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ABSTRACT 

Modelers in various disciplines have applied system dynamics (SD) and agent-based models (ABM) to 
support decision-makers in managing complex adaptive systems. Combining these methods in a hybrid 
simulation offers an opportunity to overcome the challenges that modelers face using SD or ABM alone. 
It also provides a complementary view and rich insight into the problems that modelers investigate. 
Hence, this approach can offer solutions to a plethora of systems problems. One of the limitations of 
existing frameworks that guide the process of combining SD and ABM is the lack of detailed guidance 
describing how the two methods can interact and exchange information. This paper provides guidance 
for interfacing these simulation modeling methods in a hybrid simulation. In this guidance, we describe 
interface approaches to exchanging information for different types of information flow between SD and 
ABM.  

1 INTRODUCTION 

Despite the potential effects of how information is exchanged between system dynamics (SD) and 
agent-based (AB) modules of hybrid simulation models on run time and outputs, guidance on designing 
interfaces between these simulation methods does not exist. For example, Wallentin and Neuwirth 
(2017) presented a hybrid model of a fish-plankton ecosystem to explore alternative designs of a 
dynamically switching SD-ABM model. They found that although the population dynamics showed the 
predicted logistic growth dynamics in all designs, the runtime and outputs of the model varied 
significantly across these designs. This example demonstrates the effects of interfaces between different 
simulation methods on the level of insights gained and the balance between the model’s computational 
and predictive performances, which are the benefits of hybrid simulation discussed in the literature 
(Onggo, Kusano, and Sato 2007; Kieckhäfer et al. 2009; Mazhari et al. 2009; Kazakov, Howick, and 
Morton 2021; Djanatliev and German 2013). Given the growing interest and a lack of methodological 
clarity about combining SD and ABM, it would be useful for modelers and practitioners to frame how 
they combine the two methods explicitly. This paper discusses a methodological aspect of combining 
SD and ABM, that is how to design interfaces between SD and ABM modules in a hybrid simulation 
model, in response to a limitation of existing literature in this area.   

