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ABSTRACT

SEIR (susceptible-exposed-infected-recovered) model has been widely used to study infectious disease
dynamics. For instance, there have been many applications of SEIR analyzing the spread of COVID
to provide suggestions on pandemic/epidemic interventions. Nonetheless, existing models simplify the
population, regardless of different demographic features and activities related to the spread of the disease.
This paper provides a comprehensive SEIR model to enhance the prediction quality and effectiveness of
intervention strategies. The new SEIR model estimates the exposed population via a new approach involving
health conditions (sensitivity to disease) and social activity level (contact rate). To validate our model, we
compare the estimated infection cases via our model with actual confirmed cases from CDC and the classic
SEIR model. We also consider various protocols and strategies to utilize our modified SEIR model on
many simulations and evaluate their effectiveness.

1 INTRODUCTION

SIR and SEIR models have been used to study the dynamics of the epidemic by analyzing the change in
population and utilizing parameters representing the nature of disease and population characteristics, as well
as the effect of policies to control the spread. The classical SIR model classifies people into four states:
susceptible (vulnerable to disease but not carrying virus), infected (symptomatic patient and can spread the
virus to others), recovered (recovered from the disease), and dead. The SEIR (susceptible-exposed-infected-
recovered) model is an extension of the SIR model that plays a role when there is a non-trivial incubation
period; exposed refers to people being exposed to the virus but currently asymptotic.

Since the burst of COVID pandemic, many studies using the SIR or SEIR models to predict the
pandemic/epidemic and provide suggestions for controlling policies (Ellison 2020), (Moein, Nickaeen,
Roointan, Borhani, Heidary, Javanmard, Ghaisari, and Gheisari 2021). Many papers studied the time
evolution of populations to investigate the effect of parameters in SIR and forecast the spread (Alvarez,
Argente, and Lippi 2021), (Cooper, Mondal, and Antonopoulos 2020), (López and Rodo 2021), (Efimov
and Ushirobira 2021). These models utilize the population change in different states to predict the future
spread of disease. Some evaluated and modified existing models for better accuracy and comprehensiveness
(Djidjou-Demasse, Michalakis, Choisy, Sofonea, and Alizon 2020), (Engbert, Rabe, Kliegl, and Reich
2021). But due to the difficulty in parameter estimation, they addressed further improvements for a more
effective mechanism.

Existing models suffer from the following issues: homogeneous assumption and difficulty in parameter
estimation. Most existing works assume a homogeneous population and do not consider different demographic
features that can affect the epidemic. Some papers that extended SEIR to consider different infection
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parameters or interactive social levels, but the systematic frameworks and more comprehensive models
require more effort for better prediction (Grimm, Mengel, and Schmidt 2021), (Ellison 2020), (Ram and
Schaposnik 2021). Moreover, the existing numerical models are subjected to uncertainties in representing
the nature of the disease and population features (Ellison 2020), (Ghostine, Gharamti, Hassrouny, and
Hoteit 2021), (Rahimi, Gandomi, Asteris, and Chen 2021). One parameter they use requires a large dataset
to estimate, and hence its reliability affects the prediction performance. Therefore, a more comprehensive
SEIR model should be proposed to consider various population characteristics. Furthermore, to have a
reliable estimation of the pandemic, easier-to-estimate parameters shall be considered.

Our contribution To overcome these challenges brought by homogeneity in population and parameter
estimation, we established a feature-modified SEIR model. Our model uses a new approach to estimate
infection and allows heterogeneity. Combining different contact rates and sensitivities to disease, we propose
two versions of the feature-modified SEIR model, using contact rate and sensitivity to differentiate people
and allow for more reliable parameter estimations. We provide a comparison with actual confirmed cases
from CDC and the classic SEIR model to validate our model. A comparison with previous SEIR and
real-world data validates our model. Next, using a wide range of information in simulation, our model
evaluates epidemic control through different regulations. To illustrate the qualitative and quantitative impact
of changing contact rate, sensitivity, and proportions, our numerical experiments assess various protocols
for decreasing contact rate and sensitivity on alleviating the severeness of pandemic. acemoglu2020testingIt
is worth mentioning that our model can also apply to other infectious diseases.

