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ABSTRACT

Measuring systemic risk has been an important problem in financial risk management. The CoVaR, as one
of the commonly used systemic risk measures, could capture the tail dependency of the losses between
financial institutions and financial systems. CoVaR is estimated via several statistical methods like quantile
regression. In this paper, considering the complexity of the constituent securities in the financial institution
and financial systems, we propose a simulation approach to estimate the CoVaR. We investigate the use of
importance sampling to reduce the variance of the CoVaR estimator, and propose an efficient importance
sampling distribution based on large deviation principles. We also illustrate the effectiveness of our approach
via numerical experiments.

1 INTRODUCTION

Since the 2008 financial crisis, measuring systemic risk has aroused people’s concern and been a critical
research problem in financial risk management. Different from the market risk measures of financial
institutions, e.g., Value-at-Risk (VaR) or expected shortfall (ES), which evaluate the tail behavior of the loss
of financial institutions in isolation (Jorion 2006), the system risk measure could capture the tail dependency
and co-movements between individual financial institutions and financial systems. Previous research has
established several systemic risk measures from different perspectives, such as Acharya et al. (2017) and
Brownlees and Engle (2017), and the CoVaR proposed by Tobias and Brunnermeier (2016) and Girardi
and Ergün (2013) is one of the most commonly used systemic risk measures.

The CoVaR could be defined as the VaR of one financial institution (financial system) conditional on
another institution (financial system) being under distress relative to its median state, which is usually
represented by the institution suffering a large loss, i.e., a large quantile. Specifically, we adopt the definition
of CoVaR from Girardi and Ergün (2013) in this paper. Let X and Y be the losses of two financial institutions
or financial systems, and VaRX

α be the α-VaR of X , i.e.,

Pr{X ≥ VaRX
α}= α. (1)

Then, the CoVaR of Y at a confidence level 1−α (or α-CoVaR), denoted by CoVaRY |X
α , is given by

Pr
{

Y ≥ CoVaRY |X
α

∣∣X ≥ VaRX
α

}
= α. (2)

Accurate assessment of CoVaR could help the regulator grasp the picture of systemic risk and propose
policies to mitigate the risk. Some statistical methods to estimate CoVaR have been proposed. For example,
Tobias and Brunnermeier (2016) provided the quantile regression as the primary estimation method; Nolde
et al. (2022) proposed a semi-parametric model under multivariate extreme value theory to estimate CoVaR;
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Sun et al. (2020) built copula-based GARCH models to estimate CoVaR and time-varying CoVaR. Note
that these methods regard all the constituent securities in a financial institution as a whole asset, and use
the overall capitalization data of the financial institution to estimate the CoVaR. However, the constituent
securities in a financial institution may have specific properties and need to be treated separately. For
example, if a financial institution consists of thousands of derivative securities (e.g., options and swaps,
etc.), then we need to evaluate these securities according to their specific payoffs and term structures over
a large number of underlying assets, and cannot regard them as a whole asset. Therefore, we need to
propose new methods for estimating CoVaR in consideration of the constituent securities in the financial
institution.

Inspired by the methods for estimating market risk measures like VaR or ES, we could use Monte
Carlo simulation to evaluate the constituent securities as well as estimate the CoVaR of the financial
institutions. Estimating VaR or ES via Monte Carlo simulation has been studied by a number of scholars,
e.g., Jamshidian and Zhu (1997), Picoult (1999), Gordy and Juneja (2010), Broadie et al. (2015), and Hong
et al. (2017), and refers to Hong et al. (2014) for a comprehensive review. To capture extreme risk events,
extreme VaR (extreme quantile) or ES, i.e., the confidence level α is very small, needs to be estimated, so
a large number of simulation samples may be necessary to achieve the required precision. To remedy this
issue, importance sampling (IS) is usually applied to reduce the variance of the estimator and improve the
estimation efficiency (see Glynn 1996; Glasserman et al. 2000; He et al. 2022). However, as pointed out
by He et al. (2022), when using IS in estimating quantile, we may be in a dilemma: selecting a good IS
distribution requires the knowledge of the quantile at hand, which is the goal to begin with and thus forms
a circular challenge. More precisely, if we want to estimate the quantile qα such that Pr{Y ≥ qα} = α

for some small α and model output Y , we need to determine a good or optimal IS distribution of Y for
evaluating the indicator function 1{Y ≥ qα}, which could highly depend on qα . To untie this circularity,
a large deviations principle is commonly used to first obtain an estimate of the quantile based on a tail
approximation, and then choose a good IS distribution based on this quantile estimate, see Glynn (1996)
and Glasserman et al. (2000). Another approach is to use adaptive IS, which reaches the optimal IS
distribution and the true quantile simultaneously, see Bardou et al. (2009) and Pan et al. (2020). Recently,
He et al. (2022) proposed a new adaptive IS regime with stochastic approximation and sample average
approximation for both quantile estimation and general stochastic root-finding problem that suffer the same
circular dilemma, and established strong consistency and asymptotic normality of the resulting estimators.

