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ABSTRACT

In this paper, we consider the estimation of the quantile sensitivity through Monte Carlo simulations. We
first propose a new representation of the quantile by writing it as an expectation involving Dirac Delta
payoff functions. Then we consider two alternative approximations for the Dirac Delta function, one is the
Delta sequence, and the other is through orthogonal series. Then we derive quantile sensitivity estimators
by combining them with the conditional expectation representation derived in (Hong 2009). Numerical
examples demonstrate the accurateness and efficiency of the proposed method, and compare with the
existing literature.

1 INTRODUCTION

The quantile of a random variable is an important measure of the random performance, and its equivalent,
the value at risk (VaR) is an important risk measure for quantitative risk management. Except for a few
special cases, the quantile is usually not available in closed-form, hence Monte Carlo simulation is often
used to estimate it. The quantile sensitivity measures the sensitivity of the quantile with respect to a model
parameter, and it provides information useful for hedging purposes and also in gradient-based optimization.
A seminal work in quantile sensitivity estimation through Monte Carlo simulation is (Hong 2009), where the
quantile sensitivity is represented as a conditional expectation. Subsequently, a kernel smoothing method
is proposed in (Liu and Hong 2009) based on this representation. Representative alternative estimation
methods include the use of infinitesimal perturbation analysis (IPA) in (Jiang and Fu 2015), conditional
Monte Carlo method in (Fu, Hong, and Hu 2009), measure-valued differentiation approach in (Heidergott
and Volk-Makarewicz 2016), and the generalized likelihood ratio (GLR) approach in (Peng, Fu, Hu, and
Lei 2019), etc.

The motivation of the present paper stems from recent developments in utilizing the Delta family
method in probability density estimations (Yang, Chen, and Wan 2019; Cui and Xu 2022), implied
volatility calculation (Cui, Kirkby, Nguyen, and Taylor 2021) and high-dimensional stochastic control
(Ma, Lu, and Cui 2022). The main idea of the Delta family method is based on smooth approximating
sequences of the Dirac Delta function, which is a generalized function itself. In the literature, there are two
distinct approximating sequences, with one being the Delta sequence first proposed in statistics, see (Walter
and Blum 1979; Susarla and Walter 1981); The second class of approximating sequence is based on the
distributional representation of the Dirac Delta function through projections onto orthonormal basis, see (Li
and Wong 2008). In the present paper, we group these two types of approximation methods under the hood
of the “Delta family method”. We apply this Delta family method to the quantile sensitivity estimation
problem, and in this paper we shall report initial findings and numerical evidences for the performance of
the method. More specifically, we consider the first and second order sensitivities of the quantile, and also
an example involving the sensitivity of the conditional value at risk.
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The contributions are two fold: first, we establish a general representation of the quantile function
in terms of the expectation with respect to a payoff function involving the Dirac Delta function, through
a novel use of the sifting property of the Dirac Delta function and the change of variable technique.
This representation is explicit, as compared to the traditional sample estimator based on interpolating
order statistics of the sample. Based on this new representation, we propose two alternative converging
approximations to the quantile based on the Delta family method. Second, we obtain explicit approximate
expressions for the quantile sensitivity by applying the Delta family method to the conditional expectation
representation of (Hong 2009), which are shown to converge to the true value. Numerical examples
demonstrate the accuracy and efficiency of the new approach, and compare with existing methods in the
literature.

The remainder of the paper is organized as follows: Section 2 presents the main results on a new quantile
representation and the corresponding first and second order quantile sensitivities expressions. Section 3
presents numerical experiments and comparisons with existing methods in the literature. The method is
shown to be accurate and efficient as compared to benchmark cases. Section 4 concludes the paper.