2 PRELIMINARY

The SEIR model is an extension of SIR when there is a non-trivial incubation period. It is used to describe
the dynamics of infectious diseases by dividing the population into the following different states, Susceptible,
Exposed, Infected, Recovered, Cured, and Death:

• Susceptible (𝑆), uninfected but vulnerable individuals who never encounter or do not carry the virus.
• Exposed (𝐸), infected but asymptomatic people who carry the virus and can infect others.
• Infected (𝐼), symptomatic patients from state 𝐸 .
• Recovered (𝑅), people fully recovered from state 𝐸 .
• Cured (𝐶), people previously infected but recover from the disease.
• Dead (𝐷), infected people who die due to the disease.

The total population (𝑁) is the sum of the population in all states except for 𝐷. Figure 1 shows the
dynamics of the SEIR model, with different rates of change from one state to another.

Figure 1: The SEIR model flow diagram.

This single direction flow assumes non-reinfection and non-infectiousness of 𝑅 and 𝐶. Each rate of
change has practical meaning and estimation:

• Effective contact rate (β) counts the average number of new infections caused by effective contact,
where virus transmission happens between one infectious individual (𝐸 or 𝐼) and one susceptible.
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• Exposed-infected rate (γ) is the percentage of exposed people developing symptoms, estimated by
the incubation period.

• Recovery rate for exposed (σ) is the percentage of exposed people recovering. It is estimated by
the corresponding recovery time.

• Cured rate for infected (θ) is the percentage of infected people recovering. It is estimated by the
corresponding recovery time.

• Death rate (δ) is the percentage of infected people who die due to the disease. It is estimated by
case fatality rate, the proportion of deaths compared to the total number of people diagnosed with
the disease for a particular period.

The following system of equations (1) to (7) summarizes the law of motion for the SEIR model with
discrete time. Each term with a subscript 𝑡 refers to a state’s population at the beginning of the 𝑡-th period.

𝑆𝑡+1 = 𝑆𝑡 − β(𝐸𝑡 + 𝐼𝑡 )𝑆𝑡 , (1)

𝐸𝑡+1 = 𝐸𝑡 + β(𝐸𝑡 + 𝐼𝑡 )𝑆𝑡 − σ𝐸𝑡 − γ𝐸𝑡 , (2)

𝑅𝑡+1 = 𝑅𝑡 + σ𝐸𝑡 , (3)

𝐼𝑡+1 = 𝐼𝑡 + γ𝐸𝑡 − θ𝐼𝑡 − δ𝐼𝑡 , (4)

𝐶𝑡+1 = 𝐶𝑡 + θ𝐼𝑡 , (5)

𝐷𝑡+1 = 𝐷𝑡 + δ𝐼𝑡 , (6)

𝑁𝑡+1 = 𝑁𝑡 − δ𝐼𝑡 . (7)

We assume that effective contact happens only between 𝑆 and 𝐸 in (1) in the rest of our discussion if
infected individuals can be isolated.

3 FEATURE-MODIFIED SEIR MODEL

The existing SEIR model assumes homogeneous individuals. We generalize the model to consider different
social activity levels (contact rate) and health conditions (sensitivity). Moreover, existing models estimate
new infections using β in equation (1). This state-wide parameter is not accurate for a smaller population.
We modify this estimation in an analogous but more precise way.

Figure 2: Feature-based (sensitivity) SEIR model with 𝑀 = 2.

2020testing We extend the SEIR model by adapting different contact rates and sensitivity (rates of
change). Graph 2 shows the dynamics of the sensitivity-modified SEIR model. We assume 𝑀 number of
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different feature groups. Within each group, their people are assumed to be identical. 𝑓 (𝑐, λ) represents the
rate of change depending on both contact rate 𝑐 (or 𝑐𝑘) and infection probability λ. We assume uniform λ,
since it only depends on the form of contact and irrelevant to sensitivity (Agrawal and Bhardwaj 2021),
(Manski and Molinari 2021). Notations are explained in Table 1.

Table 1: Notations for feature-based SEIR model.

Symbols Description (Population) Symbols Description (Feature)
𝑡 Index for period starting at 𝑡 𝑇 Terminal time

𝑆𝑡 Susceptible population 𝛽
average number of new infection
per contact (virus-transmission happens)

𝐸𝑡 Exposed population λ Infection probability from 𝑆 to 𝐸

𝑅𝑡 Recovered population γ Exposed-infected rate
𝐼𝑡 Infected population σ Recovery rate for exposed
𝐶𝑡 Cured population θ Recovery rate for infected
𝐷𝑡 Dead population δ Death rate for infected