This paper proposes an efficient IS approach for estimating the CoVaR based on large deviations
principles. We first use the IS approach from Glynn (1996) to obtain an estimate of the VaR of X . Then,
we establish a tail approximation of the joint probability of X and Y . By embedding the VaR estimate of X ,
we can approximate the CoVaR of Y via this tail approximation. Next, based on both the VaR estimate and
the CoVaR estimate, we derive an efficient IS distribution to generate simulation samples and estimate the
CoVaR. Finally, we conduct numerical experiments to demonstrate the effectiveness of our IS approach.

The rest of this paper is as follows. Section 2 formulates the CoVaR estimation as a quantile estimation
problem and proposes an exponential twisting IS regime. Section 3 presents an efficient IS distribution for
CoVaR estimation via large deviations principles. Section 4 conducts two numerical examples to show the
effect of our IS approach. Section 5 concludes our paper.

2 PROBLEM FORMULATION

The CoVaR is defined by the VaR of the financial system (or financial institution) conditional on an institution
being under distress, which can capture the cross-sectional tail-dependence between the financial system
(or financial institution) and one specific financial institution. Suppose that the portfolio loss of a financial
institution is denoted by X , and the portfolio loss of financial system (or another financial institution) is
denoted by Y . As long as we can generate simulation samples of X and Y , we can use Monte Carlo (MC)
simulation to estimate CoVaRY |X

α .
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2.1 Monte Carlo Simulation Approach

Let {(X1,Y1),(X2,Y2), . . . ,(Xn,Yn)} be the n pairs of simulation samples generated from a joint probability
density function f (x,y) (with c.d.f F(x,y)). The MC estimator of CoVaRY |X

α can be derived from a two-stage
estimation.

The first stage is to estimate the VaR of X . Let FX ,n(x) denote the empirical distribution of the portfolio
loss X based on n simulation samples,

FX ,n(x) =
1
n

n

∑
i=1

1{Xi ≤ x}.

The empirical quantile estimator for VaRX
α is given by

V̂aR
X
α = F−1

X ,n(1−α).

Note that, V̂aR
X
α could be regarded as the root of the equation FX ,n(x) = 1−α , then it can be represented

by
V̂aR

X
α = inf{x : FX ,n(x)≥ 1−α} .

For the second stage, we screen out the simulation sample pairs of (Xi,Yi), i = 1,2, . . . ,n that Xi is

greater than or equal to V̂aR
X
α , and then estimate the (1−α)-quantile with respect to Y . Specifically, let

FY |X ,n be the empirical distribution of portfolio loss Y conditional on the event {X ≥ V̂aR
X
α}, and there are

bnαc (usually n should satisfy bnαc ≥ 1) pairs of simulation replications satisfying

FY |X ,n(y) =
1
bnαc

n

∑
i=1

1{Yi ≤ y,Xi ≥ V̂aR
X
α}.

Then, the empirical quantile estimator of Y conditional on {X ≥ V̂aR
X
α}, i.e., the CoVaR estimator CoVaRY |X

α

is given by

ĈoVaR
Y |X
α = F−1

Y |X ,n(1−α).

Similar to VaR estimator, the CoVaRY |X
α can also be written as a root by

ĈoVaR
Y |X
α = inf

{
y : FY |X ,n(y)≥ 1−α

}
.

Under appropriate conditions, if we assume that the probability density function of portfolio loss X ,
denoted as fX , is strictly positive in a small neighborhood of VaRX

α , the central limit theorem of V̂aR
X
α

shows the following result,

√
n
(

V̂aR
X
α −VaRX

α

)
d→
√

α(1−α)

fX
(
VaRX

α

) N (0,1),

where N (0,1) is a standard normal distribution. Similar to the VaR estimator, we also has the central
limit theorem for the CoVaR estimator, and the proof can be found in Jiang and Yun (2022).
Proposition 1 Let fY |X be the probability density function of the portfolio loss Y conditional on event
{X ≥ VaRX

α}, i.e.,

fY |X(y) =
1
α

∫
∞

VaRX
α

f (x,y)dx.
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Suppose that fY |X(y) is strictly positive in a small neighborhood of CoVaRY |X
α . Then

