
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

SEQUENTIAL NESTED SIMULATION FOR ESTIMATING EXPECTED SHORTFALL

Ou Dang

Insurance Risk and Finance Research Centre
Nanyang Business School

Nanyang Technological University
50 Nanyang Avenue

Singapore, 639798, SINGAPORE

Ben Feng

Department of Statistics and Actuarial Science
University of Waterloo
200 University Ave W

Waterloo, ON N2L 3G1, CANADA

ABSTRACT

Expected shortfall (ES) is a widely used tail risk measure in the financial industry. Estimating the ES
of a financial portfolio usually requires nested simulation, which is computationally burdensome. In a
standard nested simulation procedure, one first simulates a set of plausible evolution of underlying risk
factors, or the scenarios. Then, conditional on each outer scenarios, inner simulations are run to evaluate
the financial positions in that scenario. In this work, we propose a sequential nested simulation procedure
that dynamically allocates a fixed simulation budget to accurately estimate the expected shortfall. The
goal is to gradually concentrate the simulation budget on the tail scenarios with the largest losses, as
these scenarios are most relevant in ES estimation. Our numerical experiments show that, with the same
simulation budget, the proposed procedure significantly improves the estimation accuracy of ES compared
to a standard nested simulation procedure.

1 INTRODUCTION

Estimating the risks, especially tail risks, of financial or insurance portfolios is an important and ubiquitous
enterprise risk management task in the financial and insurance industry. Common tail risk measures include
the probability of large loss, Value-at-Risk (VaR), Expected Shortfall (ES, also known as the Conditional
Value-at-Risk or CVaR), etc.. These tail risk measures help companies understand their risk positions,
which then informs further risk management decisions such as re-balancing the financial portfolios or setting
aside appropriate capital reserves to maintain the overall financial solvency. We focus on the ES in this
work because it is adopted by banking and insurance regulations such as BASEL III (Basel Committee on
Banking Supervision 2019), NAIC Valuation Manual (NAIC 2022), and Life Insurance Capital Adequacy
Test (OSFI 2019).

Consider the following example: Let the current time be time-0 and the longest maturity of the
constituent assets in a portfolio of interest be T > 0; e.g., T = 1 year. A portfolio manager may be
interested in monitoring the tail risk of the portfolio’s profit and loss (P&L) at a given risk horizon τ

where 0 < τ < T ; e.g., τ = 1 month. At any time 0 < t < T , let Vt be the portfolio’s fair market value
(discounted to time-0) and so V0−Vt is the portfolio P&L at time-t. For notational convenience, we define
the portfolio loss at time-τ as L = V0−Vτ . A risk measure ρ(L) is a functional of L. For example,
given a confidence level α , e.g., α = 95%, the α-ES is defined as α-ES(L) := E[L|L ≥ VaRα ], where
VaRα(L) := sup{l : P[L≥ l]> α} (Yamai and Yoshiba 2005). For a given sample of losses L1, . . . ,LM and
assume αM is an integer for simplicity, the α-ES is given by

ESα =
1

(1−α)M

M

∑
i=αM+1

L[i], (1)
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where L[1] ≤ L[2] ≤ ·· · ≤ L[M] are the order statistics of the sample Li, i = 1, . . . ,M. This is the quantity
that we are interested in estimating in this work.

Nested simulation is a common tool to estimate tail risks. Typically, the portfolio value Vt depends
some underlying risk factors, denoted by St , such as stock prices, bond prices, interest rates, etc. While the
current values S0 and V0 maybe known or observed, the portfolio value at the future risk horizon, Vτ , is a
random variable due to the stochasticity of Sτ . In a standard nested simulation procedure, the outer-level
simulation generates, under the real-world measure, M plausible realizations of the risk factor Sτ , i.e., Si

