Seibold 2016) and agent-based approaches (Forget et al. 2009; Mors 2010; Yalcin 2017; Lu et al. 2019).

Another problematic aspect of dealing with deadlocks is that even small changes to logistic parameters
can change the best strategy approach between prevention, avoidance, and detection & resolution (Müller
et al. 2020). The poor scalability and flexibility with respect to structural changes of previous deadlock
solutions will therefore be addressed with solutions from the field of machine learning. The hypothesis is
that trained AI agents that take on decision problems relevant to the emergence of deadlock will provide
better flexibility and scalability. It is also possible that such an approach would render the categorization of
the strategy approaches for deadlock handling prevention, avoidance, and detection & resolution obsolete.

2 LITERATURE

2.1 Conventional Deadlock Handling

There are many problem-specific approaches in literature for deadlock handling. Most of these approaches
do not come from logistics but from computer science, where this problem has been recognized and discussed
since the late 1960s and early 1970s (Havender 1968; Coffman et al. 1971; Holt 1972). Here, deadlocks
occurred primarily in parallel/multi-programming, and general strategy approaches were developed to break
the conditions for deadlocks to occur. These four conditions have always been considered as starting points
for dealing with deadlocks (Coffman et al. 1971) and are also used in current problems in production and
logistics (Palmer et al. 2018; Bashir et al. 2018; Zheng et al. 2020). In addition to focusing on breaking
one of these deadlock conditions, a distinction is made between three basic, strategic approaches to handle
deadlocks (Coffman et al. 1971):

• Prevention
• Avoidance
• Detection & Resolution

Both early considerations by Coffman et al. (1971) and later views by, for example, Tanenbaum (2015),
from the perspective of informatics, saw in the strategic approach to prevention primarily changes in the
way resources are claimed. They referred to proposals by Havender (1968). This view was not always
followed in production and logistics. Either prevention was not clearly distinguished from avoidance to the
point of being used synonymously (Kim et al. 2006; Mayer and Furmans 2010), or, like Lehmann (2006),
deadlock prevention was understood to mean the design of a logistics system, process, and infrastructure in
such a way that deadlock could no longer occur. In designing the system, reference was often made only
to the rules for resource utilization (Kim and Kim 1997; Lienert and Fottner 2017), instead of seeing the
system structure and dimensioning of the system’s capacities as an integral part of deadlock prevention. The
mutual exclusion condition of Coffman et al. (1971) in particular could be solved by clever infrastructure
planning, which has not been discussed in detail in the literature so far. Deadlock detection first relies on
a description of the system state. Here, graph-theoretic approaches are mainly used in the literature. The
types of graphs are primarily resource allocation graphs (Holt 1972) and Petri nets (Petri 1962). Various
applications of Petri nets for deadlock handling can be found in literature (Liu 2016; Sun et al. 2018; Luo
et al. 2019).

1486



Müller, Reyes-Rubiano, Kutsenko, Reggelin, and Zadek

The type of application or the actual design of the deadlock situation plays an important role. In
contrast to the problems in production and logistics, in information technology, for example, a processor
can quickly release and reallocate its resources to resolve a deadlock situation. In logistics processes, this
is often not possible or only possible under certain circumstances and thus increases the effort required to
resolve a deadlock.

2.2 Deadlock Handling with Machine Learning

Machine learning has regained importance in recent years due to significant advances in research. In the
field of image recognition, efficiently implemented convolutional neural networks have now been able to
match human image recognition performance with the help of powerful graphics processors (Cireşan et al.
2012). Extremely large neural networks such as the GPT-3, with 175 billion parameters, have been shown
to be highly versatile in handling a variety of complex text tasks (Brown et al. 2020). In the area of
reinforcement learning, games such as Go or StarCraft, which were said to require human intuition due to
numerous courses of action, also managed to outperform top human performers (Mnih et al. 2015; Silver
et al. 2016; Vinyals et al. 2019), in some cases without ever having played against a human (Silver et al.
2017). These advances have also led to increasing research into what control tasks and decisions can be
performed by artificial neural networks in production and logistics. Example use cases include scheduling
in production systems (Waschneck et al. 2018; Zhou et al. 2021) or resource management in logistics
networks (Li et al. 2019; Yu et al. 2021).