√
bnαc

(
ĈoVaR

Y |X
α −CoVaRY |X

α

)
d→

α
√

(1−α)

fY |X
(

CoVaRY |X
α

)N (0,1). (3)

Note that the MC estimator ĈoVaR
Y |X
α may not be efficient. As seen in (3), the effective number of

simulation samples for estimating the CoVaR is only bnαc. If α is small, i.e., we are interested in extreme
events, we have to use a very large number of simulation samples to obtain a relatively accurate estimate of

CoVaR. In addition, both the variances of V̂aR
X
α and ĈoVaR

Y |X
α are potentially very large because fX(VaRX

α)

and fY |X(CoVaRY |X
α ) are evaluated at the right tail and likely to be close to zero. Therefore, we need to

consider variance reduction techniques to improve the estimation efficiency.

2.2 Importance Sampling Approach

In this paper, we propose an exponential twisting approach to construct the IS distributions. Let Z = (X ,Y )>

be a random vector consisting of X and Y . Let z = (x,y)> and θθθ = (θx,θy)
>. Define the logarithmic

moment generating function of random vector Z as

ΛZ(θθθ) = logE
[
eθθθ
>Z
]
= log

∫
R2

eθθθ
T z f (z)dz,

where f (z), f (x,y) be the joint probability density function of Z = (X ,Y )>.
Let θθθ ∈ ΘΘΘ and ΘΘΘ = {θθθ : ΛZ(θθθ)< ∞}, the exponential twisting changes the original distribution f (z)

to one of the exponential family f (z;θθθ) as

f (z;θθθ) = eθθθ
T z−ΛZ(θθθ) f (z).

We will show how to choose the twisting parameter θθθ (also called the IS parameter) in the next section.
Now suppose that a good IS parameter θθθ

∗ = (θ ∗x ,θ
∗
y )
> is given to us, and we can generate simulation

samples under the IS distribution f (z;θθθ
∗). Let {(X∗1 ,Y ∗1 ),(X∗2 ,Y ∗2 ), . . . ,(X∗n ,Y ∗n )} be the new sample pairs,

and denote ΛX(θx) as the logarithmic moment generating function of random variable X . Similar to the
MC estimator, we need a two-stage estimation. In the first stage, we estimate the VaR of X under the IS
distribution. The empirical distribution function of X under the IS distribution (denoted by X∗) is given by

F̃X∗,n(x;θ
∗
x ) =

1
n

n

∑
i=1

1{X∗i ≤ x}`X(X∗i ,θ
∗
x ),

where `X(X∗i ,θ
∗
x ) , exp(θ ∗x X∗i −ΛX(θ

∗
x )) is the likelihood ratio. According to Glynn (1996), when α is

small, we may set the empirical quantile estimator with IS as

ṼaR
X
α = inf

{
x :

1
n

n

∑
i=1

1{X∗i ≥ x}`X(X∗i ,θ
∗
x )≤ α

}
,

which has a better asymptotic variance.
In the second stage, instead of considering the conditional distribution of Y |X , we consider the joint

distribution of (X ,Y ). By (2), we have

P
{

Y ≥ CoVaRY |X
α

∣∣∣∣X ≥ VaRX
α

}
=

P
{

Y ≥ CoVaRY |X
α ,X ≥ VaRX

α

}
P
{

X ≥ VaRX
α

} = α.
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Then combining with (1), we have

P
{

Y ≥ CoVaRY |X
α ,X ≥ VaRX

α

}
= α

2. (4)

Under the IS distribution, if CoVaRY |X
α and VaRX

α are given, then we can approximate left hand side
of Equation (4) by

1
n

n

∑
i=1

1
{

Y ∗i ≥ CoVaRY |X
α

}
1
{

X∗i ≥ VaRX
α

}
`(X∗i ,Y

∗
i ,θθθ

∗),

where `(X∗i ,Y
∗
i ,θθθ

∗) , exp(Z∗>i θθθ
∗−ΛZ(θθθ

∗)) = exp((X∗i ,Y
∗
i )θθθ

∗−ΛZ(θθθ
∗)) is the likelihood ratio. Next,

replace VaRX
α by ṼaR

X
α , CoVaRY |X

α can be regarded as the root of the following equation (the variable is y)

1
n

n

∑
i=1

1{Y ∗i ≥ y}1
{

X∗i ≥ ṼaR
X
α

}
`(X∗i ,Y

∗
i ,θθθ

∗) = α
2.

Therefore, we can set the estimator of CoVaR with IS as

C̃oVaR
Y |X
α = inf

{
y :

1
n

n

∑
i=1

1{Y ∗i ≥ y}1
{

X∗i ≥ ṼaR
X
α

}
`(X∗i ,Y

∗
i ,θθθ

∗)≤ α
2

}
.