2 QUANTILE SENSITIVITY

We cast our setting where the parameter of interest can appear in both the performance function and the
underlying input distribution, which is a very general setup incorporating many applications of interests,
see also (Peng, Fu, Hu, and Heidergott 2018). We have Yθ = g(X ;θ), where g(·;θ) is the performance
function, X is the input random variable having density function fX(·;θ), and θ ∈ Θ with an open set
Θ ⊂ R. The α quantile qα

θ
is defined as the unique root of F(qα

θ
;θ) = α , where F is the cumulative

distribution function of Yθ . The goal is to estimate d
dθ

qα
θ

, where θ is the parameter of interest.
We shall first establish a probabilistic representation of the quantile. From the sifting property of the

Dirac Delta function, we have

qα
θ = F−1(α;θ) =

∫ 1

0
F−1(u;θ)δ (u−α)du

=
∫
R

F−1(F(s;θ);θ)δ (F(s;θ)−α)dF(s;θ)

=
∫
R

s ·δ (F(s;θ)−α) f (s;θ)ds

= E[Yθ ·δ (F(Yθ ;θ)−α)]. (1)

Hence the quantile can be elegantly represented as the expectation in (1), and the payoff involves the
Dirac Delta function, which belongs to the class of generalized functions. This explicit representation (1)
of the quantile is new to the literature, and is in contrast with the implicit representation of quantile as the
root of the equation F(qα

θ
;θ) = α . In the next step, we shall replace the Dirac Delta function by equivalent

distributional representations using the tools of Delta family method, i.e. through Delta sequences or
orthogonal series expansions.

As for the Delta sequences, there are many possible choices as documented in (Walter and Blum 1979),
see Table 1 below.

For simplicity, we can consider the Delta sequence based on the normal density function:

δ (x−a) = lim
ε→0

1
2
√

πε
e−

(x−a)2
4ε .

Then combined with (1), we have the following equivalent representation of the quantile:

qα
θ = lim

ε→0

1
2
√

πε
E
[
Yθ · e−

(F(Yθ ,θ)−α)2

4ε

]
. (2)
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Table 1: Different types of Delta sequences.

Types Delta sequences δ (x− y)

Normal density 1
2
√

πε
e−

(x−y)2
4ε

Lorentzian type 1
π

ε

(x−y)2+ε2

Fourier integral 1
2π

∫ 1/ε

−1/ε
ei(x−y)tdt

Trigonometric function 1
2π

sin[( 1
ε
+ 1

2)(x−y)]
sin( 1

2 (x−y))

Note that the representation (2) is very similar to the Gaussian kernel approximation to the density
function, with ε playing the role of bandwidth in the language of kernel density estimation. Since the
kernel method has been previously applied in quantile sensitivity estimation in (Liu and Hong 2009), it
is very important to distinguish our work from theirs when the Delta sequence approximation is utilized.
The main distinction lies in that our derivation is based on a totally different representation of the quantile
function as given in (1), in contrast to the sample estimator based on order statistics as utilized in (Liu
and Hong 2009). More specifically, they utilize the quantile estimator q̂n

α = Ldnαe:n, where Li:n denotes the
i-th order statistic from the n observations of L. Then their estimator for quantile sensitivity is given by
equation (2) on page 513 of their paper, and recalled below:

V̄n =
∑

n
i=1 K

(
q̂n

α−Li
bn

)
·Di

∑
n
i=1 K

(
q̂n

α−Li
bn

) ,

where K denotes a kernel function on R and bn is the bandwidth parameter. It can be seen that the main
difference lies in how we approximate the quantile in the above expression, for which we apply the Delta
family method to the new representation (1). Note that our second implementation based on orthogonal
series expansions is totally different from the kernel approximation approach. We shall next discuss this
second approach.

An alternative exact distributional representation of Dirac Delta function is as follows: let {gk (y)}∞

k=0 be
a complete orthonormal basis, then from (Li and Wong 2008), the Dirac Delta function can be represented
by

δ (x−a) =
∞

∑
k=0

gk(x)gk (a) . (3)

Note that the above identity holds in a “distribution” sense, and that the above representation is
essentially equivalent to the completeness of the basis. There are many choices of the orthgonal basis for
various situations, and more specifically, we have the following series representations of the Dirac Delta
function:

δ (x−a) =
∞

∑
k=0

(
k+

1
2

)
Pk(x)Pk(a),

δ (x−a) =
e−(x

2+a2)/2
√

π

∞

∑
k=0

1
2kk!