τ ,
i = 1, . . . ,M, which are known as the outer scenarios. In this study, we assume that the fair portfolio value
Vt can be valuated as the discounted payoffs under the risk-neutral measure (e.g., the Q-measure). That is,
Vτ can be written as a conditional expectation given Sτ , i.e., Vτ =V (Sτ) = EQ[H(Sτ+)|Sτ ], where H(Sτ+) is
the discounted payoffs given Sτ . In practical risk management applications, the dynamic asset model for St
and the discounted payoffs H(·) are often complex so the conditional expectation EQ[H(Sτ+)|Sτ ] could not
be calculated analytically. In such cases, given an outer scenario Si

τ , i = 1, . . . ,M, the portfolio value in that
scenario, i.e., V i

τ =V (Si
τ) = EQ[H(Sτ+)|Si

τ ], is estimated via an inner-level simulation (or inner simulation
for short). Specifically, in a standard nested simulation procedure, V i

τ is estimated by V̂ i
τ =

1
N ∑

N
j=1 H(Si, j

τ+
),

where the inner replications Si, j
τ+

, j = 1, . . . ,N, are i.i.d. realizations of the conditional random variable
Sτ+ |Si

τ ; the corresponding portfolio P&L is then L̂i =V0− V̂ i
τ . After running the inner simulations for all

M scenarios, α-ES is then estimated by

α -̂ES =
1

(1−α)M

M

∑
i=αM+1

L̂[i] =
1

(1−α)M

M

∑
i=αM+1

1
N

N

∑
j=1

(
V0−H(Si, j

τ+
)
)
, (2)

where L̂[1] ≤ L̂[2] ≤ ·· · ≤ L̂[M] are the order statistics of the portfolio P&L’s L̂i, i = 1, . . . ,M. We refer to
the scenarios whose portfolio P&L’s are averaged in (2) as the tail scenarios and the other scenarios as
the non-tail scenarios.

For a given set of outer scenarios S1
τ , . . . ,S

M
τ , one difference between (1) and (2) lies in the portfolio

P&L Li versus L̂i for all i = 1, . . . ,M: Li are calculated in closed-form in (1) but are estimated via inner
simulation in (2). Due to randomness in the inner simulation, the portfolio P&L’s in (2) are subject to
estimation errors, which can lead to a set of tail scenarios that is different from the the true tail scenarios
in (1).

Though the randomness in the outer simulation is also a source of estimation error for the α-ES
estimate, for ease of exposure we focus on designing an efficient simulation procedure that reduces the
inner simulation estimation error for a given set of outer scenarios. Methods to reduce the noise from
outer scenario simulation is outside the scope of this paper. Interested readers may refer to work such
as Gordy and Juneja (2010) and Liu and Staum (2010) for more detailed discussion on how the number
of out scenarios should be determined in a nested simulation. In general, if the number of out scenarios is
too small, the variance of a nested simulation estimator tend to increase.

In practice, a financial portfolio can consist of thousands or tens of thousands of constituent contracts,
whose payoffs may be complex. Moreover, many insurance portfolios have maturities that are a few
decades long and the contract payoffs are path-dependent (Dang 2021). Thus, a standard nested simulation
procedure as described above can be computationally demanding, sometimes prohibitively so. We observe
in (2) that only the (estimated) tail scenarios’ P&L’s are averaged in estimating ES, the P&L’s in all other
scenarios were needed only for ranking the losses. Allocating the same computations to all scenarios, like
in standard nested simulation, is a wasteful use of simulation budget. Intuitively, if one could efficiently
and confidently differentiate tail scenarios from non-tail scenarios, then one should concentrate simulation
budget to the tail scenarios. This intuition is the main inspiration for this work.
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1.1 Literature Review

Despite the computational burden, nested simulation remains a useful tool in the risk management and finan-
cial reporting of financial portfolios. Thus, much research have been devoted to reducing the computational
burden or using a given simulation budget efficiently.

Broadly speaking, existing literature addresses the computational burden from two different angles:
The first is to replace the Monte Carlo inner simulation with other methods such as regression (Broadie
et al. 2015; Jiang et al. 2020), kernel smoothing (Hong et al. 2017), stochastic kriging or Gaussian Process
regression (Liu and Staum 2010; Risk and Ludkovski 2018), likelihood-ratio weighted re-sampling (Feng
and Staum 2017), and neural network (Fernandez-Arjona 2021). In regression-based methods, choosing
appropriate basis functions is both critical and challenging. In kriging-based methods, picking design points
can be difficult in some applications. In the likelihood-ratio weighted re-sampling method, the likelihood
calculation overhead can be significant if the experiment is not carefully designed (Dang 2021).