3 CHOICE OF IMPORTANCE SAMPLING PARAMETER

In this section, we first recall the choice of efficient IS parameter of VaR in Glynn (1996), and then propose
our method to choose efficient IS parameters for CoVaR. At the end of this section, we present the whole
algorithm for estimating CoVaR with the efficient IS parameter.

3.1 IS Parameters for VaR

As we have mentioned in Section 1, to determine an efficient IS parameter, we first need to obtain
an estimate of the VaR. Such an estimate can be derived via large deviations principles. Recall that
ΛX(θ) = logE[exp(θX)] is the logarithmic moment generating function of X . In Glynn (1996), the tail
probability of X can be approximated via

P(X > x)≈ exp(−xθ̃ +ΛX(θ̃)), (5)

with x� E[X ], where θ̃ is the root of the equation Λ′X(θ̃) = x, and Λ′X(θ̃) is the derivative of ΛX(θ̃) on
θ̃ . Then we can derive a quantile approximation via (5). Specifically, let θ̃ ∗ be the root of the following
equation

− θ̃
∗
Λ
′
X(θ̃

∗)+ΛX(θ̃
∗) = logα. (6)

Then according to (5), we have
P
(
X > Λ

′
X(θ̃

∗)
)
≈ α.

That is, the VaR of X can be approximated via large deviations principle, which is given by

VaRX
α , Λ

′
X(θ̃

∗). (7)

Then by exponential twisting, the IS distribution is given by

f (x; θ̃
∗) = eθ̃ ∗x−ΛX (θ̃

∗) f (x),
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Note that the mean of this IS distribution is∫
Ω

xeθ̃ ∗x−ΛX (θ̃
∗) f (x)dx =

∫
Ω

xeθ̃ ∗x f (x)dx∫
Ω

eθ̃ ∗x f (x)dx
=

d
dθ̃ ∗

log
∫

Ω

eθ̃ ∗x f (x)dx = Λ
′
X(θ̃

∗).

That is, this IS distribution is equivalent to changing the mean of the original distribution to Λ′X(θ̃
∗), which

is the approximation of the quantile via the large deviations principle.
Example 1 Consider a normal random variable X ∼ N(µ,σ2) with density function

f (x) =
1√

2πσ
e−

(x−µ)2

2σ2 ,

then the IS distribution is a normal distribution with mean Λ′X(θ̃
∗) = µ +σ2θ̃ ∗, i.e., the density function

of the IS distribution is

f (x) =
1√

2πσ
e−

(x−µ−σ2θ∗)
2

2σ2 .

In addition, if µ = 1, σ2 = 2.25, and α = 0.05, then θ ∗ = 2.9670 and VaRX
α = 8.6758. The true α-VaR of

X is 7.8359. Although the estimate of VaR via the large deviations principle is a rough approximation, it
is good enough to derive an efficient IS parameter (see Section 4).

3.2 IS Parameters for CoVaR

In order to obtain an efficient IS parameter, we first need to obtain an estimate of CoVaR. Similar to Glynn
(1996), we can approximate the probability (4) via a tail approximation. Let E = (x,∞)× (y,∞) ⊂ ℜ2,
where x�E[X ] and y�E[Y ]. Recall that ΛZZZ(θθθ) = logE[exp(θθθ>Z)] is the logarithmic moment generating
function of Z. Then we have the tail approximation (Theorem 2.2.30, Dembo and Zeitouni (1998))

P(X > x,Y > y) = P(Z ∈ E)≈ exp(−Λ
∗
ZZZ(z))

where
Λ
∗
Z(z) = sup

θθθ∈ℜ2

{
θθθ
>z−ΛZZZ(θθθ)

}
. (8)

In addition, the logarithmic moment generating function ΛZZZ(θθθ) is convex, i.e., the Hessian matrix
∇2ΛZZZ(θθθ) is positive definite. Then, we can obtain Λ∗ZZZ(z) by solving the optimization problem (8). That
is, for given z, the optimal solution that maximizes (8) is the root of the equation

∇ΛZZZ(θθθ) = z. (9)

Plug (9) into (8), we have
Λ
∗
ZZZ(z) = θθθ

>
∇ΛZZZ(θθθ)−ΛZZZ(θθθ).

Go back to (4), if α is small, then we can solve the following equation to obtain the estimate of CoVaR
via the large deviations theory.

