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ABSTRACT

We consider a classical problem in simulation/statistics - given i.i.d. samples of a rv, the goal is to arrive
at a confidence interval (CI) of a pre-specified width ε , and with a coverage guarantee that the mean lies
in the CI with probability at least 1−δ for pre-specified δ ∈ (0,1). This problem has been well studied
in an asymptotic regime as ε shrinks to zero. The novelty of our analysis is the derivation of the lower
bound on the number of samples required by any algorithm to construct a CI of ε−width with the coverage
guarantee for fixed ε > 0 and δ , and construction of an algorithm that, under mild assumptions, matches
the lower bound. For simplicity, we present our results for rv belonging to a single parameter exponential
family, and illustrate its efficacy through a numerical study.

1 INTRODUCTION AND LITERATURE REVIEW

The problem of constructing fixed-width CI of the mean of a distribution is well studied in the statistics
and simulation literature. Most of the extant literature studies this problem with the fixed width ε and
pre-specified confidence level 1−δ . In this paper, we aim to address three important elements absent from
said literature.

a) Most of the existing algorithms have coverage guarantees only in an asymptotic regime, where the
probability of the mean not lying in the CI tends to pre-specified δ when ε → 0. However, this
guarantee may not hold for fixed ε > 0.

b) Lower bound on the number of i.i.d. samples required for any algorithm to construct ε width CI,
to achieve coverage guarantee for fixed ε > 0 and pre-specified δ is not developed in the literature.
The asymptotic optimality of the algorithms presented in the literature in the regime where ε → 0
is implicitly based on the fact that the estimator is asymptotically normally distributed. However,
for fixed ε > 0, this clearly may not be true.

c) Typically the constructed CI’s are symmetric around the sample mean. Such symmetric construction
of CI stems from asymptotic normality. However, asymmetric CI of fixed width may be achieved
it with fewer samples, leaving open the question of a more precise structure of the CI.
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For δ ∈ (0,1), we address (a) above by presenting an algorithm that has guaranteed coverage for finite
ε > 0, i.e., the probability of mean not lying in the CI is less than δ . Regarding (b), we derive a lower
bound on the sample size of i.i.d. copies that are required by any algorithm that constructs CI of the
desired width and has the above coverage guarantee. Regarding (c), we propose an algorithm that does
not construct symmetric CI around the sample mean and has the coverage guarantee for fixed ε > 0 and
pre-specified δ . Further, it matches the lower bound in an asymptotic regime where δ → 0. In fact, we
prove that for most distributions any algorithm that constructs symmetric CI around the sample mean or in
general any unbiased estimator would require a larger sample size for small δ . Our proposed algorithm,
motivated by the lower bound, is based on the “plug-in” method used in the lower bound characterization.

For simplicity of analysis, we assume that the unknown distribution belongs to the single parameter
exponential family. In our framework, we assume that the family of the distributions is known but the
parameter is unknown and the mean of the distribution depends on the parameter. The class of single
parameter exponential family distributions include the practically relevant Bernoulli distribution family as
well as Gaussian distributions with known variance, Gamma distributions with known shape parameter and
Poisson distributions. Our analysis can be extended to bounded random variables (see Section 6).

We also present the numerical study comparing our proposed algorithm with two algorithms in the
existing literature, one proposed in (Chow and Robbins 1965) and the other proposed in (Hickernell, Jiang,
Liu, and Owen 2013). The (Chow and Robbins 1965) algorithm relies on Normal approximation, and the
coverage guarantee provided is asymptotic (as ε→ 0). We observe that in a reasonable setting with a fixed
ε and δ , the probability that their CI does not contain the mean is much larger than δ . The (Hickernell,
Jiang, Liu, and Owen 2013) algorithm based on the Berry-Esseen inequality does provide (ε , δ )−coverage
guarantee but as δ gets smaller, it takes more samples to construct CI as compared to our algorithm. This
is in line with our theoretical result that algorithms that construct symmetric CI around the sample mean
will fail to match the lower bound.
Brief relevant literature survey. In the statistics literature, fixed width interval analysis dates back to
(Chow and Robbins 1965) that provides asymptotic (ε , δ )−coverage guarantees (see also (Siegmund
1985) and (Yu 1989)). A great deal of research is also done in multi stage estimation algorithm for CI
(Mukhopadhyay and Datta 1996) which has similar drawbacks.

Our work is closely related to (Hickernell, Jiang, Liu, and Owen 2013) which studies the construction
of fixed-width CI coverage guarantee in non-asymptotic regime. Using the Berry-Esseen inequality, they
propose an algorithm that utilizes the upper bound on the modified kurtosis. While we do not make such
an assumption, we assume that the distributional form is known. Their algorithm constructs symmetric
CI around the sample mean, hence requiring a larger sample size for constructing CI as compared to our
algorithm for small δ (see our numerical results).