Hk(x)Hk(a),

δ (x−a) = e−(x+a)/2
∞

∑
k=0

Lk(x)Lk(a),

and each of the above respectively corresponds to the choices of gk(x) =
(
k+ 1

2

)1/2
Pk(x), gk(x) =

1
π1/42k/2

√
k!

e−x2/2Hk(x), and gk(x) = e−x/2Lk(x). Here Pk(x), Hk(x) and Lk(x) are respectively the Leg-
endre, Hermite and Laguerre polynomials, all of which are representative classical orthogonal polynomials.
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Note that the above formulas appear respectively as formula (1.17.22), (1.17.24) and (1.17.23) on page
38 of the NIST handbook of Mathematical Functions, a definite reference on special functions. See
https://dlmf.nist.gov

Combining (3) with (1), we can represent the quantile function as

qα
θ =

∞

∑
k=0

gk(α)E [Yθ ·gk(F(Yθ ,θ))] . (4)

Note that the quantile is expressed as an orthogonal series expansion whose coefficients are given by
expectations.
Remark 1 In numerical experiments, we have tried both Delta sequence method and the orthonormal
basis method. It turns out that in order to reach the same accuracy level, the computational time of the
orthonormal basis method is significantly larger than that of the Delta sequence method. We conjecture
that this is due to the oscillatory behaviors at the boundaries of the involved orthogonal polynomials, i.e.
Gibbs phenomenon. The efficient implementation of this alternative approach is left to future research.

With the above preparation, we shall study the quantile sensitivity using the Delta family method. We
make the following standard assumptions as in (Hong 2009) using our notations:

ASSUMPTION 1. The pathwise derivative ∂θYθ exists w.p.1 for any θ ∈Θ, and there exists a function
k(X) with E[k(X)]< ∞, such that

|Yθ2−Yθ1 |6 k(X) |θ2−θ1|

for all θ1,θ2 ∈Θ.

ASSUMPTION 2. For any θ ∈ Θ,Yθ has a continuous density f (a;θ) in a neighborhood of t = a
with any real number a, and ∂θ F(t;θ) exists and is continuous with respect to both θ and t at t = a.

For any θ ∈Θ, let
h(t;θ) = E [∂θYθ | Yθ = t]

We make the following assumption on h(t;θ).

ASSUMPTION 3. For any θ ∈Θ,h(t;θ) is continuous at t = a.

From Theorem 2 of (Hong 2009), suppose that Assumptions 1-3 above are satisfied at a = qα
θ

, then
the quantile sensitivity is given by the following conditional expectation:

d
dθ

qα
θ = E

[
dYθ

dθ

∣∣∣Yθ = qα
θ

]
. (5)

ASSUMPTION 4. E
[∣∣∣dYθ

dθ

∣∣∣ ·1{Yθ=qα
θ
}

]
<+∞.

Based on the above equation, we have the following result:
Proposition 2 Suppose that Assumptions 1-4 are satisfied at a = qα

θ
, then we arrive at an alternative

representation of the first order quantile sensitivity utilizing the Dirac Delta function:

d
dθ

qα
θ =

E[dYθ

dθ
δ (Yθ −qα

θ
)]

E[δ (Yθ −qα
θ
)]

. (6)
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Proof. Denote f (y,x) as the joint density function of
(

Yθ ,
dYθ

dθ

)
, then we have

d
dθ

qα
θ = E

[
dYθ

dθ

∣∣∣Yθ = qα
θ

]
=

∫
R x f (qα

θ
,x)dx∫

R f (qα
θ
,x)dx

=

∫
R xE[δ (Yθ −qα

θ
)δ (dYθ

dθ
− x)]dx

f (qα
θ

;θ)

=
E[δ (Yθ −qα

θ
)
∫
R xδ (dYθ

dθ
− x)dx]

f (qα
θ

;θ)

=
E[dYθ

dθ
δ (Yθ −qα

θ
)]

f (qα
θ

;θ)

=
E[dYθ

dθ
δ (Yθ −qα

θ
)]

E[δ (Yθ −qα
θ
)]

, (7)

where f (qα
θ

;θ) is the density function of Yθ at Yθ = qα
θ

. From Assumption 1, there exists a function k(X),

such that E
[∣∣∣Yθ1−Yθ2

θ1−θ2

∣∣∣] 6 E[k(X)] < ∞ for all θ1,θ2 ∈ Θ, which is compatible with E
[∣∣∣dYθ

dθ

∣∣∣] < ∞. Then

from Fubini’s theorem, the fourth equality in (7) holds for
∫
R |x| f (qα

θ
,x)dx = E

[∣∣∣dYθ

dθ

∣∣∣ ·1{Yθ=qα
θ
}

]
< ∞.