In contrast, the occurrence of deadlocks in the context of machine learning has only been briefly
addressed (Bouderba and Moussa 2019; Bouton et al. 2019; Kujirai and Yokota 2019; Reijnen et al. 2020).
A more intensive investigation of how occurring deadlocks affect the learning behavior of machine learning
algorithms and whether AI agents actually learn to deal with deadlocks has not yet been comprehensively
elucidated. Statements on this have only been made by Sørensen et al. (2020). The authors implement
a reinforcement learning approach with a dueling deep Q-Network architecture for an airport baggage
system augmented with a deadlock avoidance algorithm. The AI agent reduced the number of deadlocks
but did not avoid them entirely. In particular, as the volume of baggage increased, deadlocks occurred
more frequently and caused the episode to restart in the learning environment.

2.3 Discrete Event Simulation as Learning Environment

Recently, reinforcement learning studies have integrated simulation techniques as learning environments.
Simulation techniques allow reinforcement learning models to improve performance and to save compu-
tational time and effort (Rabe and Dross 2015). The most recent reinforcement learning and simulation
studies define optimal simulation environments to accelerate the learning process (Kim, Jang, and Kim
2021).

Reinforcement learning and simulation integration is mainly used for automated industrial environments.
Below are some applications of reinforcement learning and simulation:

• Interaction between robots and humans: Reinforcement learning teaches robots to interact with
humans physically. In this field, simulation techniques allow emulating different social patterns of
behaviors (Akalin and Loutfi 2020; Liu et al. 2021).

• Service robots: Reinforcement learning applies to home robots to automatically learn to provide a
service in a home. For example: cleaning tasks (Zhang et al. 2021), assisting people with disabilities
in a variety of activities of daily living, such as dressing (Zhang et al. 2021; Farhan et al. 2020).

• Autonomous robots: reinforcement learning enables the robots or autonomous vehicle to make
driving decisions with minimal risk (Zhao et al. 2022; Wang et al. 2021).

Studies have shown that integrating reinforcement learning and discrete event simulation works very
well for dynamic problems involving multi-agent. Discrete event simulation has been widely used to
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Figure 1: Example applications of artificial neural networks to deal with deadlocks in an automated guided
vehicle system.

determine the matrix of states and actions for multiple agents. The matrix of states and actions allows
calculating the expected reward for each state and action. The set of actions with highest reward determines
the target state for reinforcement learning (Capocchi and Santucci 2022; Canese et al. 2021).

3 METHODOLOGY

3.1 Machine Learning

There are various approaches to use machine learning for deadlock handling and this also raises a whole
series of questions. The first decision to be made is whether a supervised, reinforcement learning or
unsupervised learning approach is most appropriate. We first propose a reinforcement learning approach,
as we consider the creation of labeled data to teach the agent to be difficult. In very deterministic systems
with very good information, a decision could be clearly evaluated whether it would lead to a deadlock or
not. The dynamics of the system’s behavior also argue for a reinforcement learning approach. We did not
initially consider an unsupervised learning approach.

Another aspect is which decision should be taken by the agent that is relevant for the occurrence of a
deadlock in a logistic system. An artificial neural network could take over various decisions, which would
determine the inputs and outputs of the artificial neural network. The reinforcement learning algorithm
uses a matrix with structure (state, action). The reinforcement learning algorithm stores the best action
performed given the current state. The information (state, action) is updated after each event. Based on the
information available, the neural network learns about the state-action pair and predicts the value of the
reward. More specifically, the neural network seeks to learn an action policy that maximizes the total reward.
Figure 1 gives an overview of possible applications of artificial neural network for deadlock handling in an
automated guided vehicle system. For our approach we considered the usage of an artificial neural network
to learn the driving behavior of the AGVs to ensure the avoidance of collisions and deadlocks.

We propose to use Markovian Decision-Making Process to determine the matrix of states and actions.
The discrete event simulation is used as a modeling tool for the Markovian Decision-Making Process.
Given the matrix, the state with highest reward is determined to be used as a target state for reinforcement
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Figure 2: Discrete event simulation for reinforcement learning.

learning. The best state and expected reward are transferred to the DQN-agent model to determine the
best action given the state and action policy (ε-greedy-Algorithm). Once the DQN-agent model determines
the best action for the given state, the reward achieved is used to update the state-action matrix and the
expected reward for each state. Figure 2 describes the integration of reinforcement learning and discrete
event simulation.

