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ABSTRACT 

In discrete event simulation (DES), the events are random (aleatory) and typically represented by a 
probability distribution that fits the real phenomena that is studied. The true distributions of event outcomes, 
which may be multivariate, are often dependent on the values of covariates and this relationship may be 
complex. Due to difficulties in representing the influence of covariates within DES models, often only the 

averaged distribution or expected value of the conditional distribution is used. However, this can reduce 
modelling accuracy and prevent the model from being used to study the influence of covariates. 
Distributional random forests (DRF) are a machine learning technique for predicting the multivariate 
conditional distribution of an outcome from the values of covariates using an ensemble of decision trees. 
In this paper, the benefits of utilizing DRF in DES are explored through comparison with alternative 
approaches in a model of a powder coating industrial process.  

1 INTRODUCTION 

Discrete event simulation (DES) is an operational research method for modelling stochastic, dynamic 
systems where the system evolves through a sequence of events and each event occurs at a precise instant 
in (simulated) time and results in a change to the system state. It is used for modelling queuing systems, 
where the system is represented as entities flowing from one activity to another (often after a time delay), 
and the activities are separated by queues (Robinson 2014). For example, in the DES model of a 

manufacturing system, the entities might be parts and workers, the activities might be the processing steps 
that the parts undergo and the tasks that the workers perform, and the queue might be the buffers where 
parts awaiting processing are stored. In DES, the delays between events and changes in system state 
resulting from events are random (aleatory), usually represented by probability distributions that fit the real 
phenomena of the modelled system. For example, the delay between orders arriving might vary according 
to an exponential distribution with a certain rate parameter, whilst the accuracy of a hole drilled in a part 

might vary according to a normal distribution with certain mean and standard deviation parameters. In 
practice, situations are often encountered where these distributions are not constant but depend on the values 
of certain covariates. For example, the rate at which orders arrive might depend on the time of day and 
season, whilst the accuracy of a drilled hole might depend on the time since the drilling machine was last 
calibrated, the experience of the operator, and the rate at which parts are currently arriving for drilling. If 
the influence of covariates are ignored within a DES model such that the unconditional distribution for the 

outcome of the event is sampled from, it could result in an inaccurate model, invalid conclusions, and 
prevent any analysis of the influence of covariates on the behavior of the modelled system.   
 
 Let 𝒀 = (𝑌1, 𝑌2, … , 𝑌𝑑) ∈ ℝ𝑑 be a multivariate random variable representing the outcomes of an event 
and 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑝) ∈ ℝ𝑝 be a set of covariates on which the joint distribution of Y depends (note: 
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here and throughout the paper, bold font is used to signify a vector value). The conditional distribution for 
the event outcome for a certain covariate value vector x is then denoted  ℙ(𝒀|𝑿 = 𝒙) =
ℙ(𝒀|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑝 = 𝑥𝑝) . The relationship between the conditional distribution of random 

variable Y and covariates X may be complex and not understood. However, it may be possible to make a 
set of observations {(𝑥𝑖, 𝑦𝑖)} 𝑖=1

𝑛 , where 𝑥𝑖 and 𝑦𝑖 are the covariate value vector and outcome value vector, 
respectively, for the ith of n observations. In the manufacturing scenario, for example, the accuracy of 
drilled holes in parts could be measured and recorded along with the time since the drilling machine was 
last calibrated, the operator experience, and the current arrival rate of parts. These observations could 
potentially be used to inform the DES model, so that event outcomes are sampled from more accurate 

distributions that are generated based on the values of covariates in the model at the time an event occurs. 
In this paper, an approach is proposed that uses a machine learning method called distributional random 
forests (DRF) (Michel and Cevid 2021) within a DES, enabling the simulation to utilize covariate values 
from the model state to sample event outcomes from more accurate distributions. The DRF is trained on 
example covariate and outcome vector pairs to learn the relationship between them. Alternative methods 
for modelling the influence of covariates on outcome distributions, both traditional statistical approaches 

like proportional hazards (Leemis 1990) and machine learning methods like mixture density networks 
(Reed et al. 2021). However, DRF offers a unique approach that is not based on maximizing the log-
likelihood of the training data and has several advantages over the alternatives (see Section 3.1 for more 
details). The main contribution of this paper is to demonstrate how DRF can be integrated in a DES model 
and evaluate its advantages in this application. The approach is demonstrated for a DES model of a simple 
powder coating industrial process and the modelling accuracy compared to two alternative approaches. 