Next, the following result provides the second order quantile sensitivity:
Proposition 3 Suppose that Assumptions 1-4 are satisfied and suppose further ∂θ f (a;θ) exists and is
continuous with respect to both θ and a = qα

θ
. Then the second order quantile sensitivity is given by

d2

dθ 2 qα
θ =

E[d2Yθ

dθ 2 δ (Yθ −qα
θ
)]

E[δ (Yθ −qα
θ
)]

+
E[dYθ

dθ

d
da δ (Yθ −a)|a=qα

θ
· d

dθ
qα

θ
]

E[δ (Yθ −qα
θ
)]

+
d

dθ
qα

θ ·
E[dYθ

dθ

d
da δ (Yθ −a)|a=qα

θ
]

E[δ (Yθ −qα
θ
)]

−
(

d
dθ

qα
θ

)2

·
E
[ d

da δ (Yθ −a)
]
|a=qα

θ

E
[
δ (Yθ −qα

θ
)
] . (8)

Proof. Follow the ideas of (Hong 2009) and also the expression (6), we can carry out the following
derivation:

d2

dθ 2 qα
θ =

E[d2Yθ

dθ 2 δ (Yθ −qα
θ
)]

E[δ (Yθ −qα
θ
)]

+
E[dYθ

dθ

d
dθ

δ (Yθ −qα
θ
)]

E[δ (Yθ −qα
θ
)]

− d
dθ

qα
θ ·

d
dθ

f (qα
θ

;θ)

f (qα
θ

;θ)

=:I+ II− III. (9)

Next we shall calculate III. Denote π(a,θ) = E
[
(a−Yθ ) ·1{Yθ≤a}

]
, from the proof of Theorem 1 in (Hong

2009), there are
∂aπ(a;θ) = F(a;θ),

for any t in the neighborhood of a, and ∂a∂tπ(a;θ) = ∂t∂aπ(a;θ) =− f (a;θ) ·E
[ d

∂θ
Yθ |Yθ = a

]
. Then we

have

∂

∂a
f (a;θ) =∂θ ∂a2π(a;θ)

=∂a

[
− f (a;θ) ·E[ d

∂θ
Yθ |Yθ = a]

]
=− d

da
f (a;θ) ·E

[
d

∂θ
Yθ |Yθ = a

]
− f (a;θ) · d

da
E
[

dYθ

∂θ
|Yθ = a

]
. (10)
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For a = qα
θ

, it holds that

d
dθ

f (qα
θ ;θ) =

∂

∂θ
f (a;θ)

∣∣∣
a=qα

θ

+
∂

∂a
f (a;θ)|a=qα

θ
· d

dθ
qα

θ

=− ∂

∂a
f (a;θ)

∣∣∣
a=qα

θ

· d
dθ

qα
θ − f (qα

θ ;θ) · ∂

∂a
E
[

dYθ

dθ
|Yθ = a

]∣∣∣∣∣
a=qα

θ

+
∂

∂a
f (a;θ)

∣∣∣
a=qα

θ

· d
dθ

qα
θ

=− f (qα
θ ;θ) · ∂

∂a
E
[

dYθ

dθ
|Yθ = a

]∣∣∣∣∣
a=qα

θ

. (11)

Hence,

III =− d
dθ

qα
θ ·

∂

∂a
E
[

dYθ

dθ

∣∣∣Yθ = a
]∣∣∣∣∣

a=qα
θ

. (12)

2.1 Extension to sensitivities of risk measures

Note that the value at risk (VaR) is equivalent to the quantile of the loss random variable, which is denoted
also as Yθ for notational convenience. The explicit representation in (1) also allows us to compute more
general risk measures named the range value at risk (RVaR). It was proposed in (Cont, Deguest, and
Scandolo 2010) as a robust risk measure, defined as

RVaRα,β [Yθ ] =
1

β −α

∫
β

α

VaRu[Yθ ]du, ∀0 < α < β < 1,

and see (Embrechts, Liu, and Wang 2018) for some recent study of its theoretical properties.
From (1), we have VaRu[Yθ ] = E[Yθ ·δ (F(Yθ ;θ)−u)], where F(·;θ) is the distribution function of the

loss random variable. After plugging it into the above expression, we have

RVaRα,β [Yθ ] =
1

β −α

∫
β

α

E[Yθ ·δ (F(Yθ ;θ)−u)]du, ∀ 0 < α < β < 1.