The second angle is to strategically allocate a fixed computation budget to minimize the estimation
error, which is typically measured by the mean squared error (MSE). The strategic allocation can be the
optimal numbers of outer scenarios and inner simulations in a standard nested simulation (Gordy and
Juneja 2010; Zhang et al. 2022). Specifically, the given simulation budget is uniformly allocated accross
all scenarios. However, in practice, sometimes the outer scenarios are provided by exogenous sources such
as the modeling team in a company or the regulator (Risk and Ludkovski 2018) so the users cannot choose
or alter the scenarios. Budget allocation can also be non-uniform for different scenarios. For example, Lan
et al. (2010) propose a two-stage procedure to estimate the ES and constructs a confidence interval around
it: A low-budget initial inner simulation is conducted in the first stage to identify the tail scenarios via
hypothesis test. In the second stage, the remaining computation budget is allocated uniformly to the outer
scenarios identified in the first stage. A confidence interval for the ES is constructed using the simulation
output from the second stage. Broadie et al. (2011) propose a sequential simulation procedure to estimate
the probability of large loss over a known threshold. Their proposal also starts with a low-budget initial
inner simulation then iterates sequentially. In each subsequent iteration, an additional inner simulation is
allocated to one outer scenario that is most likely to be around the large loss threshold. The procedure
then repeats until the given simulation budget is exhausted. In Giles and Haji-Ali (2019) and Alfonsi et al.
(2021), a multi-level Monte Calro procedure is proposed. At each level, the number of outer scenarios is a
function of some error tolerance and the number of inner simulations in a given outer scenario is related to
the ratio of absolute value of sample mean over sample standard deviation. Bouchard et al. (2021) presents
a multi-step procedure where in each step the inner simulation progressively shift towards a smaller subset
of tail outer scenarios that are relevant to the ES estimation. The optimal number of inner simulations and
tail outer scenarios in each step can be solved by dynamic programming and neural network approximation.

Our work is inspired by the aforementioned research, particularly by non-uniform budget allocations
with concentrations towards tail scenarios such as Broadie et al. (2011), Lan et al. (2010), and Bouchard
et al. (2021). We identify two main drawbacks in the proposal by Lan et al. (2010): Firstly, if the
variance of the inner-level simulation is large, the first stage may require a significant computation budget
to properly screen out a meaningful portion of scenarios. Secondly, when a large set of outer scenarios are
given, the hypothesis test in the first stage requires significant computation. The threshold for large loss is
known in Broadie et al. (2011), which simplifies the tail versus non-tail categorization as computations are
concentrated only to the region surrounding the known threshold. However, when estimating ES, the loss
threshold for the tail scenario, i.e., the value-at-risk, also needs to be estimated. So the methods in Broadie
et al. (2011) cannot be directly extended to estimating ES. In Bouchard, Reghai, and Virrion (2021),
identifying the optimal number of inner simulation and tail scenarios in each adaptive step is complex and
computationally costly, although the authors argue that such computation can be done off-line.

The main contribution of this work is proposing and testing an efficient sequential simulation procedure
that strategically allocates a fixed simulation budget to accurately estimate ES. Specifically, through sequential
iterations, the proposed procedure identifies and updates tail scenarios towards which computations are
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gradually concentrated. It is intuitive and easy to implement. Moreover, the proposed procedure requires
no prior knowledge of the portfolio’s payoff structure thus is applicable to a wide range of financial and
insurance risk management applications.

This paper is organized as follows: In Section 2, we outline the proposed procedure and provide detailed
discussions on the rationale and the choice of design parameters. In Section 3, we present numerical examples
to demonstrate the the effectiveness of the proposed procedure. In Section 4 we conclude this paper and
discuss future work.