𝑋
General notation for population state
𝑋 ∈ {𝑆, 𝐸, 𝐼, 𝑅,𝐶,𝐷,𝑁} 𝑠, 𝑠𝑖 , 𝑠𝑚

General notation for sensitivity
𝑠 ∈ {λ, γ,σ, θ, δ}

𝑝𝑖 Population proportion of 𝑖-th feature group 𝑐, 𝑐 𝑗 , 𝑐𝑘 Contact rate

𝑋 𝑖
𝑡

Population of state 𝑋 with 𝑖-th feature
at the beginning of 𝑡-th period 𝑖, 𝑗 , 𝑘,𝑚

Feature index (𝑖,𝑚 = 1, · · · , 𝑀)
( 𝑗 , 𝑘 = 1, · · · , 𝑁)

Sensitivity as feature: First of all, we assume people sharing the same contact rate and distinguish
them based on their sensitivity to disease. The population change for susceptible in 𝑖-th sensitivity group
regarding contact situations with exposed people of all sensitivities is:

𝑆𝑖𝑡+1 − 𝑆𝑖𝑡 = −λ
𝑆𝑖𝑡

𝑁𝑡 − 𝐼𝑡
𝑐

𝑀∑︁
𝑚=1

𝐸𝑚
𝑡 , 𝑗 = 1, · · · , 𝑀. (8)

To reach (8), we consider the number of contacts between 𝑆𝑖𝑡 and 𝐸𝑚
𝑡 . The number of contact happening is:

𝐶 (𝑆𝑖𝑡 , 𝐸𝑚
𝑡 ) = 𝐸𝑚

𝑡 · 𝑐 ·𝑃(𝐸𝑚
𝑡 meet 𝑆𝑖𝑡 ) =

𝑆𝑖𝑡

𝑁𝑡 − 𝐼𝑡
· 𝑐 ·𝐸𝑚

𝑡 . (9)

𝐸𝑚
𝑡 is exposed population in 𝑚-th group, and 𝑐 is the average number of people met by an exposed person

for a given period of time. Its value can be estimated via social network simulation (Zhou, Sornette, Hill,
and Dunbar 2005), (Del Valle, Hyman, Hethcote, and Eubank 2007), (Van de Kassteele, van Eijkeren, and
Wallinga 2017). A 𝑐 value of 15 means that on average, one person contact 15 other people closely. 𝑐𝐸𝑚

𝑡

counts all people contacted by 𝐸𝑚
𝑡 . Among them, approximately 𝑃(𝐸𝑚

𝑡 meet 𝑆𝑖𝑡 ) is 𝑆𝑖𝑡 . This probability is
estimated by the proportion of 𝑆𝑖𝑡 among all people active in social contact (𝑁𝑡 − 𝐼𝑡 ). Same idea is used in
(Ram and Schaposnik 2021).

Thus, we have the new exposed people caused by such effective contact, which is the number of contact
happening multiplied by infection probability λ:

𝑆𝑖𝑡+1 − 𝑆𝑖𝑡 = −
𝑀∑︁
𝑚=1

λ ·𝐶 (𝑆𝑖𝑡 , 𝐸𝑚
𝑡 ). (10)

A negative sign is due to people leaving state 𝑆. λ is the infection probability measuring the possibility
of virus-transmission when 𝐸 and 𝑆 meet each other (Agrawal and Bhardwaj 2021). (10) estimates new
exposed in an analogous way to (1). In (1), 𝐸𝑡𝑆𝑡 estimates all possible contacts (𝐼𝑡 is ignored by isolation
assumption). β · 𝐸𝑡𝑆𝑡 gives the new exposed people who get virus-transmitted from effective contact.
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Similarly, (10) estimates the contact number by 𝐶 (𝑆𝑖𝑡 , 𝐸𝑚
𝑡 ). λ plays a similar role to β, since they both

count the average number of effective contact (virus transmitted) happening. The summation over sensitivity
index 𝑚 counts the change in 𝑆𝑖𝑡 caused by contacts with exposed people having different sensitivities. The
relation between 𝐸𝑚

𝑡 and 𝐸𝑡 is:

𝑋𝑡 =

𝑀∑︁
𝑚=1

𝑋𝑚
𝑡 , 𝑋 ∈ {𝑆, 𝐸, 𝐼, 𝑅,𝐶,𝐷,𝑁}.