We can plug in either of the two approximate representations of the quantile as given in (2) or (4), and
obtain some further simplification of the final expressions for the quantile. First, we utilize the representation
in (2), and there is

RVaRα,β [Yθ ] = lim
ε→0

1
2(β −α)

√
πε

E
[
Yθ

∫
β

α

e−
(F(Yθ ,θ)−u)2

4ε du
]
. (13)

Recall the identity
∫ a

0 e−t2
dt =

√
π

2 erf(a), then we can alternatively simplify the above expression as

RVaRα,β [Yθ ] = lim
ε→0

1
2(β −α)

E
[
Yθ

(
erf
(

β −F(Yθ ,θ)

2
√

ε

)
− erf

(
α−F(Yθ ,θ)

2
√

ε

))]
. (14)

We further pose the following assumptions on Yθ :

ASSUMPTION 5. VaRα [Yθ ] and VaRβ [Yθ ] are differentiable for any θ ∈Θ.
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ASSUMPTION 6. For any θ ∈Θ, P(Yθ = VaRα [Yθ ]) = 0 and P
(
Yθ = VaRβ [Yθ ]

)
= 0.

Alternatively, we have the following equivalent representation

RVaRα,β [Yθ ] =
1

β −α

∫
β

α

VaRu[Yθ ]du

=
1

β −α

∫
β

α

F−1
Y (v)dv

=
1

β −α

∫ F−1
Yθ

(β )

F−1
Yθ

(α)
udFYθ

(u)

=
1

β −α
E
[
Yθ

∣∣∣VaRα [Lθ ]≤ Lθ < VaRβ [Yθ ]
]

=
1

β −α

(
E
[
Yθ 1{Yθ>VaRα [Yθ ]}

]
−E

[
Yθ 1{Yθ>VaRα [Yβ ]}

])
. (15)

From (15), we can similarly propose to estimate the sensitivity of the RVAR, which includes the popular
risk measures VaR and CVaR as special cases.
Proposition 4 Suppose that Assumptions 5-6 are satisfied. Then the sensitivity of the RVAR can be
represented as

d
dθ

RVaRα,β [Yθ ] = E
[

d
dθ

Yθ

∣∣∣Yθ ≥ VaRα [Yθ ]

]
−E

[
d

dθ
Yθ

∣∣∣Yθ ≥ VaRβ [Yθ ]

]
. (16)

From Theorem 3.1 in (Hong and Liu 2009), the sensitivity of conditional value at risk (CVaR) is given
by

d
dθ

CVaRα [Yθ ] = E
[

d
dθ

Yθ |Yθ ≥ qα
θ

]
=

1
1−α

E
[

d
dθ

Yθ ·1{Yθ≥qα
θ
}

]
. (17)

Note that (17) is a special case of (16).

3 NUMERICAL EXPERIMENTS

In this section, we carry out several numerical experiments to illustrate our results. All experiments are
conducted in Matlab 9.3 on a personal computer with an Intel Core i5 CPU @ 2.8 GHz.

We note the following fact that F(Yθ ) ∼Uni(0,1), and assume that we have M simulated values of
Yθ (ωi), i = 1,2, . . . ,M. If we replace the distribution function F(·) by the empirical cumulative distribution
function (ECDF) F̂(·), then we have that F̂M(Y (m)

θ
) = m/M for m = 1,2, . . . ,M. Here Y (m)

θ
is the m-th order

statistic of the simulated M samples.
From (1), and combined with the above analysis, we have the following nonparametric estimates of

the quantile function:

qα
θ ≈

1
M

M

∑
m=1

Y (m)
θ
·δ
(m

M
−α

)
, (18)

or equivalently the quantile can be estimated as the weighted average of the order statistics of the simulated
sample.