2 SEQUENTIAL NESTED SIMULATION OF EXPECTED SHORTFALL

In this section, we present a two-stage sequential nested simulation procedure for estimating the α-ES
in (1) for a given set of scenarios S1

τ , . . . ,S
M
τ and a fixed simulation budget, i.e., a fixed total number of

inner replications. Section 2.1 provides an intuitive high-level description of the procedure. Section 2.2
presents the algorithm and detailed discussions on the choice of experiment design parameters.

2.1 Estimating Expected Shortfall via Nested Simulation

As discussed in the introduction, estimating α-ES using the standard nested simulation given in (2) is a
wasteful use of simulation budget: In risk management applications, the confidence level α is typically
high, e.g., α = 95% or α = 99%. In these cases, there are only few tail scenarios whose estimated losses
are averaged in the ES estimation. The non-tail scenarios’ losses provide a ranking of all the losses, but do
not directly impact the value of the ES estimate. This suggests that we should screen out non-tail scenarios
with as little simulation budget as possible then concentrate the remaining budget to the tail scenarios. This
screening process can only be done with some pilot experiments because we can only tell if a scenario
belongs to the tail or not after running some inner simulations.

Based on the above observations, we propose a two-stage sequential nested simulation procedure.
Stage 1 includes an iterative process where small-scale inner simulations are run. The small-scale pilot
simulations are then used to form confidence intervals for portfolio P&L estimates in different scenarios,
some of which are then identified as non-tail scenarios and are screened out from Stage 2. Stage 1 aims
to obtain reasonable loss estimates in all scenarios in an efficient manner so that the scenarios in or near
the tail region of the loss distribution can be properly identified for Stage 2. Stage 2 sequentially allocates
the remaining simulation budget within this set scenarios. Specifically, additional simulation budgets are
allocated to scenarios with the largest losses. In each sequential iteration in Stage 2, the portfolio P&L
estimates and sample variances are updated, which then lead to an updated set of tail scenarios. Stage 2
aims to concentrate the remaining simulation budget only on the tail scenarios, which leads to an accurate
α-ES estimate. We will illustrate in Section 3 that both stages serve their respective purposes well.

Stage 1 in our proposed procedure is inspired by the screening process in Lan et al. (2010). However,
instead of conducting a stringent hypothesis test, we use the confidence intervals for individual portfolio P&L
estimates to screen out scenarios. Our approach avoids the computationally heavy pairwise comparisons.
The sequential allocation method in Stage 2 is inspired by Broadie et al. (2011). Rather than concentrating
simulation budget near a known large loss threshold, our approach allocate simulation budget in all tail
scenarios.

2.2 Algorithm

Algorithm 1 outlines the steps of the two-stage sequential nested simulation process, followed by more
detailed explanation of each step.

In this two-stage nested simulation process, a total simulation budget of Γ is used. The user also
designates part of the budget, i.e., Γ1, to Stage 1. Both stages include multiple iterations of nested
simulation. Each iteration uses a simulation budget of γ . The process is initialized by a standard nested
simulation with a small and equal number of inner replications in all scenarios. In each subsequent iteration
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Algorithm 1: Sequential nested simulation for estimating α-ES.

input : – Underlying real-world and risk-neutral models with parameters.
– M outer scenarios, each is a real-world risk factor sample, Si

τ , i = 1, . . . ,M.
– Γ: Total computation budget.
– Γ1: Computation budget for Stage 1.
– m: Number of outer scenarios simulated in each iteration in Stage 2.
– γ: Computation budget for each iteration of inner simulation.
– β : Confidence level of the confidence interval for L̂i in Stage 1.

output: α -̂ES(L) for the portfolio of interest.
Initialization: Simulation set Ω←{Si

τ : i = 1, . . . ,M}; Remaining computation budget Θ← Γ; Inner

simulation sample size ni←
γ

|Ω|
, i = 1, . . . ,M; Cumulative inner simulation sample size Ni← 0

Stage I: Pilot simulation
while Θ≥ Γ−Γ1 do

1 Nested simulation for outer scenarios i ∈Ω with ni inner simulation in each outer scenario.
2 Ni← Ni +ni; Θ←Θ− γ

3 Update sample mean L̂i and sample standard deviation si of Li for i ∈Ω with the latest
simulation output.

4 Update confidence interval for each Li for i ∈Ω. The confidence interval is

(LBi,UBi)←
(

L̂i− t(1−β )/2,Ni−1
si√
Ni

, L̂i + t(1−β )/2,Ni−1
si√
Ni

)
.