The rest of this paper is organized as follows: Section 2 gives the formal problem description, Section 3
considers the lower bound, and Section 4 provides asymptotically optimal estimation algorithm. Section 5
provides a numerical study to illustrate our findings and compares the proposed algorithm with algorithms
presented in the literature. In Section 6, we discuss some potential extensions of our work, and Section 7
provides the proof of all the results. Section 8 provides the definition of a function used in the analysis.

2 PROBLEM DESCRIPTION

Suppose X1,X2, . . . are i.i.d. copies of a random variable X with distribution function F and mean of X
is µ , i.e., E[X ] = µ . Let P denote the probability measure induced by F . We further assume that the
distribution of X , i.e., F belongs to canonical single parameter exponential family P (see (Garivier and
Cappé 2011)). It is defined as follows:

P =

{
pθ : θ ∈Θ,

d pθ

dξ
= exp(θx−b(θ)+h(x))

}
,
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where Θ⊂R, ξ is some reference measure on R, h(·) is a real-valued function and b(·) is twice differentiable
strictly convex function. As can be easily seen, mean of the distribution pθ is b′(θ). Further, as is well
known, each distribution pθ ∈P can be parameterized either by θ or by its mean. We do not know the
parameter associated with the distribution of X . Hence the mean of the distribution, which we denote by µ ,
i.e., E[X ] = µ , is unknown. Our goal is to estimate the confidence interval of width ε > 0 which contains
the mean µ , with high probability using the least number of i.i.d. copies of X .

For n≥ 1, let Fn denote the information contained in the σ -algebra generated by {Xk,k≤ n}. We aim
to find a stopping time τ with respect to {Fn : n = 1, 2, 3...} such that µR

τ −µL
τ ≤ ε , where [µL

s ,µ
R
s ] be the

estimated confidence interval after observing X1,X2, . . . ,Xs. Let Fτ denote the σ algebra associated with
the stopping time τ .

Our interest is in developing a fixed width CI that contains the mean with high probability. The
definition below formalizes this notion.
Definition 1 Consider any random variable X whose distribution belongs to a single parameter exponential
family P . An algorithm consisting of a stopping time τ with respect to {Fn : n = 1, 2, 3...} and an
estimated interval [µL

τ ,µ
R
τ ] whose width is less than ε is said have (ε , δ )−coverage guarantee, if:

1. P{τ < ∞}= 1, and
2. estimated interval [µL

τ ,µ
R
τ ] contains the mean µ = E[X ] with probability at least 1−δ , i.e.,

P{µ /∈ [µL
τ ,µ

R
τ ]} ≤ δ . (1)

In the set of all (ε , δ )−coverage guarantee algorithms, we would like to identify an algorithm which
uses the least number of samples of X , i.e, the one that minimizes E[τ]. To this end, for a given δ and
ε , we first develop a lower bound on the expected number of samples, i.e., E[τ], required for any (ε ,
δ )−coverage algorithm. We then construct a (ε , δ )−coverage guarantee algorithm inspired by the lower
bound using the “plug-in” approach. Thereafter we prove that our algorithm is asymptotically optimal as
δ → 0, i.e., the expected number of samples used by our algorithm matches the lower bound.

3 LOWER BOUND

Recall P = {pθ , θ ∈ Θ}, where Θ⊂ R. Let KL(pθ , p
θ̃
) represent the KL divergence of pθ with respect

to p
θ̃

. Since there is a one-to-one mapping between the mean of the distribution and the parameter θ ,
we can define a divergence function which takes two means µ , µ̃ as inputs and maps this pair to the KL
divergence between the two distributions pθµ

to pθµ̃
in P , that is,

d(µ, µ̃), KL(pθ(µ), pθ(µ̃)) = b(θ̃)−b(θ)−b′(θ)(θ̃ −θ),

such that b′(θµ) = µ and b′(θµ̃) = µ̃ .
Let S denote the support of d(µ, ·) and denote sup S = S and inf S = S. It is well known that d(µ, ·) is

a strict quasi-convex function, d(µ, µ̃)> 0∀µ̃ 6= µ and d(µ,µ) = 0.
To start the analysis of the lower bound we need to define an alternate probability measure P̃ which

is induced by distribution of X , F̃ ∈P in which E[X ] = µ̃ 6= µ . The literature presents a non-asymptotic
inequality for δ−correct (equivalent of (ε , δ )−coverage guarantee) in the multi-arm bandit literature context
that gives lower bounds on the expected number of samples generated by each arm when there are finitely
many of such arms (see, e.g., (Lattimore and Szepesvári 2020), (Kaufmann, Cappé, and Garivier 2016)).
If we compare our problem with bandit literature, we have a single arm bandit problem. Using Lemma
1 from (Kaufmann, Cappé, and Garivier 2016), it follows that for a stopping time τ that is almost surely
finite, with probability measures P and P̃ as above,