−θθθ
>

∇ΛZZZ(θθθ)+ΛZZZ(θθθ) = 2logα. (10)

Let

∇ΛZZZ(θθθ) =

(
∂ΛZZZ(θθθ)

∂θx
,
∂ΛZZZ(θθθ)

∂θy

)>
,

and (10) can rewritten as

−θx
∂ΛZZZ(θθθ)

∂θx
−θy

∂ΛZZZ(θθθ)

∂θy
+ΛZZZ(θθθ) = 2logα, (11)
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Note that there are two variables θx and θy in above equation. To uniquely determine them, we need another
equation.

Note that in Section 3.1, VaRX
α can be approximated by VaRX

α , then by (9), we have another equation
that

∂ΛZZZ(θθθ)

∂θx
= VaRX

α . (12)

That is, in Equation (9), x equals VaRX
α . Based on the distribution of z, the logarithmic moment generating

function can be calculated. Then, (11) and (12) formulate the system of equations with two equations
and two unknown variables, which can be solved by mathematical software such as MATHEMATICA and
MATLAB. Therefore, by solving (11) and (12), we can obtain the root θθθ

∗. Then the importance sampling
distribution is given by

f (z,θθθ ∗) = exp(z>θθθ
∗−Λ(θθθ ∗)) f (z). (13)

Next, we provide the algorithm for estimating the CoVaR with IS in Algorithm 1. Firstly, we solve
Equation (6) to obtain θ̃ ∗ and calculate the approximated VaR by (7). Secondly, we solve Equations (11)
and (12) to obtain θθθ

∗. Thirdly, we choose the IS distribution as (13) to generate simulation samples and
estimate the VaR and CoVaR as introduction in Section 2.2.

Algorithm 1 CoVaR with importance sampling
Initialization: Original joint distribution f (z) and its logarithmic moment generating function ΛZZZ(θθθ), original
marginal distribution fX (x) and its logarithmic moment generating function ΛX (θ), the quantile level α , the total
number of simulation samples n.

Step 1. Solve the equation
−θ̃
∗
Λ
′
X (θ̃

∗)+ΛX (θ̃
∗) = log(α)

to obtain θ̃ ∗ and calculate VaRX
α = Λ′X (θ̃

∗);
Step 2. Solve the equations 

−θx
∂ΛZZZ(θθθ)

∂θx
−θy

∂ΛZZZ(θθθ)

∂θy
+ΛZZZ(θθθ) = 2logα

∂ΛZZZ(θθθ)

∂θx
= VaRX

α

to obtain θθθ
∗ = (θ ∗x ,θ

∗
y )
>;

Step 3. Choose the IS distribution as

f (z,θθθ ∗) = exp(z>θθθ
∗−Λ(θθθ ∗)) f (z),

and generate simulation samples Z∗i = (X∗i ,Y
∗
i )
>, i = 1,2, . . . ,n, under the IS distribution;

Step 4. Estimate VaRX
α via

ṼaR
X
α = inf

{
x :

1
n

n

∑
i=1

1{X∗i ≥ x}`X (X∗i ,θ
∗
x )≤ α

}
,

where `X (X∗i ,θ
∗) = fX (X∗i )/ fX (X∗i ;θ ∗) is the likelihood of X∗i , i = 1,2, . . . ,n;

Step 5. Estimate CoVaRY |X
α via

C̃oVaR
Y |X
α = inf

{
y :

1
n

n

∑
i=1

1{Y ∗i ≥ y}1
{

X∗i ≥ ṼaR
X
α

}
`(X∗i ,Y

∗
i ,θθθ

∗)≤ α
2

}
, (14)

where `(X∗i ,Y
∗
i ,θθθ

∗) = f (X∗i ,Y
∗
i )/ f (X∗i ,Y

∗
i ;θ ∗) is the likelihood of Z∗i , i = 1,2, . . . ,n.

Output: CoVaR estimator is C̃oVaR
Y |X
α .
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4 NUMERICAL EXAMPLE

In this section, we consider two numerical examples. In the first example, we consider X and Y to be
correlated normal random variables. In the second example, we assume that X and Y are financial options
whose underlying assets are correlated.

4.1 Normal Distribution

We first consider Z = (X ,Y )> ∼ N (µµµ,ΣΣΣ) to be a multivariate normal distribution, where µµµ = (µX ,µY )
>

and

ΣΣΣ =

(
σ

2
X , ρσX σY

ρσX σY , σ
2
Y

)
.

Specifically, let µX = 1, µY = 2, σX = 1.5, σY = 2, and ρ = 0.8, and we change the simulation sample size
n from 500 to 128000, and set α = 0.05, 0.005, and 0.0005, respectively. All experiments are replicated
1000 times. Then we obtain Tables 1-3.