Corresponding changes are made to exposed state, while other changes remain the same as existing SEIR
model, except for replacing 𝑋𝑡 by 𝑋 𝑖

𝑡 and sensitivity 𝑠 by 𝑠𝑖:

𝐸 𝑖
𝑡+1 = 𝐸 𝑖

𝑡 + λ
𝑆𝑖𝑡

𝑁𝑡 − 𝐼𝑡

𝑀∑︁
𝑚=1

𝑐𝐸𝑚
𝑡 − σ𝑖𝐸 𝑖

𝑡 − γ𝑖𝐸 𝑖
𝑡 ,

𝑅𝑖
𝑡+1 = 𝑅𝑖

𝑡 + σ𝑖𝐸 𝑖
𝑡 ,

𝐼 𝑖𝑡+1 = 𝐼 𝑖𝑡 + γ𝑖𝐸 𝑖
𝑡 − θ𝑖 𝐼 𝑖𝑡 − δ𝑖 𝐼 𝑖𝑡 ,

𝐶𝑖
𝑡+1 = 𝐶𝑖

𝑡 + θ𝑖 𝐼 𝑖𝑡 ,
𝐷𝑖

𝑡+1 = 𝐷𝑖
𝑡 + δ𝑖 𝐼 𝑖𝑡 ,

𝑁 𝑖
𝑡+1 = 𝑁 𝑖

𝑡 − δ𝑖 𝐼 𝑖𝑡 .

Contact rate as feature: Now, we consider people with the same sensitivity but having different
contact rates. The population change for susceptible in 𝑗-th contact group regarding contact situations
between exposed people of all contact rates is:

𝑆
𝑗

𝑡+1 − 𝑆
𝑗
𝑡 = −λ

𝑆
𝑗
𝑡

𝑁𝑡 − 𝐼𝑡

𝑁∑︁
𝑘=1

𝑐𝑘𝐸 𝑘
𝑡 , 𝑗 = 1, · · · , 𝑁.

Analogous to (9), first, we consider the number of contacts between susceptible 𝑆
𝑗
𝑡 and exposed 𝐸 𝑘

𝑡 :

𝐶 (𝑆 𝑗
𝑡 , 𝐸

𝑘
𝑡 ) = 𝐸 𝑘

𝑡 · 𝑐𝑘 ·𝑃(𝐸 𝑘
𝑡 meet 𝑆 𝑗

𝑡 ) =
𝑆
𝑗
𝑡

𝑁𝑡 − 𝐼𝑡
· 𝑐𝑘 ·𝐸 𝑘

𝑡 . (11)

Since we allow different contact rates, 𝑐𝑘 is the average number of the person met by an exposed person
(with 𝑘-th contact rate) for a given period of time. Similar to (10), we multiply (11) by λ and sum over all
𝑁 contact rates to consider contacts between 𝑆

𝑗
𝑡 and exposed people of all contact rates:

𝑆
𝑗

𝑡+1 − 𝑆
𝑗
𝑡 =

𝑁∑︁
𝑘=1

λ ·𝐶 (𝑆 𝑗
𝑡 , 𝐸

𝑘
𝑡 ).

Corresponding changes are made to exposed state, while other changes remain the same as the existing
SEIR model), except for replacing 𝑋𝑡 by 𝑋

𝑗
𝑡 :

𝐸
𝑗

𝑡+1 = 𝐸
𝑗
𝑡 + λ

𝑆
𝑗
𝑡

𝑁𝑡 − 𝐼𝑡

𝑁∑︁
𝑘=1

𝑐𝑘𝐸 𝑘
𝑡 − σ𝐸

𝑗
𝑡 − γ𝐸

𝑗
𝑡 ,

𝑅
𝑗

𝑡+1 = 𝑅
𝑗
𝑡 + σ𝐸

𝑗
𝑡 ,

𝐼
𝑗

𝑡+1 = 𝐼
𝑗
𝑡 + γ𝐸

𝑗
𝑡 − θ𝐼

𝑗
𝑡 − δ𝐼

𝑗
𝑡 ,

𝐶
𝑗

𝑡+1 = 𝐶
𝑗
𝑡 + θ𝐼

𝑗
𝑡 ,

𝐷
𝑗

𝑡+1 = 𝐷
𝑗
𝑡 + δ𝐼

𝑗
𝑡 ,

𝑁
𝑗

𝑡+1 = 𝑁
𝑗
𝑡 − δ𝐼

𝑗
𝑡 .
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4 EXPERIMENTS

We utilize the feature-modified SEIR model to conduct several numerical experiments evaluating regulations
on contact rate, and provide suggestions on medical approaches to reduce sensitivity to disease. Many of
the parameters of our experiments are chosen based on the current COVID-19 pandemic. The effectiveness
is measured by the highest infection proportion and death proportion. The highest infection proportion is
the infection proportion among the current population, and we take the highest value over time to measure
the severity. Death proportion is the cumulative death divided by the total initial population, calculating the
proportion of death due to disease.