EP[τ]d(µ, µ̃)≥ sup
E∈Fτ

φ(P(E ), P̃(E )), (2)
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where φ(p1, p2), p1 log p1
p2
+(1− p1) log

(
1−p1
1−p2

)
for p1, p2 ∈ (0,1). EP[·] denotes the expectation operator

under probability measure P. For notational ease, we omit P from EP[·] and denote it by E[·].
Using (2), we get the following proposition.

Proposition 1 Let δ ∈ (0,1) and stopping time τδ denote the total number of samples used in estimating
confidence interval of width ε . For any (ε , δ )−coverage guarantee algorithm with an almost surely finite
stopping time τδ , we have:

E[τδ ]

log(1/2.4δ )
≥ 1

minµ̃∈{µ−ε,µ+ε} d(µ, µ̃)
. (3)

Notice that it may be possible that µ + ε > S, in that case, we define d(µ,µ + ε) = ∞. Similarly, if
µ− ε < S, we define d(µ,µ− ε) = ∞.

Proof of the above lower bound relies on the fact that when the algorithm observes i.i.d. samples from
a distribution with mean µ , it needs to see enough samples to be convinced with probability at least 1−δ

that the samples are not coming from a distribution with mean µ̃ for {µ̃ ≥ µ + ε}∪{µ̃ ≤ µ− ε} .
However, the above lower bound does not provide insights into the construction of CI of the mean. To

gain further insight that may help develop an algorithm, we consider the asymptotic regime where δ → 0.
Before stating the asymptotic lower bound in the δ → 0 regime, we further restrict our attention to stable
estimation algorithms defined below.
Assumption 1 Let τδ be the stopping time of a (ε,δ )−coverage algorithm with CI [µL

τδ
,µR

τδ
], where

µR
τδ
−µL

τδ
≤ ε . The algorithm is called stable if µL

τδ

p→ a and µR
τδ

p→ b as δ → 0, where a and b are constants.
Assumption 1 is satisfied by most of the existing algorithms. Now we state one of the key results of

the paper.
Theorem 2 For any (ε,δ )−coverage and stable algorithm with an almost surely finite stopping time τδ ,
we have

liminf
δ→0

E[τδ ]

log(1/2.4δ )
≥ 1

d(µ,µL)
, (4)

where, for a given µ , µL uniquely solves,

d(µ,µL) = d(µ,µR), and µ
L + ε = µ

R. (5)

Remark. To see the tightness of the lower bound provided in Theorem 2, consider the Gaussian distribution
(with known variance). Here, µL and µR correspond to µ − ε

2 and µ + ε

2 , respectively. It follows that
d(µ,µL) = 4

ε2 and d(µ,µ− ε) = d(µ,µ + ε) = 2
ε2 . Hence the right hand side of (4) is 4

ε2 , while the right
hand side of (3) is 2

ε2 .
Corollary 3 For any (ε,δ )−coverage and stable algorithm with a finite stopping time τδ which constructs
symmetric CI around an unbiased estimator of µ , we have,

liminf
δ→0

E[τδ ]

log(1/2.4δ )
≥ 1

minµ̃∈{µ−ε/2,µ+ε/2} d(µ, µ̃)
. (6)

Remark. It is worth noticing that lower bound given in (6) is larger than the one given in (4) as
minµ̃∈{µ−ε/2,µ+ε/2} d(µ, µ̃) ≤ d(µ,µL). Hence to construct optimal, i.e., using least i.i.d. samples,
(ε,δ )−coverage and stable algorithm, one should not use symmetric CI around any unbiased estima-
tor (unless their is symmetry which yields d(µ,µ− ε/2) = d(µ,µL)). The proposition below formalizes
it.
Proposition 4 Any (ε,δ )−coverage and stable algorithm, with a finite stopping time τδ , can match the
lower bound, i.e., limδ→0

(
E[τδ ]

log(1/δ )

)
= 1

d(µ,µL)
, only when µL

τδ

p→ µL and µR
τδ

p→ µR, where µL and µR

satisfy (5).
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The above proposition suggests asymptotically CI should be symmetric around µ w.r.t. KL divergence.
In the next section, using this insight we construct our proposed algorithm. Since the algorithm proposed in
(Hickernell, Jiang, Liu, and Owen 2013) is symmetric around the sample mean, Corollary 3 states that that
algorithm will at best match the bound provided in (6) which in general fall short of being asymptotically
optimal.