3.2 Conceptual Model

In order to apply machine learning methods to deal with deadlocks, the considered logistic system must
be deadlock capable. This means that deadlocks must be able to occur and must not be excluded from
the outset by a prevention strategy. Since this is our first approach using machine learning to deal with
deadlocks, the logistic system was deliberately kept simple and we avoided unnecessary complexity. This is
reflected in a small number of processes and resources in the considered logistic system and the avoidance
of deadlocks across different resource types.

Adapting Müller et al. (2020) we also consider a floor-bound automated guided vehicle system. The
layout is fixed in this case. There is a network of bidirectional one-lane tracks connecting three manufacturing
cells and a warehouse. The warehouse acts as a source for the logistic system. The AGVs start from the
AGV pool, load items at the transfer point of the warehouse and transport the items to a transfer point of
the manufacturing cells. After the processing by the manufacturing cells the items leave the system via
the sinks. The AGVs can move forward, backwards and can stop. Because of the one-lane tracks, this
driving behavior can lead to deadlocks. We consider two scenarios: one with three AGVs and one with
four AGVs. Figure 3 shows the conceptual model of the logistic system.

Figure 3: Conceptual model of the considered logistic system with manufacturing cells.
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Since the considered scenario is dynamic and the moving AGVs can change possible shortest path to
the destination of other AGVs, classical path planning algorithms such as Dijkstra (Dijkstra 1959) and A*
(Hart et al. 1968) are not sufficient to guarantee deadlock-free driving behavior.

4 TECHNICAL IMPLEMENTATION

4.1 Simulation Model

The simulation model was created in Tecnomatix Plant Simulation 16.0. The written methods, which are
located directly in Plant Simulation, use the integrated programming language ‘SimTalk 2.0’. Figure 4
shows the material flow elements of the implemented simulation model in Tecnomatix Plant Simulation. In
figure 4 the one-lane tracks seem to be unidirectional but the AGVs can use the tracks in two directions by
driving forward and backward. The transfer points are implemented via sensors, which trigger the loading
and unloading process.

Figure 4: Material flow elements of the simulation model.

4.2 Deep Q-Network (DQN)

Our approach is based on Q-learning. We use a multilayer perceptron (MLP) as an artificial neural network
to learn the decisions for the driving behavior of the AGVs. We refer to our approach as Deep Q-learning
according to Mnih et al. (2015), although our artificial neural network with two hidden layers is not that
deep. A target Q-network and an experience replay buffer are also used to stabilize and improve the learning
curve of the agent. Table 1 shows the selected hyperparameters for both experiments.

Table 1: Selected hyperparameters for the DQN-algorithm.

Hyperparameter 3 AGVs 4 AGVs
replay buffer size 20,000 50,000

training starts after x steps 500 2,000
discount factor γ 0.95 0.95

εmin 0.01 0.01
εdecay 0.995 0.995

learning rate α 0.001 0.001
batch size 32 32

The state-space depends on the number of AGVs in the logistic system. Each vehicle needs six input
neurons for the artificial neural network. The experiment with 3 AGVs needs 18 input neurons and with 4
AGVs there are 24 input neurons. The attributes sent to the artificial neural network for each vehicle are
presented in table 2. The action space is represented by the output neurons and depend on the possible
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actions of each AGV. The actions that each AGV can perform are forward, backward and stop. Turning left
or right is handled by methods in Plant Simulation and is therefore not part of the output layer. Since the
agent in the system must make real-time decisions and use only one central agent, the number of output
neurons is the combination of the three possible actions for each vehicle and the number of vehicles n.
The action space has a size of 3n, which is also the number of output neurons. The chosen action of the
artificial neural network always includes an order for each vehicle.

Table 2: Input and outputs of the artificial neural network for each vehicle.

Input Output
vehicle ID forward

vehicle x-position backward
vehicle y-position stop

vehicle current speed
vehicle destination x-position
vehicle destination y-position

In addition to the input layer and output layer of the artificial neural network, the network also consists
of two hidden layers. The first hidden layer consists of 64 neurons and the second layer consists of 32
neurons. All neurons are connected to all neurons of the previous and subsequent layer.