It is important to distinguish the representation (18) from the classical method for estimating the quantile
by treating it as a fractional order statistic, i.e. q̂n

α =Ydnαe:n, where Yi:n denotes the i-th order statistic from
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the n observations of Y . Intuitively, the traditional method is a local method that involves only one order
statistics, while our proposed method is a global method that involves the (weighted average) of all the
order statistics.

We can substitute in the orthogonal series representation of the Dirac Delta function, and we have

qα
θ =

∞

∑
k=0

gk(α)E [Yθ ·gk(F(Yθ ,θ))]

≈
∞

∑
k=0

gk(α)

M

M

∑
m=1

Y (m)
θ

gk

(m
M

)
. (19)

Remark 5 For the Delta sequences representation, E[δ (x−y)] is given as ε→ 0. In actual implementations,
let ε = 1

n for an integer n ∈ N, then ε → 0 as n→ ∞ and we have

1
2
√

πε
E
[

e−
(x−y)2

4ε

]
=

√
n

2
√

π
E
[

e−
n(x−y)2

4

]
=: An. (20)

Through the use of telescopic series, we can rewrite E[δ (x− y)] in the following way:

E[δ (x− y)] = lim
n→∞

An =
∞

∑
i=1

(Ai−Ai−1) (21)

with A0 = 0.

3.1 A toy example

We shall consider the same toy example as in (Peng, Fu, Hu, and Pierre 2021). Consider a simple stochastic
model Yθ = θX1 +X2 +U , and X1,X2 are standard normal random variables with common cumulative
distribution function Φ(·), and U is an independent uniform random variable.

Denote qα
θ

the quantile of Yθ . We shall verify the value of quantile sensitivity dqα
θ

dθ
using our method

compared with the GLR method in (Peng, Fu, Hu, and Pierre 2021). In our implementation, we first compute
the value of quantile given by (18), where we utilize the Gaussian delta sequence with parameter ε1 to
approximate the Dirac Delta function δ (·). Next, the value of quantile sensitivity can be obtained based on
the representation in (6) and the estimator of the quantile. In this step, we also choose the Delta sequences
to represent the Dirac Delta function, which is more efficient than the orthogonal series expansions from
pilot numerical experiments. Each result is conducted through Monte Carlo simulation and the values of
quantile sensitivity are estimated through 100 independent runs. We fix α = {0.1,0.3,0.5,0.7,0.9} and
θ = 1, which are replicated from the parameter settings in (Peng, Fu, Hu, and Pierre 2021).

In the first step, we compare our Delta sequence method with the classical method using sample
quantiles for the estimation of quantile. The comparison results are reported in Figure 1, where we set
α = 0.9 and the classical method is denoted as “ordered”, and the benchmark is obtained by using the
classical method with 108 sample sizes. We plot the estimations of quantile based on the classical ordered
samples method and our Delta sequence method with respect to the sample size M in Figure 1(a), and the
variances of these two estimations in Figure 1(b). It can be seen that the Delta sequence method converges
faster to the exact benchmark as compared to the classical method of using sample quantile.

In the second step, we illustrate numerically the convergence results and CPU times for computing
the quantile sensitivity with respect to θ for various values of ε and sample size M of the Monte Carlo
simulation. Note that ε is the parameter of the Gaussian Delta sequence. We plot the convergence results
in Figure 2(a), (b) using the benchmark given in (Peng, Fu, Hu, and Pierre 2021). The root mean square

error (RMSE) therein is defined as RMSE =
√

1
100 ∑

100
i=1(Ĉi−C)2, where Ĉi is the estimation through the
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Figure 1: Comparisons of Delta sequence and ordered method based on 100 independently replications
for the estimations of quantile. α = 0.9.

ith independent run and C is the benchmark. Figure 2(c) plots the CPU time of our method for each run
with respect to varying values of 1/ε . Here we fix ε = 1/800 and the CPU time includes the times of
both steps of quantile computation and quantile sensitivity computation. From Figure 2, we observe that
log absolute errors and RMSEs converge to 0 respectively as ε goes to 0 with a fixed M or as M goes to
infinity with a fixed ε . We provide the results for all four α levels and the results show that the bias is
largest when α = 0.9 compared to other three levels, which is similar to those in (Hong 2009). To reach
an accuracy of 1e−8, it approximately takes 2 seconds of CPU time when M = 105.