 
 The remainder of this paper is organized as follows: Section 2 gives some background to the proposed 
approach and related works, Section 3 describes the proposed approach for combining DES with DRF,   
Section 4 describes the case study used to evaluate the proposed approach, Section 5 gives the results of 
the evaluation, and Section 6 gives some conclusions.  

2 BACKGROUND AND RELATED WORK 

2.1 Decision Trees and Random Forests 

Decision tree learning is one of the most popular types of supervised machine learning algorithm used for 
predicting an output variable value (target) of an item from input variable values (features) of that item (Wu 
et al. 2008). After training on example data (i.e., a set of input and output value pairs), a decision tree 
structure is formed known as a classification tree, if the predicted outcome is from a discrete set, or a 
regression tree, if the predicted outcome is a real number. Each internal (non-leaf) node of a decision tree 

is labelled with an input variable and has (usually two) output branches that partition the possible values of 
the input variable, therefore representing a decision rule. Each leaf node is associated with a value for the 
output variable. A prediction for the value of the output value of an item corresponds to the value associated 
with the leaf node that is reached by following a path from the root node of the decision tree along the 
branches that correspond to the values of its input variables. During the training procedure, the splits in the 
tree and decision rules are formed to minimize the predictive error on the training data set according to a 

specified loss function e.g., the least sum of squared error for a regression tree. This is done by ensuring 
branches partition the data into groups with similar expected values. Decision trees are easy to interpret, 
can handle both real and discrete valued variables, perform well on large datasets, and give high predictive 
performance for relatively small computational effort (Rokach and Maimon 2014). However, they are also 
prone to overfitting, such that predictive performance is high for the examples from the training set but poor 
for new items. Random forests (Ho 1995) were introduced to correct for the problem of overfitting by 

decision trees. They are a widely used approach, where a set of decision trees are constructed during training 
and the predicted output value for an item is the most common output value, for classification, or the average 
output value, for regression, from that set (Breiman 2001). Each decision tree from the random forest is 
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trained on a bootstrapped subset of the training data and utilizes a subset of the input variables in its decision 
rules, reducing overfitting through a “wisdom of the crowds” approach (Mannes et al. 2014). Decision trees 
and random forests can be used with DES to predict the expected outcome of events during simulation 

based on covariate values, i.e., 𝔼[𝒀|𝑿 = 𝒙] where 𝒀 is a random variable representing the event outcome, 
𝑿 is a set of covariates on which the conditional distribution of 𝒀 depends, and 𝒙 is the values of covariates 
according to the simulation model state when the event outcome is generated.  

2.2 Applications of Machine Learning Techniques to Predict Event Outcomes in DES 

Traditional approaches to modelling the conditional distributions of event outcomes based on covariate 
values, such as proportional hazards and accelerated life models (Leemis 1990), require restrictive 

assumptions such as covariates having a multiplicative effect on hazard rate. Therefore, researchers have 
investigated how supervised machine learning techniques that are able to learn these relationships from sets 
of training examples can be utilised within DES models to model events more accurately. 
 
 Bergmann et al. (Bergmann et al. 2017) used decision trees to determine dispatching rules for jobs in a 
DES model of a production system based on properties of the job, such as due date and processing time. 

Artificial neural networks (ANN), another type of supervised machine learning algorithm, have also been 
used to predict expected event outcomes in DES. This includes job scheduling decisions and dispatching 
rules in DES models of manufacturing systems (Bergmann et al. 2016; Bergmann et al. 2014), the treatment 
time of patients in a DES model of a dental clinic (Chang and Chang 2018), and the acceptance or rejection 
of loan applications in a DES model of a bank credit approval process (De la Fuente et al. 2018). A 
limitation of these approaches is that the predictions provided by the decision trees or ANNs are the 

expected outcomes based on the values of covariates, rather than its conditional distribution. Therefore, 
these approaches do not allow the variation in possible outcomes for a given covariate vector to be simulated 
and modelling this is a major reason for choosing the DES modelling approach over alternatives (Ross 
2012). 
 