1.1 Previous Frameworks for Hybrid SD-ABM Simulation: State-of-the-Art 

Although the existing frameworks that guide how modelers can combine SD and ABM do not describe 
detailed designs of interfaces to exchange information between SD and ABM modules in a hybrid 
simulation, they are helpful to informing guidance on interfaces. We reviewed these frameworks and 
categorized the existing combinations of SD and ABM into six designs: parallel, sequential, interaction, 
integration, enrichment, and dynamically switching (Kim and Juhn 1997; Parunak, Savit, and Riolo 
1998; Akkermans 2001; Schieritz and GroBler 2003; Borshchev and Filippov 2004; Lorenz and Jost 
2006; Martinez-Moyano et al. 2007; Swinerd and McNaught 2012; Wallentin and Neuwirth 2017). 
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Some frameworks that provide guidance on combining SD and discrete event simulation (DES), mixing 
analytic and simulations modeling, or mixing methods in general, are also applicable to combining SD 
and ABM (Shanthikumar and Sargent 1983; Bennett 1985; Chahal and Eldabi 2008; Chahal, Eldabi, 
and Young 2013; Morgan, Howick, and Belton 2017).  
 Parallel design includes Class I in Shanthikumar and Sargent (1983), Comparison mode in Bennett 
(1985), Interfaced class in Swinerd and McNaught (2012), and Parallel in Morgan, Howick, and Belton 
(2017). In this design, SD and ABM are used to develop independent models either to address different 
aspects of the same problem which are better suited to one particular simulation method or to represent 
the same problem for direct comparison. Results of these models are ultimately combined to solve the 
same problem or compared to enhance confidence in the output produced by each model.  
 Sequential design has been described in several publications, including Class III and IV in 
Shanthikumar and Sargent (1983), Scenario explanation or Crisis response in Martinez-Moyano et al. 
(2007), Sequential class in Swinerd and McNaught (2012), Cyclic interaction in Chahal, Eldabi, and 
Young (2013), and Sequential design in Morgan, Howick, and Belton (2017). This design includes two 
or more separate sub-models embedded in different simulation modeling methods in which one model 
is used to inform the other. One simulation is initially run, and it produces output before terminating; 
the second simulation starts to run, using as input the output of the first simulation. The information is 
passed only once from the first to the second simulation. The output of the second simulation represents 
the final output of the hybrid model. 
 Interaction design aligns with Hierarchical format in Chahal and Eldabi (2008), Parallel interaction 
in Chahal, Eldabi, and Young (2013), and Interaction design in Morgan, Howick, and Belton (2017). It 
comprises different sub-models developed using different simulation modeling approaches which are 
considered equally important and interact cyclically during run time. Interactions between sub-models 
occur several times in each direction. A sequential design can be considered a special case of interaction 
design when the interaction occurs once and in one direction only.  
 Integration design is in essence Class II in Shanthikumar and Sargent (1983), Integration in Bennett 
(1985), Intertwined models in Martinez-Moyano et al. (2007), Integration mode in Chahal, Eldabi, and 
Young (2013), “Holy Grail” in Brailsford, Desai, and Viana (2010), Integrated class in Swinerd and 
McNaught (2012), and Integration in Morgan, Howick, and Belton (2017). Integration is an approach 
that combines different simulation modeling methods to create one seamless hybrid model in which it 
is impossible to explicitly distinguish between the SD and ABM parts and to identify where one 
simulation approach ends and the other begins. This design offers a coherent view of the problem which 
enhances continuous flows of information and feedback and captures interactive effects within a system. 
Although several studies concur on the definition of an integration design, only Swinerd and McNaught 
(2012) describe in detail different ways to develop an integrated hybrid model. They proposed three 
designs which belong to the integrated class, including agents with rich internal structure, stocked 
agents, and parameters with emergent behavior.  
 Enrichment design has only been discussed in Bennett (1985) and Morgan, Howick, and Belton 
(2017), and is in line with Process Environment in Chahal, Eldabi, and Young (2013). This design 
combines different simulation modeling methods to form one unified hybrid model in which one 
method dominates and is enhanced by elements of another. Enrichment design uses an element of one 
simulation method to enhance the main method without the need to build an additional model, while 
integration brings together two full methods to create something new.  
 Dynamically switching design allows the dynamic switching between SD and ABM in the structure 
of a model (Bobashev et al. 2007; Vincenot et al. 2011; Wallentin and Neuwirth 2017). It has been 
applied to efficiently depict the process of an ongoing epidemic as the size of infected populations 
change (Bobashev et al. 2007).  

1.2 Addressing a Limitation of Existing Guidance for Combining SD and ABM 

Most frameworks reviewed describe the hybrid design at a high level and emphasize their differences 
based on the direction of interaction and frequency of interaction over a time window. Enrichment, 
interaction, and integration designs share many similarities and differ only in terms of the separability 
and dominance of the SD and ABM modules constituting a hybrid model. The relative nature of these 
characteristics leads to the difficulty in selecting an appropriate design for a hybrid model. This paper 
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seeks to address this gap by defining clear and logical interfaces between the SD and ABM modules of 
a hybrid model.  
 An interface between the two modules defines how the information is passed from the generating 
module to the receiving module during the running time of the hybrid model. Figure 1 provides an 
overview of information flows between components of an SD module and an ABM module. A detailed 
discussion of categories of information flows follows. These categorizations emerged from a literature 
review of hybrid SD-ABM models across various domains and were based on reflection from the 
modeling process of our case study (Nguyen, Megiddo, and Howick 2022). For each category of 
information flow, we provide a description and one or two example models selected from the literature.  

Figure 1: Flows of information between an SD module and an ABM module of a hybrid SD-ABM 
model. White and black boxes denote elements of an SD and ABM module, respectively. Green arrows 
denote the flows of information found in the literature, and red arrows denote the proposed flows based 
on reflection from the modeling process of our case study (Nguyen, Megiddo, and Howick 2022) (1) 
Stock levels affect agent-specific state variables or are used to generate a small crowd of agents; (2) 
Stock levels affect agent’s behaviors; (3) Stock levels bound aggregate measures of agents; (4) Stock 
levels affect the network topology of agents; and (5), (6), (7), and (8): Agent-specific state variables, 
agents’ behaviors, aggregated measures of agents, and the network topology of agents affect flows of 
an SD module respectively. 