First of all, we introduce the numerical choice for sensitivity, contact rate, and population. Then, four
sets of numerical results are presented: In Section 4.1, we compare the estimated infection cases via our
sensitivity-based SEIR with actual confirmed cases from CDC and classic SEIR model to validate our
model; in Sections 4.2 and 4.3, we discuss the effect of changing contact rate and sensitivity; in Section
4.4, we discuss the effect of the partial change to contact rate where only the contact rate of high-sensitivity
people are adjusted. Results show that while decreasing both contact rate and sensitivity alleviate the spread
of disease, changing contact rate brings more improvement than sensitivity.

Setup: We divide sensitivity into 2 groups. For instance, exposed-infected rate γ = (1/5,1/7), where
the first one being more vulnerable. The value of sensitivity parameters is chosen based on the actual length
of duration for a particular state (Alvarez, Argente, and Lippi 2021). Table 2 gives the range of choice.

Table 2: Sensitivity parameters and values in SEIR model.

Parameters Symbols Value Description

Infection probability λ 0.01∼0.2
Probability of infection
(only related to form of contact)

Exposed-infected rate γ 1/14∼1/5 5 to 14 days incubation period
Recovery rate for exposed σ 1/14 14 days quarantine period
Recovery rate for infected θ 1/20∼1/10 10 to 20 days to recovery for 𝐼

Death rate δ 2%−2.6% Case fatality rate

Note that the more sensitive a person, the higher risk that person will be affected by the disease, and
the higher λ and δ are, but the lower σ and θ are. The values of sensitivity can also be decided by medial
research on infection risk (Manski and Molinari 2021). We set two contact rate groups. Namely, 𝑐 = (𝑐ℎ, 𝑐𝑙),
where high contact rate 𝑐ℎ ∈ {25,20,15,10} and low contact rate 𝑐𝑙 ∈ {15,10,5} (contact rate of first group
is always higher than the second group). The numbers are chosen based on the simulation in (Zhou, Sornette,
Hill, and Dunbar 2005), (Del Valle, Hyman, Hethcote, and Eubank 2007), (Van de Kassteele, van Eijkeren,
and Wallinga 2017). Their values can also be decided through regulations on social activity. Proportion of
different feature (e.g. high contact and low contact) varies from 𝑝 = (𝑝ℎ, 𝑝𝑙) = (0.9,0.1) to (0.1,0.9) with
increment no bigger than 0.1. We use 𝑝𝑠 for sensitivity and 𝑝𝑐 for contact rate. We set the initial exposed
population taking up a small proportion of the susceptible population. Other states are zero at the beginning.

4.1 Comparison with Actual Confirmed Cases

To show the validity of our model, we compare the new simulated infection cases (using the classical
and sensitivity-based SEIR) with the actual confirmed cases in Allegheny county from CDC’s dataset
(CDC 2022). We select the time window from late April 2020 to June 2021. The starting time is when
the population of virus carriers (exposed and infected people) has accumulated to a non-trivial amount
(confirmed cases exceeded 1000). The time ends before vaccination is widely distributed.

We set three stages for the spread. Different number of population is assigned to each stage, based on
the total confirmed cases and related regulations. The first stage begins in late April 2020, when the spread
of COVID was about to start again (new daily confirmed cases started to rise after the time of declining).
The second stage begins in the middle of August when the new confirmed cases become stable. The last
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stage begins in late October 2020, when the new confirmed cases started to rise again. The beginning time
of these stages is referred historical data, but can also be decided based on medical predictions on the next
coming wave.

Figure 3: Weekly confirmed and estimated cases of new infection.

The new infection cases are estimated by the product of the exposed population and their corresponding
sensitivity (γ). Compared to the old SEIR estimation (orange), the new model (blue) provides a better
estimate for actual confirmed cases (red). The higher infection population in blue is because the confirmed
cases only include the reported ones, and underestimated the actual number. The number of total infections
can be 3 to 20 times higher than the number of total confirmed infections (Wu, Mertens, Crider, Nguyen,
Pokpongkiat, Djajadi, Seth, Hsiang, Colford, Reingold, et al. 2020). The sudden surge in the old SEIR
model is caused by Equation (1), which gives a rough estimate of the new exposed population. Thus, its
performance is largely affected by the uncertainty in β, resulting in a sudden surge at the very beginning.
Even though there might be some over-fitting for the three stages, with given input and predicted starting
time, our multi-feature SEIR can predict the spread much more accurately.