4 PROPOSED ASYMPTOTICALLY OPTIMAL STABLE ALGORITHM P1

Our algorithm proceeds sequentially, at stage n the algorithm observes n samples and constructs a confidence
interval as follows. Inspired by Lemma 4, we construct the confidence interval around the sample average
µ̂n in such a way so that it is symmetric around µ̂n w.r.t. KL divergence, but the width of the confidence
interval monotonically decreases with n at some appropriate rate to ensure (ε,δ )−coverage guarantee.

Formally at stage n, first we estimate µ by µ̂n, then we define µL
n and µR

n as follows:

µ
R
n , max{q > µ̂n : d(µ̂n,q)≤ β (n,δ )} and µ

L
n , min{q < µ̂n : d(µ̂n,q)≤ β (n,δ )},

where, β (n,δ ) is O
(

log(1/δ )
n

)
and explicitly defined in §8 and is chosen to ensure the (ε , δ )−coverage

guarantee of the algorithm. Our confidence interval at the end of stage n, will be [µL
n ,µ

R
n ].

After the construction of the confidence interval in stage n the algorithm decides to stop if µR
n −µL

n ≤ ε .
In that case stopping time is τ(δ ) = n. Otherwise we sample Xn+1 and move to stage n+1.

We make the following technical assumption which will be required in proving the asymptotic optimality
of the proposed algorithm P1.
Assumption 2 The following holds:

lim
µ↑S

d(µ,µ− ε)< ∞, and lim
µ↓S

d(µ,µ + ε)< ∞.

It can easily be verified that the above assumption is satisfied for all practically relevant distributions in
P such as Gaussian (known variance), Bernoulli, Gamma (known shape parameter) and Poisson. Before
stating our main result, we state a supporting lemma as a conclusion of assumption 2.
Lemma 5 Under Assumption 2, supµ∈Sd(µ,µL)< ∞, where µL satisfies (5).

Now we state our main result of this section, which characterizes the performance of our proposed
algorithm P1 and proves its asymptotic optimality.
Theorem 6 ((ε , δ )−coverage guarantee and stable nature of P1) Under Assumption 2, for algorithm
P1, the following holds:

a): For a given δ ∈ (0,1), τδ is finite almost surely.
b): P1 has (ε , δ )−coverage guarantee, that is, P

(
µ /∈ [µL

τδ
,µR

τδ
]
)
≤ δ .

c): P1 is a stable algorithm. Formally, limδ→0 µL
τδ
= µL and limδ→0 µR

τδ
= µR almost surely.

Theorem 7 (Asymptotic optimality of P1) Under Assumption 2, for algorithm P1, the following holds:

P
(

lim
δ→0

τδ

log(1/δ )
=

1
d(µ,µL)

)
= 1 and lim

δ→0

(
E[τδ ]

log(1/δ )

)
=

1
d(µ,µL)

. (7)

where, µL uniquely solves, d(µ,µL) = d(µ,µL + ε).

5 NUMERICAL EXPERIMENTS

For the first experiment, we simulate our proposed algorithm P1. We use exponential distribution for all
our numerical experiments. We set the mean, i.e., µ to be 1. We seek the CI width, i.e., ε to be 0.1. We run
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P1 for error probability δ = .05, .03, .01 and .005. We run 2000 replications of P1. Results are presented
in Table 1. We find that CI estimated by P1 for all of the replications and for levels of error probability
δ always contains the mean even though we allow for error in the probability that CI contains the mean
to be δ > 0, but it takes more i.i.d samples to construct CI for positive values of δ as suggested by lower
bound but as δ diminishes to zero, as predicted by theory, the performance of the algorithm P1 improves
in terms of the ratio of the expected number of samples used by P1 and lower bound provided in (4).

We run the algorithm given in (Chow and Robbins 1965) for the same set-up, referred to as C1, to
compare the performance with our proposed algorithm P1. We provide the results in Table 1. We observe
that the probability that CI obtained by C1 misses out on the mean is higher than δ at the cost of stopping
early (even faster than the lower bound on (ε , δ )−coverage guarantee algorithms). This is supported by
theory too as C1 has the (ε , δ )−coverage guarantee only when ε→ 0. To compare the performance of P1
with algorithm given in (Hickernell, Jiang, Liu, and Owen 2013), referred as H1, we simulate it for the
same set up. Since kurtosis for exponential distribution is 9 and skewness is 2, we use these values in the
algorithm H1. Results are reported in Table 1. We find that CI estimated by H1 also always contains the
mean even though we allow for an error in the probability that CI contains the mean to be δ . For δ = .05
and .03, H1 takes less sample than P1 but as δ gets smaller than .03, asymptotic theory is confirmed and
our proposed algorithm P1 outperforms the H1. It is worth noting that the number of samples for H1
depends on the bound on kurtosis. In our numerical experiments, it is assumed to be tight, if it were loose,
more samples would be needed.