In Table 2, we take the GLR estimator as the benchmark and report the results of our method by
implementing the Monte Carlo method with M = 106 sample sizes, and compare with the IPA estimator for
the quantile sensitivity. We also provide the 95% confidence interval (“CI”) of the IPA and our estimator
based on 100 replications. The results show that our estimator is more accurate (with smaller variance)
and the confidence intervals of our estimator are smaller than those of the IPA estimator.

Table 2: The Delta family method in comparison with GLR method for the quantile sensitivity with M = 106

across 100 replications for Delta family and IPA method.

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
GLR −0.888 −0.363 0 0.363 0.888

Delta family
(CI)

-0.889
([-0.896,-0.883])

-0.363
([-0.368,-0.360)

0.004
([0.001,0.005])

0.363
([0.359,0.367])

0.888
([0.883,0.894])

IPA
(CI)

-0.8818
([-1.112,-0.651])

-0.360
([-0.518,-0.202)

0
([-0.148,0.148])

0.366
([0.216,0.516])

0.884
([0.650,1.118])

3.2 Example of sensitivity of conditional value at risk

We shall consider a loss model and the problem of estimating the sensitivity of conditional value at risk,
which is considered in (Hong and Liu 2009): Denote ∆S the changes in the risk factors in the time period.
Assume that ∆S∼N (µµµ,∑) with mean µµµ = (µ1,µ2)

′ = (0.01,0.03)′ and covariance

∑ = 0.02
(

1 0.5
0.5 1

)
(22)

947



Cui and Ding

50 75 100 125 150

1/

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

lo
g
 o

f 
a
b
s
.e

rr
.

=0.1

=0.3
=0.7

=0.9

(a) M = 105

103 104 105 106

M:Sample size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R
M

S
E

=0.1
=0.3

=0.7
=0.9

(b) ε = 1/100

50 100 150 200 250 300

1/

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

C
P

U
 t
im

e
 (

s
e
c
)

(c) M = 105

Figure 2: The convergence results and the CPU times of the Delta family method for four quantile levels
α = {0.1,0.3,0.7,0.9}.

follows a multivariate normal distribution. The loss model, which is the quadratic function of ∆S, can be
given by

L = a0 +a′1∆+∆S′A∆S. (23)

Here the parameter settings are a0 = 0.3, a1 = (0.8,1.5)′ and

A =

(
1.2 0.6
0.6 1.5

)
. (24)

For the CVaR of L, assume α = 0.95. The CVaR (cα
µ1

) sensitivity
dcα

µ1
∂ µ1

given by (17) is computed
through our Delta family method combined with Monte Carlo simulations and 100 independent replications,
where the value of ∂L

∂ µ1
is obtained by the IPA method. The convergence of numerical results is reported in

Figure 3. In the left panel, we fix the sample size of Monte Carlo to be M = 104 and plot the logarithm of
the absolute error with respect to different values of ε , which indicates that the results get more accurate

as ε tends to zero. The absolute error is defined as abs.err. = |dcα
µ1

dµ1
− dcben

dµ1
|. The benchmark is given by
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dcben
dµ1

= 1.7391 which has been estimated in (Hong and Liu 2009) by using the finite difference method.
The right panel of Figure 3 provides the root mean square error (RMSE), the standard deviations and
the absolute errors with respect to increasing sample sizes M of Monte Carlo, where the Delta sequence
parameter is fixed at ε = 2× 10−5. The taken sample interval is 103, which is relatively small, and the
randomness of the small sample interval that causes the errors to minorly fluctuate up and down. The
overall trends are convergent with increasing sample size.
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Figure 3: Error performance of our method with respect to ε and sample size for the CVaR sensitivity.

4 CONCLUSION

In this paper, we propose to estimate the quantile sensitivity using the Delta family method. Two approaches,
respectively the Delta sequence and orthogonal series expansions, are utilized and yield fast and accurate
results as compared to benchmark in the literature. For future research, we shall explore high-dimensional
sensitivity analysis based on the tensor decomposition property of the Dirac Delta function.
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