 Reed et al. (Reed et al. 2021) utilized a particular type of ANN, known as mixture density networks 

(Bishop 1994), to predict the conditional distribution of event outcomes within a DES model of load-haul-
dump vehicle operations at a mining site. Mixture density networks are able to learn complex, non-linear 
relations between the conditional distribution of a random variable and the values of covariates, output 
arbitrary distributions that are not constrained to a particular form, train efficiency on large data sets, and 
update when new data becomes available. They output the conditional distribution in the form of a weighted 
mixture of normally distributed components, where the weights, means, and standard deviations are 

determined by the ANN. The ANN learns to predict mixture distributions from covariate vectors that 
maximize the log-likelihood of the training data. A downside of ANNs is that achieving good performance 
usually requires lots of training data and optimized choices of hyperparameters, such as the learning rate 
and number of layers (Chollet 2017). This motivates the need to explore other machine learning techniques 
to predict conditional distributions in DES, especially since studies have shown the performance of different 
learning algorithms can vary significantly across different problems and datasets (Caruana and Niculescu-

Mizil 2006).  

3 PROPOSED APPROACH 

This paper proposes an approach for enhancing the ability of a DES to model a real system by using 
distributional random forests (DRF), trained on data on events from the real system, to predict the 
conditional distribution of event outcomes during simulation.  
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3.1 Distributional Random Forests 

DRF were introduced by Ćevid et al. (Ćevid et al. 2020) as a novel random forest (Ho 1995) construction 
for predicting the multivariate conditional distribution ℙ(𝒀|𝑿 = 𝒙). Similar to the random forest algorithm, 

the branches of the decision trees perform splits based on the values of input variable values. However, 
whilst the decisions trees from random forests split the data into groups with similar expected values, those 
from distributional random forests split the data into groups with similar distributions. It constructs a forest 
from decision trees based on sequential multivariate two-sample test statistics. Any test statistic that can 
detect a wide variety of distributional changes can be used, with the Maximal Mean Discrepancy statistic 
(Gretton et al. 2007) proposed as the default choice by Ćevid et al. (Ćevid et al. 2020). At each step of the 

tree construction process, the data is split into two groups based on a covariate 𝑋𝑗 so that the distribution of 
the output 𝒀 for the subset of data for which 𝑋𝑗 ≤ 𝑙, for some value 𝑙, differs most in comparison to the 
distribution of 𝒀 for the subset for which 𝑋𝑗 > 𝑙, according to the chosen statistical test. This results in a 
forest comprised from decision trees that each partition the data such that the distribution of the mutlivariate 
output 𝒀 in the leaves is as homegeneous as possible. As with standard random forests, the individual trees 
are trained on randomly chosen bootstrapped samples from the training data and subsets of the input 

variables from 𝑿. For a given test point x, a weighting can be induced on each example from the training 
data 𝑤𝒙(𝑥𝑖) based on the relative frequency with which that example is encountered in the leaf nodes from 
a traversal of the DRF with the test point. Thus, the relevance of each training data point 𝑥𝑖 to a given test 
point x can be quantified and used to estimate the conditional distribution ℙ(𝒀|𝑿 = 𝒙) as the empircal 
distribution determined by these weights. For full details, see Ćevid et al. (Ćevid et al. 2020).  
 

 A key advantage of DRF is that it does not depend on a particular estimation target, such as the expected 
value given by standard random forests. Additionally, it is completely non-parametric, does not require 
additional user input such as the log-likelihoods, can be used for complicated targets for which there is no 
obvious forest construction, and only requires a single forest fit for producing estimates of many different 
targets that are additionally compatible with each other. This contrasts with the mixture density network 
approach that was previously used to predict conditional distributions in a DES by Reed et al. (Reed et al. 

2021), which assumed a parametric form and requires specification of the log-likelihood function.   