Table 1: Means, variances, and variance reduction ratios for 0.05-VaR and 0.05-CoVaR in the normal
distribution example; the true CoVaR and VaR is 7.5457 and 3.4673, respectively.

n
CoVaR VaR

IS MC Ratio IS MC Ratiomean variance mean variance mean variance mean variance

500 7.535 5.87E-03 7.366 3.61E-01 61.5 3.466 2.69E-03 3.450 1.97E-02 7.3
1000 7.545 2.81E-03 7.528 1.84E-01 65.5 3.467 1.24E-03 3.462 1.02E-02 8.2
2000 7.542 1.39E-03 7.461 8.63E-02 62.2 3.464 6.70E-04 3.461 5.22E-03 7.8
4000 7.544 7.05E-04 7.515 4.84E-02 68.7 3.467 3.23E-04 3.469 2.47E-03 7.7
8000 7.546 3.61E-04 7.520 2.39E-02 66.3 3.467 1.53E-04 3.468 1.33E-03 8.7

16000 7.545 1.82E-04 7.535 1.28E-02 70.2 3.468 7.91E-05 3.468 6.50E-04 8.2
32000 7.546 8.89E-05 7.541 6.65E-03 74.8 3.467 4.16E-05 3.468 3.05E-04 7.3
64000 7.546 4.62E-05 7.543 3.08E-03 66.7 3.467 1.82E-05 3.467 1.55E-04 8.5
128000 7.546 2.41E-05 7.547 1.55E-03 64.3 3.467 1.00E-05 3.467 7.84E-05 7.8

Table 2: Means, variances, and variance reduction ratios for 0.005-VaR and 0.005-CoVaR in the normal
distribution example; the true CoVaR and VaR is 10.0667 and 4.8637, respectively.

n
CoVaR VaR

IS MC Ratio IS MC Ratiomean variance mean variance mean variance mean variance

500 10.057 4.89E-03 7.550 1.19E+00 243.9 4.861 1.78E-03 4.862 1.06E-01 59.6
1000 10.063 2.17E-03 8.129 7.63E-01 352.1 4.863 8.70E-04 4.813 4.83E-02 55.5
2000 10.064 1.26E-03 8.678 6.68E-01 529.4 4.863 4.53E-04 4.838 2.40E-02 53.0
4000 10.067 6.21E-04 9.083 5.11E-01 823.4 4.863 2.10E-04 4.849 1.21E-02 57.6
8000 10.066 2.96E-04 9.496 4.82E-01 1624.8 4.863 1.09E-04 4.857 6.78E-03 62.2

16000 10.066 1.51E-04 9.867 3.99E-01 2651.1 4.864 5.71E-05 4.858 3.26E-03 57.1
32000 10.067 7.64E-05 10.201 3.70E-01 4843.7 4.864 2.93E-05 4.862 1.75E-03 59.7
64000 10.067 3.92E-05 10.090 1.50E-01 3833.8 4.864 1.33E-05 4.864 8.90E-04 67.2

128000 10.067 1.75E-05 10.019 7.09E-02 4045.9 4.864 6.97E-06 4.864 4.11E-04 59.0
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Table 3: Means, variances, and variance reduction ratios for 0.0005-VaR and 0.0005-CoVaR in the normal
distribution example; the true CoVaR and VaR is 12.0208 and 5.9358, respectively.

n
CoVaR VaR

IS MC Ratio IS MC Ratiomean variance mean variance mean variance mean variance

500 12.011 4.69E-03 6.817 2.00E+00 426.4 5.933 1.44E-03 5.562 3.27E-01 226.8
1000 12.017 1.95E-03 7.206 1.69E+00 864.2 5.936 7.13E-04 5.855 2.81E-01 394.7
2000 12.019 1.15E-03 8.045 1.16E+00 1007.1 5.935 3.74E-04 5.764 1.25E-01 334.6
4000 12.021 5.92E-04 8.536 9.98E-01 1685.8 5.936 1.72E-04 5.836 7.02E-02 408.1
8000 12.020 2.64E-04 9.043 7.95E-01 3007.8 5.936 8.57E-05 5.878 4.05E-02 472.3
16000 12.021 1.42E-04 9.519 6.06E-01 4256.0 5.936 4.35E-05 5.914 2.07E-02 475.8
32000 12.021 6.56E-05 9.941 5.29E-01 8064.5 5.936 2.30E-05 5.919 1.16E-02 505.2
64000 12.021 3.61E-05 10.327 4.34E-01 12019.1 5.936 1.09E-05 5.931 5.49E-03 502.9