2 INFORMATION FLOWS FROM SD MODULE TO ABM MODULE 

2.1 Stock Levels Define Agent-Specific State Variables (1a) 

Description – The level of a stock in an SD module embedded in each agent of an ABM module can 
determine a characteristic (i.e., state variable) of that agent (Figure 2).  

Figure 2: Stock levels define agent-specific state variables. 
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 Example study – The integrated hybrid model in Caudill and Lawson (2013) represents the intra-
host dynamics of antibiotic-resistant bacteria and the inter-host transmission dynamics of infections 
caused by such bacteria occurring among patients and HCWs in a hospital using SD and ABM, 
respectively. SD modules embedded within patient and HCW agents simulate changes in their internal 
pathogen population, called the bacteria population vector, over time. The stock level for the bacteria 
population vector determines the infection state of an agent and influences transmission probabilities 
when an agent interacts with other agents.  

2.2 Stock Levels Define Agent-Specific State Variables (1b) 

Description – Small crowds of individual agents with specific characteristics can be generated from 
stocks representing large population numbers. Individual agents can be generated using distribution 
functions based on existing empirical data or theories to represent the necessary heterogeneity of these 
agents.  
 Example study – Figure 3 shows an example of generating small affected crowds differentiated by 
age from a larger population in prospective Health Technology Assessment studies (Djanatliev and 
German 2013; Kolominsky-Rabas et al. 2015). In these studies, a small crowd of affected agents are 
generated from a stock representing a larger affected population in an SD module. The affected 
population stock is categorized into different age groups to parametrize agents afterwards. In essence, 
the different stocks and flows represent different types of agents classified by the age dimension. 
However, in order to simplify the presentation of the model, as these agent types have the same stock 
and flow structure, they are presented as one structure with a vector holding the level of the affected 
population for different age groups. The vector of the affected population is calculated by multiplying 
the age-specific incidence rates and the corresponding age distribution.  

Figure 3: An example of generating agents from stock. 
Reproduced from Djanatliev and German (2013). A vector of affected persons can be calculated using 
the age specific incidence values and the corresponding age distribution which is calculated in parallel 
by the demographic component. The resulting stock is a vector containing a dedicated number of 
affected persons with different age groups. 

2.3 Stock Levels Define Behaviors of Individual Agents (2) 

Description – Stock levels in an SD module determine the corresponding behaviors that individual 
agents in an ABM module will execute. As shown in Figure 4, if the stock level satisfies Condition 1 
(e.g., the level is greater than a threshold or falls within a certain range of values), agents will execute 
Behavior 1. Example studies – The SD module can act as an environment for which characteristics 
represented by stock levels influence the behaviors of agents living in it. In a hybrid model for project 
management, Jo et al. (2015) represents the benefits, cost, and feasibility of an investment project as 
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stocks in the SD module. The stock levels affect the decision-making process of user agents which 
represent individuals who potentially use and participate in a public investment project.  

Figure 4: Stock levels in the SD module of a hybrid model define the behaviors of agents in its ABM 
module. 

 The levels of stocks of SD modules that are embedded in each agent of an ABM module can also 
influence the behaviors of these agents. In the hybrid SD-ABM model for public health policy formation 
published in Cernohorsky and Voracek (2012), an individual agent dies when their health capital stock 
level, modeled in an SD module, drops below a threshold.  

2.4 Stock Levels Bounds Aggregate Measures of Agents (3) 

Description – A stock level in an SD module bounds an aggregated measure of agents in an ABM 
module. The aggregated measure of agents must not exceed the level of a particular stock. Aggregate 
measures of agents can be the sum of values for an agent-specific state variable or the size of the agent 
population with a specific characteristic (Figure 5). While a stock level directly affects the behavior of 
individual agents in interface design (2), in this design, it indirectly affects behavior based on the 
collective measure of agents, summing up their state variables.  