Lastly we plot the lower bound provided in (4) and (6) with δ as shown in Figure 1. These lower
bounds are valid when δ is very small. Lower bound provided in (4) is valid for (ε,δ )−coverage algorithms
while lower bound provided in (6) is valid for (ε,δ )−coverage algorithms which constructs symmetric CI
around sample mean or any unbiased estimator of mean. We clearly see that the lower bound provided in
(6) is larger than the lower bound provided in (4). It follows that H1 can maximum hope to match the
lower bound provided in (6) as δ → 0, while P1 will match the smaller lower bound provided in (4).

Table 1: Performance of Algorithms P1, H1 and C1 for CI of width ε = 0.1 for exponential distribution
with mean µ = 1. 95 % CI for the estimate of E[τδ ] for all the three algorithms is less than 20 samples.
For P1 and H1, actual probability of µ lying in the estimated CI comes out to be 1.

Lower Algorithm P1 Algorithm H1 Algorithm C1
Bound (LB) Ratio of Ratio of Actual prob. of

δ given in (4) E[τδ ] E[τδ ] E[τδ ] E[τδ ] E[τδ ] µ lies in CI
& LB & LB

.05 1.7×103 1.60×104 9.41 1.10×104 6.47 1.5×103 0.899±.006

.03 2.1×103 1.70×104 8.09 1.60×104 7.62 1.8×103 0.925±.005

.01 2.9×103 1.91×104 6.59 3.29×104 11.34 2.5×103 0.950±.004
.005 3.5×103 2.03×104 5.8 5.20×104 14.85 3.1×103 0.961±.003

6 CONCLUSION

We study the problem of constructing fixed-width CI of the mean of a distribution with a coverage guarantee.
We first provide the lower bound result on the expected number of samples required for any (ε,δ ) coverage
guarantee algorithm. Further, we propose an (ε,δ ) coverage guarantee algorithm P1, which is asymptotically
optimal as it matches the lower bound when δ diminishes to 0.

In this paper, we restrict our attention to the single parameter exponential family. Our results may
be extended to the bounded random variables as well as random variables with explicit upper bounds on
1+η moment, where η > 0 (see (Agrawal, Juneja, and Glynn 2019)). The approach should also extend
to multi-dimensional random variables where we look for fixed confidence regions.

718



Deep, Bassamboo, Juneja, and Zeevi

Figure 1: Lower bound provided in (4) and (6) on E[τδ ] for small δ values for exponential distribution
with mean 1 for constructing CI of width (ε) 0.1.

7 PROOFS

Proof of Proposition 1 Recall that alternate probability measure P̃ is induced by, distribution of a random
variable X , F̃ ∈P in which E[X ] = µ̃ 6= µ . Consider following event E = {µ /∈ [µL

τδ
,µR

τδ
]}. For this event

from (1) we get, P(E ) ≤ δ . Since P̃(E ) = P̃{µ /∈ [µL
τδ
,µR

τδ
]} ≥ P̃{µ̃ ∈ [µL

τδ
,µR

τδ
]} ≥ 1− δ , ∀µ̃ ≥ µ + ε

and ∀µ̃ ≤ µ− ε. If P(E ) ≤ δ and P̃(E ) ≥ 1− δ , we get φ(P(E ), P̃(E )) ≥ log
( 1

2.4δ

)
. Using (2) we get,

E[τδ ]≥
log( 1

2.4δ )
infµ̃≥µ+ε

⋃
µ̃≤µ−ε d(µ,µ̃) and result follows using uni modality of d(µ, µ̃) in µ̃.

Proof of Theorem 2 Let A be the set of algorithms which satisfy the (ε,δ )−coverage property and are
stable. Let P̃ be the alternate probability measure which is induced by, distribution of a random variable
X , F̃ ∈P in which E[X ] = µ̃ 6= µ . Now we divide the set of algorithms A into two parts A1 and A2.
Any algorithm with stopping time τδ in A1 satisfies the following property.

µ
L
τδ

p→ µ
L. (8)

Hence it follows that in any with stopping time τδ in A2 satisfies the following property.