The reward function focus on the transport of the goods. There is a high reward of 100 when a good
reaches its goal. If an AGV hits an obstacle or another AGV, it will receive a penalty value of -25. To
avoid unnecessary paths, AGVs receive a penalty value of -1 for each path segment they move on.

5 RESULTS

The episodes are limited to the number of agent actions. Each episode has 2,000 steps. One run-through
of an episode lasted approximately 5.5 minutes. Two experiments with 1,000 episodes each were run as
part of the investigation. The experiment lasted about five days in a configuration with an Intel Xeon Gold
5120. Figure 5 shows the cumulative rewards per episode for each experiment.

Initially, the number of collisions exceeded several thousand, and the AGVs were unable to navigate
the path network. The first strategy chosen by the neural network was a standstill. At the same time,
the number of collisions decreased significantly, but the AGVs were still unable to perform their assigned
functions. After about 150 episodes, AGVs begin to navigate the path network and consider other AGVs.
Collisions are much less frequent than initially, but there are still episodes where deadlocks occur. Such
episodes are characterized by many collisions per episode.

In the second experiment with four AGVs, the amount of input and output data changed. This led to
a change in the dimensions of the neural network. The number of neurons at the input changed to 24 and
at the output to 81. With four AGVs, the number of collisions increased sharply. In the beginning, the
AGVs could not move. After about 200 episodes, the transporters started to move and navigate in the path
network. At the same time, the number of collisions per episode increased, but the transporters began to
perform their main function - delivering cargo, which helped them in later episodes to achieve a positive
reward for an episode and reduce the number of deadlocks. After 400 episodes, the number of collisions
and deadlocks decreased rapidly. Deadlocks no longer occurred, there were only single collisions. In the
end, the learning process slowed down considerably. This can have several reasons:

Hypothesis 1: Action selection is performed using the ε-greedy-Algorithm. The disadvantage of this
algorithm is that it may not explore the space of options sufficiently and therefore does not estimate well
enough which option is the best and gets stuck with a suboptimal option. Obviously, 1000 epochs are not
enough to find the optimal strategy. It is necessary to perform training with a large number of epochs.

Hypothesis 2: The sigmoid activation function has an extremely small derivative at all points except
for a small interval. This greatly complicates the process of weight improvement by gradient descent. In
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Figure 5: Cumulative rewards per episode for three (blue) and four (red) AGVs.
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Figure 6: Collisions per episode for three (blue) and four (red) AGVs.
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this case, the gradient value is small or disappears, because it cannot make any significant change due
to its extremely small value. The neural network refuses to continue learning or does extremely slowly.
There are several methods to solve this problem, for example, using a self-regulating neural network (SNN)
(Klambauer et al. 2017).

Hypothesis 3: Since the Rectified Linear Unit (ReLU) part is a horizontal line for negative x values,
the slope in this part is zero. Since the slope is zero, the weights are not adjusted during the descent. This
means that neurons in this state do not respond to changes in error or input (simply because the gradient
is zero, nothing changes). This phenomenon is called the dying ReLu problem (Lu 2020). Because of this
problem, some neurons simply shut down and do not respond, making a significant portion of the neural
network passive. There are variants of ReLu that can solve this problem, such as Leaky ReLu.

6 CONCLUSION AND OUTLOOK

Based on the obtained results, it can be concluded that machine learning, in particular deep learning with
artificial neural networks, is able to make decisions independently, can be applied for production and
logistics and can learn to handle logistic deadlocks. The amount of AGVs seems to have a high impact
on the learning curve. Our approach in its form is very resource and time consuming. Therefore, it makes
sense to modernize the approach to increase its efficiency. The transition to a multi-agent system will
allow better and faster training of agents. This transition requires significant changes in the neural network
architecture and the structure of the agent and learning environment.

Artificial neural networks have a significant advantage over classical rules for handling collisions and
deadlocks. They can adapt autonomously to changes in the environment. Artificial neural networks that
have been trained to operate in a specific environment can be easily relearned to operate under conditions
of minor variations in environmental parameters. The higher the adaptability of the system, the more stable
its work will be in a dynamic environment.

The application of machine learning and neural networks to deal with deadlocks in logistics appears
to be an up-and-coming area of research and will be deepened with further investigations to enable a
contribution to the creation of intelligent automated systems.
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