 Figure 5: Stock levels bound aggregate measures of the ABM module.  

 Example studies – In a hybrid model for land use, Verburg and Overmars (2009) models the spatial 
allocation of demand for urban and agricultural land-use types on a grid. The regional demands for 
different land use types are represented by stocks in the SD module. The individual cells (agents in the 
ABM module) on the grid are local pieces of land with different characteristics such as location 
suitability, neighborhood suitability, and conversion elasticity. The regional level demands are spatially 
allocated to individual grid cells until the demand is satisfied by iteratively comparing the sum of the 
allocated area of the land use types with the demand. 
 Robledo, Sepulveda, and Archer (2013) develops a forecasting enrolment model for resource 
planning by combining SD and ABM. The SD module represents the overall enrolment system of a 
university, while the ABM module simulates students’ heterogeneous behaviors such as enrolling, 
dropping a class/course, or transferring to another class at the departmental level. The sum level of 
stocks for students that have declared their major in Engineering or have not chosen a major bound the 
headcount of students in that department.  

2.5 Stock Levels Define Agents’ Network Topologies (4) 

Description – The levels of stocks in the SD module determine the corresponding spatial relationship 
and/or interacting network topology among agents in the ABM module (Figure 6).  
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Figure 6: Stock levels in an SD module of a hybrid model define the spatial relationship and/or network 
topology of agents in an ABM module. 

 Example study – A hybrid model for a pandemic can comprise an SD module that simulates the 
spread of an infectious disease in the community and an ABM module that represents a network of 
healthcare facilities (i.e., agents) in the same area. The network topology defines the transferring 
pathways between facilities. The level of a stock representing the infected population in the community 
that require medical care may reach a threshold that the current network topology of healthcare facilities 
could no longer efficiently handle. When this happens, the transferring pathways between facilities may 
need to reform to cope with the increasing demand, leading to a change in their network topology.  

3 INFORMATION FLOWS FROM ABM MODULE TO SD MODULE 

3.1 Agents’ State Variables Affect Flows (5) 

Description – Agents’ state variables may evolve during a simulation as they execute a behavior or 
interact with other agents and/or the environment. Changes in agents’ state variables can affect flows 
in an SD module (Figure 7) 

Figure 7: Changes in agents' properties can affect flows in an SD module. 

 Example study – A hybrid model representing a network of healthcare facilities can include an 
ABM module representing a care home (i.e., the care home module), where individuals including 
residents and staff are agents, and an SD module representing its connected hospitals (i.e., the hospital 
module). Resident agents in the care home can be characterized by their infection status (susceptible or 
infected). Infected residents are assumed to require acute medical care, and, therefore, they are admitted 
to hospitals. This means that when a resident agent becomes infected, this change in its infection status 
will affect the admission inflow to a patient stock in a hospital SD module.  
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3.2 Behaviors of Agents Affect Flows (6) 

Description – Behaviors of agents in an ABM module can influence flows in an SD module (Figure 8). 

Figure 8: Behaviors of agents in the ABM module of a hybrid model affect flows in the SD module. 

 Example studies – In Mazhari et al. (2009) hybrid SD-ABM model for capacity planning, the ABM 
component models the electricity consumption behaviors of household agents. The consumption 
behavior of household agents affects the flow into the electricity demand stock in the SD component.  
 Chen and Desiderio (2020) develop a hybrid model to investigate a problem in labor market rigidity 
and its impact on unemployment. The model is the abstraction of a closed economy with markets for 
labor and consumption goods. Agents include households (on the supply side in the labor market and 
on the demand side in the goods market) and firms (on the demand side in the labor market and on the 
supply side in the goods market). These agents are characterized by internal SD modules representing 
their balance sheets (stocks), which reflect all of their market transactions undertaken (flows). The 
relationship between stocks and flows is regulated by rules that follow coherent accounting principles. 
The actions of agents result in market transactions which influence the flows to the balance sheet stocks 
within each agent. 