5 Ω←{i : UBi > LB[αM+1], i = 1, . . .M} where LB[i] is the i-th order statistics of LBi, for
i = 1, . . .M.

6 ni←max

((
γ + ∑

i∈Ω

Ni

)
s2

i

∑i∈Ω s2
i
−Ni,0

)
.

7 end
Stage II: Nested simulation with concentrated computation budget

Ω←{i : L̂i > L̂[(M−m)], i = 1, . . .M}.
8 while Θ≥ 0 do

9 ni←max

((
γ + ∑

i∈Ω

Ni

)
si

∑i∈Ω si
−Ni,0

)
.

10 Nested simulation for outer scenarios i ∈Ω with ni inner simulation in each outer scenario.
11 Ni← Ni +ni; Θ←Θ− γ

12 Update sample mean L̂i and sample standard deviation si of Li for i ∈Ω with the latest
simulation output.

13 Ω←{i : L̂i > L̂[(M−m)], i = 1, . . .M}.
14 end

15 Estimate the α -̂ES(L) as α -̂ES(L) =
1

(1−α)M

M

∑
i=αM+1

L̂[i].
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of Stage 1, the sample means, standard deviations, and confidence intervals of the portfolio P&L estimates
in some scenarios are updated with new inner simulations conducted from the current iteration. In the
next iteration, we screen out scenarios whose upper bound of the confidence interval is lower than the
(αM+1)-th highest lower bound. In other words, we screen out the outer scenarios that are unlikely to be
tail scenarios based on the confidence intervals constructed so far. This process stops once Stage 1 uses
up the designated simulation budget Γ1.

In Stage 1, the number of inner replications ni used in each iteration is calculated according to Line 6
of Algorithm 1 (rounded to the nearest integer). This calculation aims to make the surviving scenarios’
confidence intervals in Line 4 have approximately equal widths in the next iteration, which reduces the
overlap between confidence intervals and helps distinguish tail scenarios from the non-tail scenarios. To
elaborate, let s′i and N′i denote the sample standard deviation and sample size for scenario i in the next
iteration. A constant width of the confidence interval, i.e. s′i/

√
N′i = k for some constant k and i ∈ Ω,

implies that
√

N′i ∝ s′i, which is equivalent to N′i ∝ s′2i . Assuming si = s′i and given N′i = Ni +ni, to achieve
a constant width of the confidence interval in the new iteration, we should then allocate the simulation
budget γ so that (Ni+ni) ∝ s2

i for i∈Ω, subject to a total cumulative simulation budget of γ + ∑
i∈Ω

Ni. Given

Ni is non-decreasing, this leads to the allocation of ni in Line 6 of Algorithm 1.
In each iteration of Stage 2, only the outer scenarios with the largest m estimated losses in the previous

iteration receive additional inner simulations in the current iteration. After each iteration, the sample mean
L̂i of the simulated outer scenarios are updated. In Stage 2, the number of inner simulation ni used in each
iteration is calculated according to Line 9 of Algorithm 1 (rounded to the nearest integer). This calculation
aims at minimizing the variance of the α -̂ES estimate, subject to next iteration’s simulation budget of γ .
Therefore, the desired allocation of γ to each scenario i ∈ Ω satisfies the solution to this optimization
problem:

min
N′i ,i∈Ω

Var
(

α -̂ES
)

subject to ∑
i∈Ω

N′i = γ + ∑
i∈Ω

Ni. (3)

Assuming the α -̂ES estimator averages over all the tail scenarios without any error in scenario ranking,
then by Equation (2),

Var
(

α -̂ES
)
= Var

(
1

(1−α)M

M

∑
i=αM+1

1
N′i

N′i

∑
j=1

(
V0−H(Si, j

τ+
)
))

=
1

(1−α)2M2

M

∑
i=αM+1

1
N′i

Var
(
H(Si

τ+
)
)
.