4.2 Effects of Changing Contact Rate on Pandemic

As we discussed before, we consider two performance metrics, highest infection proportion and death
proportion, and we study the effect of changing contact rate and its proportion on these metrics. We
conduct simulations on changing high and low contact rates for 𝑇 = 50 periods, respectively. Figure 4
and Figure 5 compare the effect of changing low contact rate and high contact rate, respectively. Both
figures also consider the change in contact rate proportion. For these experiments, we fix sensitivity as
λ = 0.05, γ = 1/10, σ = 1/14, θ = 1/14, δ = 0.025, but results are similar with other values. We set the
initial populations as 𝑆0 = 100000 and 𝐸0 = 50.

In Figure 4, horizontal axis is 𝑝ℎ𝑐 , proportion of high contact rate group (first group with 𝑐ℎ), changing
from 0.1 to 0.9 with an increment of 0.1. The vertical axis in Figure 4a to Figure 4d denotes the proportion
of infection among the current population, and its highest value over time is exhibited. The vertical axis in
Figure 4e to Figure 4h denotes the proportion of cumulative death among the total population. Within each
subfigure, we hold a constant high contact rate (𝑐ℎ) to see the influence of changing low contact rate (𝑐𝑙).

Figure 4 demonstrates that the lower the contact rate and the lower the proportion of the high-contact-rate
group, the lower highest infection and cumulative death are. Moreover, within each figure, each curve
declines more for smaller 𝑝ℎ𝑐 . When low-contact-rate people take the majority, the effect of decreasing their
contact rate is more observable. Additionally, in each subfigure, gap between each curve increases when low
contact rate is decreased. For instance, in Figure 4a, gap between the curves (25,10) and (25,5) is much
larger than the gap between (25,15) and (25,10). As a result, if possible, it is beneficial further to decrease
the low contact rate through social distancing protocols. Results in terms of cumulative death are analogous.

Utilizing the same data, Figure 5 focuses on the effect of changing the high contact rate and its
proportion. Horizontal axis is 𝑝ℎ𝑐 , the proportion of high-contact-rate group. Vertical axis in Figure 5a to
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Figure 5c is the highest value over the time of infection proportion among the current population. Vertical
axis in Figure 5d to Figure 5f is the proportion of cumulative death among the total population. Sensitivities
are the same as Figure 4. Within each subfigure, we only change the high contact rate (𝑐ℎ) to see its
influence. Note that values on the vertical axis are not the same, due to the small variation in percentage.

(a) 𝑐ℎ = 25, changing 𝑐𝑙 (b) 𝑐ℎ = 20, changing 𝑐𝑙 (c) 𝑐ℎ = 15, changing 𝑐𝑙 (d) 𝑐ℎ = 10,5, changing 𝑐𝑙

(e) 𝑐ℎ = 25, changing 𝑐𝑙 (f) 𝑐ℎ = 20, changing 𝑐𝑙 (g) 𝑐ℎ = 15, changing 𝑐𝑙 (h) 𝑐ℎ = 10,5, changing 𝑐𝑙

Figure 4: Highest infection proportion and death proportion with decreasing low contact rate (𝑐𝑙).

(a) changing 𝑐ℎ, 𝑐𝑙 = 15 (b) changing 𝑐ℎ, 𝑐𝑙 = 10 (c) changing 𝑐ℎ, 𝑐𝑙 = 5

(d) changing 𝑐ℎ, 𝑐𝑙 = 15 (e) changing 𝑐ℎ, 𝑐𝑙 = 10 (f) changing 𝑐ℎ, 𝑐𝑙 = 5

Figure 5: Highest infection proportion and death proportion with decreasing high contact rate (𝑐ℎ).
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Comparing each curve in subfigures of Figure 5, for given contact-rate proportion, we observe that
decrease in the highest infection proportion is more when the high contact rate is further decreased. For
example, in Figure 5b, gap between the curves labeled as (25,10) and (20,10) is smaller than the gap
between (20,10) and (15,10). Additionally, in Figure 5a and 5d, where population have a higher contact
rate than other situations, gap between each curve increases when 𝑝ℎ𝑐 increases. So, the effect of decreasing
the high contact rate is obvious when these people take the majority. However, it is not always the case
when high contact rate is much higher than low contact rate. Gap between (25,10) and (20,10) in Figure
5b, as well as the gap between (25,5), (20,5), and (15,5) in Figure 5c, is not always increasing when 𝑝ℎ𝑐
increases. Thus, a small decrease in the high contact rate does not bring a significant improvement in these
situations. Results are similar using the cumulative death performance metric in (5d) to (5f).