3.2 Integration of DRF with DES 

The overall approach for integrating DRF within a DES model is described by the flowchart shown in 
Figure 1. For every event in the DES model for which the conditional distribution will be predicted by a 
DRF, the covariate variables that the conditional distribution depends upon must be identified. The DES 
model should be designed such that the values of these covariates can be obtained from the model state 

during simulation. A set of training data of pairs comprising of the multivariate event outcome and the 
vector of covariate values (e.g., obtained from the real system that will be modelled or a separate, perhaps 
physics based, simulation model) are then used to train a DRF to predict the conditional distribution 
ℙ(𝒀|𝑿 = 𝒙) for any covariate vector 𝒙, including those not seen previously in the training data. This step 
is performed offline, prior to running the simulation. Each time the event occurs during a simulation run, 
the outcome is sampled using the following procedure: 

 
1. Obtain the values of the covariates from the model state and form them into a vector, where the 

covariate variable indices match those used in the training data.  
2. Obtain weights of the training example from trained DRF that correspond to the covariate vector. 
3. Randomly sample an example from the training data, where the probability of selecting each is 

proportional to the weight assigned to it by the DRF in the previous step. 

4. The outcome of the event is then the outcome from the sampled training example. 
5. Update the model state according to this event outcome and continue the simulation. 
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Figure 1: Flowchart of the steps involved in sampling the outcome of an event within a DES when using 
a DRF to predict the conditional distribution. 

 

4 CASE STUDY 

To evaluate the potential benefits of the proposed approach, it was compared to alternative approaches to 
modelling event outcomes in a DES model of an industrial process. The test case and methodology for this 
comparison is described in this section. 

4.1 Test Case: Powder Coating Process 

To evaluate the potential benefits of using DRF to model outcomes within a DES model, a simple industrial 
powder coating process, shown in Figure 2, is used as the test case that will be modelled. At the start of 

each day, a set of parts to be powder coated that day are placed into the “Parts In” buffer of the process, 
which is a  first-in-first-out (FIFO) queue of infinite capacity. Each part has a specification that can be 
summarized in terms of two parameters: the material of the part, given as a value from the set {Steel, 
Aluminum, Brass, Copper}, and the size of the part, given as a real-valued number between 1 (smallest) 
and 5 (largest).  
 

 Each part is first cleaned at the “Cleaning Station” by a worker and is then placed in the “PC” buffer, 
which is a FIFO queue of capacity 2. If the “Parts Buffer” is full, then the part waits at the “Cleaning 
Station” until space becomes available. The processing time for a part at the “Cleaning Station” follows a 
uniform distribution with a minimum time of 4 minutes and a maximum time of 6 minutes. The cleanliness 
of a part after cleaning is graded as a real-valued number and follows a triangular distribution with a 
minimum value of 1 (least clean), modal value of 4, and maximum value of 5 (perfectly clean). Note that 

both the processing time and cleanliness grade distributions are independent of the part specification. 
 
 A worker removes a cleaned part from the “PC” buffer and performs powder coating at the “Powder 
Coating Station” and inspects the quality of the powder coating application at the “Inspection Station”. The 
processing time, in minutes, for this sub-process (i.e., powder coating and inspection) follows a normal 
distribution with mean given by Equation (1) and standard deviation given by Equation (2), where 𝑎 and 𝑏 

are constants that depend on the material from which the part is made (see Table 1) and 𝑠 is the size 
parameter value of the part. 
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Figure 2: The Powder coating process.  

 

a + 1.5s + 4.5  

 

(1) 

√(𝑏2 + (2.5 + 0.4𝑠)2) (2) 

 
 