Replacing Var
(
H(Si

τ+
)
)

by the sample variance s2
i , the optimization problem in (3) is reformulated as

min
N′i ,i∈Ω

s2
i

N′i
subject to ∑

i∈Ω

N′i = γ + ∑
i∈Ω

Ni (4)

One can show that an optimal solution to (4) is N′i = Ni +ni =

(
γ + ∑

i∈Ω

Ni

)
si

∑i∈Ω si
. This leads to the

allocation of ni in Line 9 of Algorithm 1.
The rationale behind the Stage 1 simulation is to use a relatively small portion of the total simulation

budget to screen out scenarios that are unlikely to be in the tail region. Stage 1 is efficient in that the
scenarios that are far from the tail of the loss distribution is gradually eliminated by the comparison of
the upper and lower bounds of the confidence interval for each outer scenario. The rationale behind the
Stage 2 simulation is to concentrate the simulation budget only on a small set of tail scenarios to achieve
higher accuracy in the α-ES estimate. The set of simulated scenarios in this stage can be small because the
ranking of the scenario loss is already reasonably accurate after Stage 1. Note though in some applications,
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there are more efficient methods, such as proxy modeling in Dang, Feng, and Hardy (2020), to set apart
tail versus non-tail scenarios.

As outlined in the input section of Algorithm 1, several design parameters need to be chosen for this
process. The optimal choice of these parameters will be considered in future work. Below are some
guidelines on how to choose the design parameters based on our experience:

• Γ1, the simulation budget for the entire Stage 1 should be a small portion of Γ. In our experiment,
we used Γ1 = 20%Γ. If Γ1 is too small, it doesn’t correctly identify the tail scenarios for Stage 2
simulation. If Γ1 is too big, Stage 2 does not have sufficient remaining budget to concentrate on
the tail scenario simulation. This will result in bias and lower accuracy of the α-ES estimate. In
Section 3, we show in the numerical experiments the impact of using various values for Γ1.

• m, the number of outer scenarios included in each iteration of Stage 2 should be larger than (1−α)M,
the number of tail scenarios in the Expected Shortfall calculation. This is to leave some margin for
error in the ranking of scenarios identified in the iterative process. However, a large m increases the
likelihood of wasting simulation budget on non-tail scenarios. In our experiments, we have chosen

an m such that P
[
l95% ≥ L̂[M−m+1]

]
=

M

∑
i=M−m+1

(
m
i

)
(1−α)i

α
M−i = 0.9999955, where l95% is the

95-th percentile of L̂i. This is based on the assumption that L̂i’s are i.i.d. Since each outer scenario
uses different number of inner simulations, we cannot conclude that such assumption holds. Yet
the result gives us some indication of how m should be chosen.

• γ , the simulation budget for each iteration, should be chosen in conjunction with the other design
parameters to achieve a desired number of iterations in each stage. In general, smaller γ and more
iterations will allow the simulation results get updated more frequently and improve the identification
of tail scenarios. However, very small γ will result in many iterations and potentially high overhead
calculation cost.

• β , the confidence level for the confidence interval of Li, should be high for the confidence interval
to be meaningful.

3 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments using the following portfolio to illustrate the effectiveness
of estimating an ES at α = 95% level using our proposed sequential nested simulation process. The portfolio
consists of three down-and-out put options with a term-to-maturity T = 1/12 and a risk horizon of τ = 1/52:

• A long position with a strike price of 101 and a barrier of 91
• A long position with a strike price of 110 and a barrier of 100
• A short position with a strike price of 114.5 and a barrier of 104.5

We assume a current stock price of S0 = 100. We also assume the stock price follows a geometric Brownian
Motion with a drift of 8% and volatility of 20% under the real world measure. The risk free rate is 3%.
Closed-form formula for the portfolio value Vt is available in this case (Haug 2007) so in theory no inner
simulation is required. However, we use this example so that we can compare the simulation results with
the true portfolio value.