µ
L
τδ

p→ a, where, a < µ 6= µ
L. (9)

First we find the lower bound on E[τδ ] on algorithms in set A2. Using (2), on any with stopping time
τδ in A2, for alternate probability measure P̃ in which E[X1] = a−η , we get,

liminf
δ→0

E[τδ ]d(µ,a−η)

log(1/2.4δ )
≥ liminf

δ→0

supE∈Fτ
φ(P(E ), P̃(E ))

log(1/2.4δ )
, (10)

where η is a small fixed positive number. We claim that the following holds:

liminf
δ→0

φ(P(E ), P̃(E ))

log(1/2.4δ )
≥ 1, (11)

where, E = {a−η /∈ [µL
τδ
,µR

τδ
]}, where, µR

τδ
−µL

τδ
≤ ε .

To prove the claim made in (11), using (1), we get P̃(E )≤ δ . Now observe that, P(E ) = P{a−η /∈
[µL

τδ
,µR

τδ
]} ≥ P{a−η < µL

τδ
}. Using the (9), we get, limδ→0P(E ) = 1. Using the definition of φ(·, ·),
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proof of the claim follows trivially. Now we come back to our original proof and using the (11),
we get liminfδ→0

E[τδ ]
log(1/4δ ) ≥

1
d(µ,a−η) . Taking η → 0, we get that for any in set A2, following holds

liminfδ→0
E[τδ ]

log(1/2.4δ ) ≥
1

d(µ,a) . If we have chosen alternate probability measure P̃ in which E[X1] = a+ε +η ,

where η is a fixed positive number. Following the similar steps, we would get, liminfδ→0
E[τδ ]

log(1/2.4δ ) ≥
1

d(µ,a+ε) . It follows that for any algorithm in A2, liminfδ→0
E[τδ ]

log(1/2.4δ ) ≥
1

minµ̃∈{a,a+ε} d(µ,µ̃) . Following the

similar steps for any in A1, we would get, liminfδ→0
E[τδ ]

log(1/2.4δ ) ≥
1

min
µ̃∈{µL ,µL+ε} d(µ,µ̃) .

Hence to get the lower bound on algorithms in A , we combine the lower bound on E[τδ ] for algorithms
in A2 and A1. By definition of µL, we know that d(µ,µL) = d(µ,µL + ε). Using the uni-modality of
d(µ, ·) we get that d(µ,µL) = max{minµ̃∈{a,a+ε} d(µ, µ̃) : a < µ, a ∈ S}. This completes the proof. Notice
that the proof of Corollary 3 will follow if we fix a = µ−ε/2 and the proof of Proposition 4 follows from
the fact that lower bound can only be achieved for the algorithms in set A1.
Proof of Lemma 5 Notice that µL is an implicit function of µ , which uniquely solves (5). Hence we
represent µL as µL(µ). It follows that µL(µ) is a continuous function of µ from the definition of µL,
which further implies that d(µ,µL(µ)) is a continuous function of µ . Now using the fact that

lim
µ↑S

d(µ,µL(µ))≤ lim
µ↑S

d(µ,µ− ε), and lim
µ↑S

d(µ,µL(µ))≤ lim
µ↓S

d(µ,µ + ε).

Using Assumption 2, we get the desired result.
Proof of Theorem 6

a): Given δ ∈ (0,1), we define event E1 = {τδ = ∞}. We need to show that, P(E1) = 0. We prove it
by contradiction, suppose P(E1)> 0. Using the definition of τδ on any sample path in E1, it follows that
∀ n∈Z+, µR

n −µL
n > ε. Since limn→∞ β (n,δ ) = 0, it follows that limn→∞ d(µ̂n,µ

L
n ) = limn→∞ d(µ̂n,µ

R
n ) = 0.

From the definition of µL
n , we know that µ̂n− ε ≤ µL

n ≤ µ̂n. We also know that for a given δ ∈ (0,1), µ̂n
converges to µ on each sample path. Hence it implies that µL

n is a bounded sequence on each sample path.
Now using continuity of d(·, ·) and the facts mentioned above we get that limn→∞ µL

n = µ almost surely.
Similarly we get limn→∞ µR

n = µ almost surely. Hence, limn→∞(µ
R
n −µL

n ) = 0 almost surely. It follows that
we get the contradiction for any sample path in E1.

b) (ε , δ )−coverage guarantee: To prove the result it suffices to show, P(µR
τδ
< µ)≤ δ/2 and P(µL

τδ
>

µ)≤ δ/2. Now we prove P(µR
τδ
< µ)≤ δ/2. From part (a) of this theorem, we know that {τδ < ∞} occurs

with probability one for given δ . Hence it follows that,

P(µR
τδ
< µ)≤ P(∃ n : µ

R
n < µ). (12)

Recall the definition of µR
n , µR

n = max{q > µ̂n : d(µ̂n,q)≤ β (n,δ )}. Using the uni modality of d(µ̂n, ·)
we get the following,

{µR
n < µ} ⊆ ({µ̂n < µ} ∩ {d(µ̂n,µ)≥ β (n,δ )}). (13)

Combining (13) and (12), we get,

P(µR
τδ
< µ)≤ P(∃ n : {µ̂n < µ} ∩ {d(µ̂n,µ)≥ β (n,δ )}).