3.3 Aggregated Measures of Agents Affect Flows (7) 

Description – An aggregated measure of agents in an ABM can influence a flow in an SD module 
(Figure 9). When SD and ABM modules represent different parts of a system and agents physically 
move from the ABM module to the SD module, they are removed from the ABM module and 
aggregated into a stock in the SD module. This movement is represented as an inflow of the stock.  

Figure 9: Aggregated measures of the ABM module of a hybrid model affect the flows in its SD module. 

 Example studies – In the Swinerd and McNaught (2015) hybrid SD-ABM model for the 
international diffusion of technological innovations, agents describe individual nations. The nations’ 
state of adoption, which, if set to true implies they decide to adopt the innovative technology, are 
aggregated into the international adoption stock in the SD module. 
 Jo et al. (2015) models the traffic of road stock in an SD module as the aggregation of driver agents 
who are potential users of the construction project.  

3.4 Network Topologies Affect Flows (8) 

Description – The spatial/social relationship and/or network topologies of agents in an ABM module 
can affect the flows in an SD module (Figure 10).  
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Figure 10: The network topology of agents in the ABM module affects flows in the SD module. 

Example study – The hybrid SD-ABM model developed by Vincenot and Moriya (2011) simulates 
the dynamics of infectious disease transmission in very large fragmented populations at both the local 
and global scales (Figure 11). It aims to investigate the influence of network topology upon the 
resurgence of epidemics. Each “site” agent equals one population generated based on a geographic 
breakdown of metapopulations and is represented by a classic SD module comprising stocks for 
susceptible, infected, and recovered individuals (Kermack and McKendrick 1927; Anderson and May 
1979; Hethcote, Stech, and Van Den Driessche 1981). As individuals within a population could 
emigrate to other connected populations, the network topology affects the ongoing emigration and 
immigration of infected individuals 

Figure 11: The visual structure of the hybrid SD-ABM model in Vincenot and Moriya (2011). 
Communicating ABM agents, representing sites (here, visualized as clouds), each incorporate an SD 
sub-model (a partial view of which is inserted in the bottom-right corner of the figure) computing the 
evolution of the local outbreaks. These agents are in charge of the exchange of infected individuals 
between sites composing the network. 

4 CONTRIBUTION AND LIMITATION 

The methodological contribution of this research is new practices for modelling interfaces between SD 
and ABM modules in a hybrid simulation model. Previous frameworks for hybrid simulation have 
described different modes of interaction between simulation methods focusing on the system view, 
method dominance, and direction and frequency of interaction. However, the description of these 
interaction modes is still abstract and has not explicitly explained how the information is passed between 
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different simulations. This research addresses this issue by categorizing the designs of an interface 
between SD and ABM modules and defining how SD/ABM modules generate the information and how 
the receiving ABM/SD modules handle such information for each design. These interface designs also 
explain other forms of feedback that go beyond what has been generally discussed in previous hybrid 
models: i) the SD module generates information that shapes the agents’ environment or affects their 
decision-making and ii) the aggregation of the agents’ characteristics or actions represents a stock or 
parameter in the SD module. The research also proposes two new interface designs: i) a stock level 
defines the agents’ network topology and ii) the agents’ state variables affect flows.  
 Whilst the paper presents a number of possible ways in which modules can be linked, it is not 
suggested that it provides an exhaustive list. This is particularly due to the ‘art’ of modelling where 
different modelers may choose to represent a situation in different ways. However, the paper provides 
a guiding structure which future research can add to.  

5 CONCLUSION 

This paper has discussed different designs of interfacing SD and ABM in a hybrid simulation model. 
Previous frameworks for hybrid simulation have described different modes of interaction between 
simulation methods focusing on the system view, method dominance, and direction and frequency of 
interaction. However, the description of these interaction modes is still abstract and has not explicitly 
explained how the information is passed between different simulations. This work addresses this issue 
by categorizing the designs of an interface between SD and ABM modules and defining how SD/ABM 
modules generate the information and how the receiving ABM/SD modules handle such information 
for each design. These interface designs also explain other forms of feedback that go beyond what has 
been discussed in previous hybrid models, such as a stock level defining the agents’ network topology 
and agents’ state variables affecting flows. 
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