The numerical experiments discussed in this section are conducted using one set of M = 104 outer
scenarios and a total simulation budget of Γ = 3× 106. The design parameters in the sequential nested
simulation process are chosen to be: m = 600, γ = 1.2×105 = 4%Γ, and β = 95%. We have tested the
impact of using different Γ1 in the numerical experiments. We will clarify the Γ1 value used when we
present those results.

We first compare the loss distribution of the M outer scenarios from a sequential nested simulation
with that from a standard nested simulation. Both simulation use the same simulation budget of Γ. In

933



Dang and Feng

the sequential nested simulation, Γ1 = 6× 105 = 20%Γ. Figure 1 illustrates the output from these two
experiments. We can see that with the same simulation budget, compared to the standard nested simulation,
the simulated losses from the sequential simulation among tail scenarios, that is, the scenarios lying above the
blue 95-th percentile line, have much less simulation noise and are much closer to the red dots representing
the true loss of each scenario. This demonstrates the superior accuracy in estimating the tail loss of the
sequential nested simulation process than the standard nested simulation process. Note though the higher
accuracy in estimating the tail losses comes at the cost of lower accuracy in the non-tail scenario, as shown
in the figure below the blue line. However, this has little impact on the accuracy of the α-ES estimate.

(a) Sequential nested simulation (b) Standard nested simulation

Figure 1: Loss distribution of a sequential nested simulation and of a standard nested simulation by Si
τ ,

i = 1, . . . ,M. M = 10,000 outer scenarios. Black circles represent simulated loss. Red dots represent true
loss calculated in closed-form. Blue line represent the 95-th percentile of the true loss distribution.

Figure 2 shows the number of inner simulations conducted in each outer scenario. The x-axis of the
figure shows the ranking of each scenario in terms of true loss. Scenarios ranked higher than 9,500 in
this case are the tail scenarios. As illustrated in the figure, the tail scenarios have received the most inner
simulations. The simulation budget is also more concentrated in scenarios that are close to the tail of the
loss distribution.

Figure 3 compares how the 95%-ES estimate improves as more iterations are deployed in a sequential
nested simulation experiment versus a standard nested simulation experiment. In the sequential experiment,
the Stage 2 experiment starts after 2.4×106 remaining simulation budget is reached. The figure demonstrates
that the 95%-ES estimate in the sequential experiment quickly improves in Stage 1 of the simulation, although
at a slower speed than the standard nested simulation. The slower speed in the sequential experiment is
due to the budget allocation strategy used in the Stage 1 simulation. It allocates less simulation budget to
scenarios with a narrow confidence interval. As such, the α-ES estimate based on the Stage 1 output in a
sequential experiment is less accurate than a standard nested simulation. Nevertheless, this does not reduce
the accuracy of the α-ES estimate because more simulation budget is allocated to the relevant tail scenarios
in Stage 2 to improve its accuracy. As shown in the figure, in the Stage 2 simulation, the 95%-ES estimate
quickly reduces to the benchmark level, much faster than the standard nested simulation. In fact, with the
same simulation budget, the 95%-ES estimated by the standard nested simulation never converges to the
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Figure 2: Number of inner simulations conducted by the rank of outer scenario.

benchmark 95%-ES. This observation is consistent with our intention for the sequential nested simulation
process which was discussed in Section 2: Stage 1 is for setting apart tail and non-tail scenarios, in which
the accuracy of the loss estimation itself is not critical, while Stage 2 is for improving the accuracy of tail
loss estimation and reducing the variance of the α-ES estimate.