Using the one side deviation result for one arm (see Corollary 31 in (Kaufmann and Koolen 2021))
we get the desired result. Similarly we can prove that P(µL

τδ
> µ)≤ δ/2. This completes the proof.

c): Stable nature of P1: Firstly we claim that,

lim
δ→0

τδ = ∞ almost surely. (14)
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To prove this, we use the method of contradiction. Hence, we define an event E2 = {liminfδ→0 τδ < ∞}
and assume P(E2)> 0. Recall the definition of µL

τδ
and µR

τδ
, d(µ̂τδ

,µL
τδ
) = d(µ̂τδ

,µR
τδ
) = β (τδ ,δ ).

Using the fact that limδ→0 β (τδ ,δ ) = ∞ for any sample path in E2, we get,

liminf
δ→0

d(µ̂τδ
,µL

τδ
) = ∞ for any sample path in E2. (15)

Recall that µL(µ̂τδ
) will satisfy the following, d(µ̂τδ

,µL(µ̂τδ
)+ε) = d(µ̂τδ

,µL(µ̂τδ
)), hence it follows

from the definition of τ(δ ) and uni modality of d(µ̂τδ
, ·), d(µ̂τδ

,µL
τδ
)≤ d(µ̂τδ

,µL(µ̂τδ
)). Using Lemma 5,

we get, liminfδ→0 d(µ̂τδ
,µL

τδ
) ≤ liminfδ→0 d(µ̂τδ

,µL(µ̂τδ
)) ≤ supµ∈Sd(µ,µL) < ∞. This contradicts with

(15), which completes the proof of the claim.
Now we come back to our original proof. Using (14) and the strong law of large number we get,

µ̂τδ
→ µ almost surely as δ → 0 (16)

It follows that, µL
τδ

will satisfy the following: µ̂τδ
− ε ≤ µL

τδ
≤ µ̂τδ

. Using (16), it follows that µL
τδ

is a
bounded sequence on each sample path. Similarly, µR

τδ
is a bounded sequence too on each sample path.

Using the definition of τδ , µL
τδ

and µR
τδ

, it follows that,

d(µ̂τδ
,µL

τδ
) = d(µ̂τδ

,µR
τδ
), µ

R
τδ
≤ µ

L
τδ
+ ε and µ

R
τδ−1 ≥ µ

L
τδ−1 + ε. (17)

Using the uni modality of d(µ̂τδ
, ·) and combining it with (17),we get,

d(µ̂τδ
,µL

τδ
)≤ d(µ̂τδ

,µL
τδ
+ ε) and d(µ̂τδ−1,µ

L
τδ−1)≥ d(µ̂τδ−1,µ

L
τδ−1 + ε). (18)

Now we are ready to prove that limδ→0 µL
τδ

= µL almost surely and it will follow trivially that
limδ→0 µR

τδ
= µL + ε . We prove it by contradiction, suppose µL

τδ
does not converge to µL on a positive

measure set E3, i.e., P(E3)> 0. Fix any sample path in E3, and let limsupµL
τ
δ

= K and liminfµL
τ
δ

= K, where

K 6= µL and K 6= µL. Since µL
τδ

is a bounded sequence, hence there will exist a sub-sequence of {δk, k ∈ Z+}
and δk ∈ (0,1) such that limk→∞ δk = 0 and limk→∞ µL

τ(δk)
= K. Using (18) on the sub-sequence defined

above and continuity of d(·, ·), we get that,

lim
k→∞

d(µ̂τ(δk),µ
L
τ(δk)

) = lim
k→∞

d(µ̂τ(δk),µ
L
τ(δk)

+ ε) =⇒ d(µ,K) = d(µ,K + ε). (19)

Since µL uniquely satisfy d(µ +µL) = d(µ,µL + ε), this implies that K = µL. Similarly we will get,
K = µL, which gives the contradiction. This completes the proof.
Proof of Theorem 7

a):Almost sure convergence: Observe that µL
τδ

and µR
τδ

satisfy the following:

d(µ̂τδ
,µL

τδ
) = d(µ̂τδ

,µR
τδ
) = β (τδ ,δ ). (20)

Since we know that limδ→0 µ̂τδ
= µ almost surely. Using Theorem 6 (c), we also know that limδ→0 µL

τδ
=

µL and limδ→0 µR
τδ
= µL +ε almost surely. Hence using continuity of d(·, ·), (20) and definition of β (n,δ )

(see §8), we get,

lim
δ→0

3log[1+ log(τδ )]+T (log(2/δ ))

τδ

= d(µ,µL) almost surely.