128000 12.021 1.76E-05 10.735 3.91E-01 22236.8 5.936 5.79E-06 5.933 2.68E-03 463.7

In the tables, “IS” means the estimates with IS from Algorithm 1, and “MC” means the naive MC
method. We present both the estimates for CoVaR and VaR, and observe the following: (i) The IS
distributions derived from large deviations principles are efficient, and they can achieve good variance
reduction effects. As α becomes smaller, the variance reduction ratios increase significantly. For example,
in Tables 1-3 where α takes 0.05, 0.005, and 0.0005, respectively, fixing the sample size as 128000, the
variance reduction ratios for IS are 64.3, 4045.9, and 22236.8, respectively. (ii) As the CoVaR involves
rarer event than the VaR (the VaR corresponds to the probability α , whereas the CoVaR corresponds to
the probability α2 as seen in (4)), the variance reduction ratios of CoVaRs are much larger than those of
VaRs. For example, in Table 2, the variance reduction ratios for CoVaR and VaR are 4045.9 and 59.0,
respectively. (iii) In Table 3, when the number of simulation samples n is small (e.g., from 500 to 32000),
the naive MC method is invalid since almost all the indicator functions in (14) are zero. Whereas, with
small n, say n = 500, we still have an accurate estimate for CoVaR when using IS.

4.2 Option Portfolio

As we have mentioned in Section 1, the constituent securities in financial institutions and systems may
have special structure. In this subsection, we consider the CoVaR of two financial institutions, and assume
that one consists of an European call option and the other consists of an European put option. Set the initial
prices of these two underlying stocks S1(0) = S2(0)) = 100, the strike prices K1 = K2 = 100, i.e., they
are both at-the-money options, and the maturities T1 = T2 = 0.5. Let the risk-free interest rate r = 0.05.
In addition, we write the two stock prices as a vector S(t) = (S1(t),S2(t))>, and the values of these
two options as V = [V1(S1(t), t),V2(S2(t), t)]>. The loss Li of option i over time interval ∆t is given by
Li =Vi(Si(t), t)−Vi(Si(t +∆t), t +∆t). Similar to the setting in Glasserman et al. (2000), we assume 250
trading days in a year and set ∆t = 0.04. Let ∆S/S∼ N(0,ΣΣΣ), where

ΣΣΣ =

(
σ

2
X , ρσX σY

ρσX σY , σ
2
Y

)
.

The volatilities of two stocks are σX = 0.3 and σy = 0.4, respectively, and the correlation ρ = 0.5.
When determining the IS parameters θ̃ ∗ and θθθ

∗, we consider a delta-approximation of the option price,
i.e., let Li ≈ L̃i = ai +bi∆iSi, where ai =−Θi∆t with Θi = ∂Vi/∂ t and bi =−δi with δi = ∂Vi/∂Si. Note
that the (L̃1, L̃2) is multivariate normal distribution, then its logarithmic moment generating function is
known, and we can apply Algorithm 1 to estimate the CoVaR of L̃2. Similar to the setting in the first
numerical example, we change the simulation sample size n from 500 to 128000, and set α = 0.05, 0.005,
and 0.0005, respectively. Still, all experiments are replicated 1000 times. Then we obtain Tables 4-6.

887



Jiang and Yun

Table 4: Means, variances, and variance reduction ratios for 0.05-VaR and 0.05-CoVaR in the option
portfolio example.

n
CoVaR VaR

IS MC Ratio IS MC Ratiomean variance mean variance mean variance mean variance

500 1.756 4.64E-02 1.385 9.97E-01 21.5 5.163 8.97E-03 5.192 4.53E-02 5.0
1000 1.755 2.28E-02 1.629 6.16E-01 27.0 5.166 4.22E-03 5.209 2.16E-02 5.1
2000 1.760 1.10E-02 1.558 2.65E-01 24.1 5.165 2.21E-03 5.226 1.16E-02 5.3
4000 1.758 5.26E-03 1.591 1.38E-01 26.2 5.170 1.05E-03 5.226 6.31E-03 6.0
8000 1.759 2.48E-03 1.638 7.89E-02 31.8 5.169 5.29E-04 5.227 3.01E-03 5.7

16000 1.760 1.35E-03 1.635 3.82E-02 28.3 5.170 2.67E-04 5.229 1.38E-03 5.2
32000 1.760 6.75E-04 1.654 1.83E-02 27.1 5.171 1.25E-04 5.230 6.88E-04 5.5
64000 1.760 3.41E-04 1.657 9.38E-03 27.5 5.170 6.72E-05 5.230 3.68E-04 5.5
128000 1.760 1.79E-04 1.658 4.57E-03 25.5 5.170 3.62E-05 5.229 1.87E-04 5.2

Table 5: Means, variances, and variance reduction ratios for 0.005-VaR and 0.005-CoVaR in the option
portfolio example.