4.3 Effects of Changing Sensitivity on Pandemic

To compare the effect of changing on the pandemic, we conduct simulations on changing high and low
sensitivity with 𝑇 = 50, respectively. Figure 6 and Figure 7 compare the effect of changing low-risk sensitivity
and high-risk sensitivity, respectively. Both figures also consider the change of sensitivity proportion. We fix
contact as 𝑐 = 15, but results are similar with other values. Populations are 𝑆0 = 100000, 𝐸0 = 50. Although
it is hard to change sensitivity, such comparison is still practical. When a virus has its variants or a vaccine
is developed, sensitivity can be affected.

(a) 𝑠ℎ = 1/5, changing 𝑠𝑙 (b) 𝑠ℎ = 1/7, changing 𝑠𝑙 (c) 𝑠ℎ = 1/10,1/14, changing 𝑠𝑙

(d) 𝑠ℎ = 1/5, changing 𝑠𝑙 (e) 𝑠ℎ = 1/7, changing 𝑠𝑙 (f) 𝑠ℎ = 1/10,1/14, changing 𝑠𝑙

Figure 6: Highest infection proportion and death proportion with decreasing low-risk sensitivity (𝑠𝑙).

In Figure 6, horizontal axis is 𝑝ℎ𝑠 , the proportion of high-risk sensitivity group. Vertical axis in Figure
6a to Figure 6c is the proportion of infection among the current population, and its highest value over time
is exhibited. Vertical axis in Figure 6d to Figure 6f is the proportion of cumulative death among the total
population. Within each subfigure, we only change the low-risk sensitivity to see its effect. Unlike contact
rate, discussing the change of sensitivity is quite hard, for their being difficult to measure. In our simulation,
we only change the exposed-infected rate, for this incubation period being easily observed. Other sensitivities
for two groups are constant: λ = (0.05,0.05), σ = (1/14,1/14), θ = (1/20,1/10), δ = (0.026,0.023).

Figure 6 gives observations that are quite different from changing low contact rate. When there are
more low-sensitivity people (lower 𝑝ℎ𝑠 ), pandemic loss decreases quite linearly, unlike the expedited decline
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in Figure 4. But the gap between each curve increases when we decrease 𝑝ℎ𝑠 . So, such decreasing effect is
more observable when these people take up the majority. Additionally, for given sensitivity proportion, gaps
between curves do not change significantly when we decrease the low-risk sensitivity. For instance, in Figure
6a, gap between (1/5,1/5) and (1/5,1/7) is quite the same as gap between (1/5,1/7) and (1/5,1/10).
Hence, the influence of decreasing the low-risk sensitivity (holding high-risk unchanged) does not fluctuate
much under given sensitivity proportion.

Utilizing the same data, Figure 7 focuses on the effect of changing high-risk sensitivity and its proportion.
Horizontal axis is the proportion of high sensitivity group (𝑝ℎ𝑠 ), changing from 0.1 to 0.9. The vertical
axis in Figure 7a to Figure 7c is the proportion of infection among the current population, and its highest
value over time is exhibited. The vertical axis in Figure 7d to Figure 7f is the proportion of cumulative
death among the total population. For the same reason discussed before Figure 6, we only change the
exposed-infected rate, while other sensitivities and contact rate are the same as in Figure 6.

(a) changing 𝑠ℎ, 𝑠𝑙 = 1/5,1/7 (b) changing 𝑠ℎ, 𝑠𝑙 = 1/10 (c) changing 𝑠ℎ, 𝑠𝑙 = 1/14

(d) changing 𝑠ℎ, 𝑠𝑙 = 1/5,1/7 (e) changing 𝑠ℎ, 𝑠𝑙 = 1/10 (f) changing 𝑠ℎ, 𝑠𝑙 = 1/14

Figure 7: Highest infection proportion and death proportion with decreasing high-risk sensitivity (𝑠ℎ).