Notice from the definition of T (x) (see §8), we get limδ→0
T (log(2/δ ))

log(1/δ ) = 1, hence it follows that

lim
δ→0

3log[1+ log(τδ )]+ log(1/δ )

τδ

= d(µ,µL) almost surely.
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Using (14), we know that τδ → ∞ as δ → 0 almost surely, hence we get the desired result.
b) Convergence in Expectation: To get the results of convergence in expectation from almost sure,

we will show that τ(δ )
log(1/δ ) is a uniform integrable random variable, which will complete the proof. Hence

it suffices to show supδ∈(0,δ1)
E[τ(δ )]2

( log(1/δ ))2 < ∞, where, δ1 is any fixed number in (0,1). Observe that,

E[τδ ]
2 =

∞

∑
n=1

(2n−1)P(τδ > n).

Let Bn = {|µ̂n−µ| ≤ c1}, where c1 is a well chosen small positive constant such that µ + c1 ∈ S as
well as µ− c1 ∈ S.

It follows that,

E[τδ ]
2 ≤

∞

∑
n=1

(2n−1)P({τδ > n}∩Bn)+
∞

∑
t=n

(2n−1)P(Bc
n). (21)

We will handle the two series summations given in (21) separately, then we will come back to (21).
Upper bound on ∑

∞
n=1(2n− 1)P(Bc

n): Using Chernoff inequality for single parameter exponential
family we get, P(µ̂n ≥ µ + c1)≤ e−nd(µ+c1,µ). Similarly we have P(µ̂n ≤ µ− c1)≤ e−nd(µ−c1,µ). Hence it
follows that

∞

∑
n=1

(2n−1)P(Bc
n)≤

∞

∑
n=1

(2n−1)(e−nd(µ−c1,µ)+ e−nd(µ+c1,µ)) = c2, (22)

where, c2 is a fixed positive constant independent of δ

Upper bound on ∑
∞
n=1(2n− 1)P({τδ > n}∩Bn): We claim that after N(δ ) , O(log(1/δ )) terms

P({τδ > n} will be 0 under the set Bn, i.e,

P({τδ > n}∩Bn) = 0 ∀n≥ N(δ ). (23)

We prove the claim mentioned above in (23) later. Using (23), we get,

∞

∑
n=1

(2n−1)P({τδ ≥ n}∩Bn)≤
N(δ )

∑
n=1

(2n−1)P(τδ ≥ n)≤ O((log(1/δ ))2).

Combining the above inequality with (23), and substituting them in (22), we get

sup
δ∈(0,δ1)

E[τ(δ )]2

(log(1/δ ))2 ≤ sup
δ∈(0,δ1)

O((log(1/δ ))2)+ c2

(log(1/δ ))2 < ∞.

To complete the proof, all we need to show is that our claim (23) holds. To prove (23), observe that,
d(µn,µ

L(µn))> 0 for µn ∈Bn. Using continuity of d(µ,µL(µ)) in µ , it follows that in fµn∈Bnd(µn,µ
L(µn)=

h > 0.
Now it follows trivially from the definition of β (n,δ ) that ∃N(δ ) = O(log(1/δ )) such that, β (n,δ )<

h ∀n≥ N(δ ), under the set Bn. Using strict quasi-convexity of d(µ, ·), it follows that claim mentioned in
(23) holds. This completes the proof.

8 Definition of β (n,δ ).

Recall we define (see (Kaufmann and Koolen 2021)),

β (n,δ ) =
3log[1+ log(n)]+T (log(2/δ ))

n
.
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To state the definition of T (x), we need to introduce two functions. First for l ≥ 1 the function ψ(l) = l− ln l
and its inverse ψ−1(l). And the other function is defined for any y ∈ [1,e] and x≥ 0 and given by

ψ̃y(x) =

{
e1/ψ−1(x)ψ−1(x) if x≥ ψ−1(1/ lny),
y(x− ln lny) o.w.

(24)

Now we define function T (x) : R+→ R+ as follows T (x) = 2ψ̃3/2

(
x+ ln1.64

2

)
.
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