We also conduct 7 sets of sequential nested simulation and standard nested simulation experiments.
We repeat each set of experiment 100 times and evaluate their accuracy. All the experiments use the same
simulation budget Γ. For the sequential nested simulation, we conduct several sets of repeated experiment
with different design parameters. Table 1 shows the detail of each experiment as well as the relative root
mean squared error (relative RMSE) from each set of experiment. The relative RMSE is calculated as

Relative RMSE =

√
∑

100
k=1(95%,k-̂ES−95%-ES)

2

100

95%-ES
,

which measures how much the RMSE deviates from the benchmark value of the estimate. Here 95%-ES
represents the benchmark 95%-ES estimated by using the closed-form formula for Vt . The same results
are also illustrated in the boxplot in Figure 4.

The results from these experiment show a clear advantage of the sequential nested simulation design,
represented by Experiment (c), over other simulation designs. Given the same simulation budget, Exper-
iment (c) achieves the smallest relative RMSE. From the boxplot, we can see that Experiment (c) has
the smallest bias and very small variance among the eight sets of experiments. It is worth noting that all
variations of the sequential nested simulation in Experiment (b) to (g) has smaller relative RMSE than
the standard nested simulation. In Experiment (b), when no simulation budget is allocated to Stage 1 of
the process, the 95%-ES estimate has a negative bias. This is driven by the fact that some tail scenarios
are missing from the Stage 2 simulation of the experiments and the the ES estimation because Stage 1,
which is meant for correctly identifying the true tail scenarios, is omitted. As a result, the ES estimation
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Figure 3: 95%-ES estimate by number of remaining simulation budget. x-axis is the remaining simulation
budget in thousands.

Table 1: Relative root mean squared error (relative RMSE) from sequential and standard nested simulation.

Experiment Relative RMSE
(a) Standard nested simulation with N = 300 8.825%
(b) Sequential nested simulation with Γ1 = 0%Γ 5.022%
(c) Sequential nested simulation with Γ1 = 20%Γ 0.361%
(d) Sequential nested simulation with Γ1 = 40%Γ 1.081%
(e) Sequential nested simulation with Γ1 = 60%Γ 1.680%
(f) Sequential nested simulation with Γ1 = 80%Γ 2.524%
(g) Sequential nested simulation with Γ1 = 100%Γ 6.226%

includes non-tail scenarios which inherently have smaller losses. In Experiment (d) to (g), when too much
simulation budget is allocated to Stage 1 and not enough in Stage 2, the tail scenarios, even though being
identified correctly, do not have an accurate loss estimate. This has the similar impact of having a standard
nested simulation without sufficient inner simulations such as in Experiment (a) and is why a positive bias
is observed.

4 CONCLUSION

In this paper, we present an efficient and easy-to-implement sequential nested simulation process for
estimating Expected Shortfall. Stage 1 of the two-stage process is a budget-saving pilot simulation which
deploys computation budget to the most relevant outer scenarios through a comparison of confidence intervals
for the loss estimate. Stage 2 then sequentially allocate the computation budget to the tail scenarios and
update the ES estimation in each iteration. The computation budget is allocated non-uniformly to each
scenario to achieve higher accuracy of the α-ES. The proposed sequential nested simulation process is
applicable to many asset and liability models without requiring strong assumptions. It can be widely
adopted in finance and insurance applications for estimating Expected Shortfall.
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Figure 4: Relative RMSE of various nested simulation designs. (a) Standard nested simulation with N = 300;
(b) Sequential nested simulation with Γ1 = 0%Γ; (c) Sequential nested simulation with Γ1 = 20%Γ; (d)
Sequential nested simulation with Γ1 = 40%Γ; (e) Sequential nested simulation with Γ1 = 60%Γ; (f)
Sequential nested simulation with Γ1 = 80%Γ; (g) Sequential nested simulation with Γ1 = 100%Γ.

For future work, we will study the convergence of the proposed process, the optimal selection of the
design parameters, and extend it to estimating quantile risk measure such as Value-at-Risk. Conditional on
capturing all the true tail scenarios in Stage 2, the convergence of our proposed process can be derived in
a similar manner as Broadie, Du, and Moallemi (2011). Nevertheless, the probability of capturing all true
tail scenarios in Stage 2 only approaches 1 when Stage 1 eliminates no outer scenario, and every outer
scenario is considered in Stage 2.
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