Figure 7 demonstrates the effects of changing high-risk sensitivity being similar to changing the low-risk
one. When we increase 𝑝ℎ𝑠 , pandemic loss increases quite linearly, and the gap between each colored curve
is also amplified. Thus, decreasing high-risk sensitivity brings a more obvious effect when these people take
up more proportion of the population. Besides, within each subfigure, all gaps between every two curves
are mostly the same for given sensitivity proportion. For instance, in Figure 6f, gap between sensitivity
situation (1/5,1/14) and (1/7,1/14) is almost the same as the gap between (1/7,1/14) and (1/10,1/14).
So, the influence of such a decrease (holding low sensitivity unchanged) does not fluctuate a lot.

4.4 Effect of Changing Contact Rate Based on Sensitivity on Pandemic

In previous sections, we discuss the effect of reducing pandemic loss with changing contact rates or
sensitivity of all people. In this section, we analyze the effect of partial change on contact rate, where only
the contact rate of high-risk sensitivity people is adjusted. We omit the discussion of a partial change in
sensitivity due to the difficulty of estimating the sensitivity parameters, which may lead to biased predictions.

We use sensitivity as the feature in our modified SEIR, which makes all people having the same contact
rate initially. A decreased contact rate for high-risk sensitivity people is implemented to see how the

733



Yingze and Bidkhori

situation is improved compared to the one without such change. In Figure 8, for different initial contact
rates, we show the improvement, reduction in highest infection, and cumulative death between situations
with and without the change under several sensitivity (exposed-infected rate) inputs.

In Figure 8, the difference in infection and death between situations with and without halving contact
of high-risk sensitivity people is measured. Horizontal axis is 𝑝ℎ𝑠 , proportion of high-risk sensitivity group,
increasing from 0 to 1 with an increment of 0.025. Vertical axis is the uniform initial contact rate, from 1
to 25. For each situation, we use a different exposed-infected rate. Other sensitivities are λ = (0.05,0.05),
σ𝐸 = (1/14,1/7), σ 𝐼 = (1/20,1/10), δ = (0.026,0.023). 𝑆0 = 100000, 𝐸0 = 50, and 𝑇 = 50.

(a) Infection, γ = (1/5,1/7) (b) Infection, γ = (1/5,1/14) (c) Infection, γ = (1/7,1/10) (d) Infection, γ = (1/10,1/14)

(e) Death, γ = (1/5,1/7) (f) Death, γ = (1/5,1/14) (g) Death, γ = (1/7,1/10) (h) Death, γ = (1/10,1/14)

Figure 8: Reduced highest infection and cumulative death by halving contact rate of high-risk sensitivity.

In Figure 8, when 𝑝ℎ𝑠 is increasing, the reduction in highest infection is increasing, meaning that more
people are saved from getting infected. This shows that when a reduced contact rate is applied to high-risk
sensitivity people, and if they take more proportion, improvement of such change is more significant. In
addition, when general contact rate for all people is lower, such change is more beneficial. Nonetheless,
when contact rate is initially low (e.g. 𝑐 ≤ 10), pandemic is not severe, since virus does not spread quickly in
these situations. As a result, significant improvement is not observed, mainly because of the low population
of infected people. Besides, comparing Figure 8d to Figure 8a, the sensitivity turns from low-risk to
high-risk, and a slightly larger dark region is observed, meaning that more people are saved. Results in
terms of death are consistent with the results for highest infection.

5 CONCLUSIONS & FUTURE RESEARCH

We establish a feature-modified SEIR model to study the time evolution of infectious diseases for heterogeneous
populations. Our model allows heterogeneity among people and improves the estimation of the increase
in virus-transmitted people in the original SEIR model. The comparison with the actual confirmed cases
validates the effectiveness of our proposed model.

Our numerical studies simulate the COVID-19 pandemic under different situations to examine the trend
of each population change and evaluate the effectiveness of contact regulation and medical approaches to
decreasing sensitivity to disease. Results show the effectiveness of lower social activity level (contact rate)
and infection risk (sensitivity to disease) in alleviating the pandemic. Additionally, decreasing contact rate
reduces more infection and death than sensitivity. The model can inform regulators how and how much
contact rate and sensitivity should be reduced to control the pandemic to the desired level. In summary,
utilizing our model, we can easily evaluate the impact of certain changes, including reducing social contacts,
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and the variant of virus affecting infection risk. This provides insights on the interaction of social activity
level and sensitivity to disease in controlling the spread.

In the future, we plan to develop more comprehensive SEIR models. Meanwhile, other intervention ap-
proaches, such as vaccination, should be considered and equipped inside the SEIR model.acemoglu2020testing
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