n
CoVaR VaR

IS MC Ratio IS MC Ratiomean variance mean variance mean variance mean variance

500 2.804 4.55E-02 -2.137 6.71E+00 147.4 7.006 3.17E-03 7.022 1.26E-01 39.7
1000 2.822 2.41E-02 -0.966 3.75E+00 155.8 7.009 1.45E-03 6.993 6.12E-02 42.1
2000 2.822 1.07E-02 0.126 2.86E+00 266.4 7.010 7.57E-04 7.018 3.10E-02 40.9
4000 2.822 5.76E-03 0.952 1.94E+00 336.3 7.012 3.69E-04 7.033 1.50E-02 40.8
8000 2.823 2.68E-03 1.797 1.47E+00 548.8 7.011 1.75E-04 7.045 7.82E-03 44.7
16000 2.826 1.52E-03 2.330 9.39E-01 617.7 7.011 9.60E-05 7.051 3.97E-03 41.4
32000 2.826 6.61E-04 2.915 7.59E-01 1148.7 7.012 4.38E-05 7.049 2.01E-03 45.8
64000 2.825 3.57E-04 2.760 3.54E-01 991.3 7.011 2.16E-05 7.052 9.96E-04 46.1

128000 2.825 1.72E-04 2.629 1.74E-01 1007.7 7.012 1.16E-05 7.053 4.91E-04 42.3

Table 6: Means, variances, and variance reduction ratios for 0.0005-VaR and 0.0005-CoVaR in the option
portfolio example.

n
CoVaR VaR

IS MC Ratio IS MC Ratiomean variance mean variance mean variance mean variance

500 3.498 4.77E-02 -6.168 1.76E+01 368.2 8.012 1.37E-03 7.701 2.23E-01 162.0
1000 3.512 2.38E-02 -6.704 1.93E+01 808.6 8.015 6.07E-04 7.972 1.42E-01 234.3
2000 3.523 1.18E-02 -4.475 1.07E+01 904.3 8.013 3.22E-04 7.879 7.28E-02 226.3
4000 3.522 6.08E-03 -3.645 7.69E+00 1263.5 8.015 1.56E-04 7.954 4.32E-02 276.9
8000 3.526 2.83E-03 -2.522 5.42E+00 1913.5 8.014 7.05E-05 7.997 2.30E-02 326.4

16000 3.527 1.43E-03 -1.424 3.89E+00 2715.8 8.015 4.06E-05 8.022 1.21E-02 298.9
32000 3.528 7.29E-04 -0.479 2.59E+00 3556.7 8.015 1.91E-05 8.031 6.58E-03 343.9
64000 3.528 3.77E-04 0.359 1.87E+00 4963.9 8.015 9.20E-06 8.035 3.41E-03 371.2

128000 3.528 1.80E-04 1.175 1.38E+00 7688.4 8.015 4.69E-06 8.042 1.73E-03 369.2
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We observe the following: (i) Instead of considering the distribution of L1 and L2 themselves, we use
their delta-approximations (L̃1 and L̃2) to determine the IS parameters θ̃ ∗ and θθθ

∗. These parameters we
choose may not be optimal but still make the IS distribution very efficient. The good variance reduction
effect can be achieved. As α becomes smaller, the variance reduction ratios increase significantly. For
example, in Tables 4-6 where α takes 0.05, 0.005, and 0.0005, respectively, fixing the sample size as
128000, the variance reduction ratios for IS are 25.5, 1007.7, and 7688.4, respectively. For the problem
without moment generating function or with complicated moment generating function, the approximated
IS distribution shown in this example could be a good way to reduce variance. (ii) Similar to the first
example, the variance reduction ratios of CoVaRs are much larger than those of VaRs. For example, in
Table 6, the variance reduction ratios for CoVaR and VaR are 7688.4 and 369.2, respectively. (iii) In Table
6, the naive MC of CoVaR is invalid even for large sample size (n = 128000) since almost all the indicator
functions in (14) are zero. In Table 5, it is still invalid until n = 32000. The naive MC of VaR is relatively
acceptable for all cases.

5 CONCLUSION

In this paper, we propose a simulation approach to estimate the CoVaR, which is an important systemic
risk measure to capture the tail dependency of two financial institutes or systems. With the importance
sampling technique based on large deviations principles, algorithm is designed to reduce the variance of the
CoVaR estimator. The importance sampling parameters are chosen carefully by solving two equations. And
the good variance reduction effect are shown in both two numerical examples. Specifically, IS parameter
is usually insensitive, so that the simplification of moment generating function can still achieve desirable
results.
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