 The quality of the powder coating application is graded by the worker during inspection as a real-valued 
number between 1 (worst quality) and 5 (best quality). The quality value for the powder coating of a part 

follows a normal distribution with mean given by 𝑚𝑎𝑥(1, 5 − 0.2(5 − 𝑐) − 1.4𝑑) and standard deviation 
of 0.8, where 𝑐 is the cleanliness value of the part and 𝑑 is the deviation of the processing time given by 
|𝜇 − 𝑡|/𝜎, where 𝜇 and 𝜎 are the mean and standard deviation of the processing time for the part based on 
its specification (given by Equations (1) and (2), respectively) and 𝑡 is the actual processing time for the 
part. Poor cleanliness of a part results in poorer quality of powder coating applications because it lessens 
the ability of the coating to adhere to the part’s surface and can cause visual defects such as specks, bumps, 

or even complete delamination (Liberto 1994). The quality of powder coating application also tends to 
deteriorate with processing times that deviate below or above the average as this is correlated with under 
and over curing, respectively, which can lead to brittleness, reduced resistance to chemicals or UV light, 
and visual defects such as discoloration (Liberto 1994). This also means that the distribution of the quality 
outcome is not only dependent on the covariates, but also on the processing time outcome. 
 

Table 1: Constants in equations for mean and standard deviation of total processing time of a part at the 
“Powder Coating Station” and “Inspection Station” steps of the powder coating process for each part 
material type. 

 

Part Material a b 

Steel 0 0 
Aluminum 0 0 

Brass 3 1.2 
Copper 3 1.2 
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 If the quality of the powder coating applied to a part is assessed to be less than 3, then that part has the 
powder coating removed by the worker at the “Powder Coat Removal Station”, before being placed at the 
back of the queue within the ”Parts In” buffer at the start of the process. The processing time, in minutes, 

for powder coating removal follows a uniform distribution with minimum value of 3 and maximum value 
of 5, independent of the specification of the part. Otherwise, the part passes the inspection and is placed in 
the “Parts Out” buffer which stores the parts that have completed the process successfully. There is one 
worker that performs the cleaning step, such that a maximum of one part can be at the “Cleaning Station” 
at any time, and two workers that perform the other process steps, such that a maximum of two parts can 
be undergoing this sub-process at any time (each of these workers stays with a part from removal at the 

“PC” buffer until placing it in the “Parts Out” or “Parts In” buffers).   

4.2 Discrete Event Simulation Models 

A DES model of the test case process was constructed that was a perfect representation of the true process 
as described above. The purpose of this first model is to provide benchmark “ground truth” results against 
which the accuracy of alternative models could be validated and compared. Three alternative DES models 
were then constructed, which differed only in how the “Powder Coating Station” was modelled, whilst the 

modelling of all other parts of the process remained perfect. To construct these alternative models, first 
observations for 1000 parts being powder coating were generated from the true model of the process step, 
where the input values of material, size, and cleanliness were recorded for each part along with the output 
values of processing time and assessed quality of powder coating. The inputs for the 1000 parts were 
generated randomly by sampling each input parameter value from the uniform distribution over the range 
of possible values. This represents a common scenario when constructing DES models of a real system or 

process, where the real phenomena in the system or process being modelled is unknown but data on its 
behavior either exists or can be collected from which a model can be formed. Each of the three models used 
this generated training data in a different way, as described below :  
 

1. Bootstrapping: Sampling with replacement from the full set of training data. During simulation, 
when a new part is processed at the “Powder Coating Station”, a sample from the training data is 

sampled at random (uniform distribution) and its outcome used as the event outcome. 
2. Random forest: A regression random forest was trained on the set of training data. During 

simulation, when a new part is processed at the “Powder Coating Station”, the expected outcome 
of the event predicted by the random forest from the covariate vector is used as the event outcome. 
The Ranger package (Wright and Ziegler 2017) for the R programming language was used as the 
implementation of the random forest. 

3. Distributional random forest: A DRF was trained on the set of training data. The DRF package 
(Michel and Cevid 2021) for the R programming language was used as the implementation of DRF. 
During simulation, when a new part is processed at the “Powder Coating Station”, the DRF was 
used to predict the conditional distribution of the outcome using the approach described in Section 
3. 

 

 The default values within the R packages were used for the training and construction of the random 
forest and DRF. These DES models were constructed using the Simmer package (Ucar et al. 2019) for the 
R programming language. This package is a process-orientated library for DES that provides facilities for 
specifying a model in the form of trajectories (a chained set of activities that form a process) through which 
entities of a certain type (e.g., parts) flow, as well as automatic monitoring capabilities. The DES models 
were configured such that a set of parts to be powder coated were inserted into the “Parts In” buffer of the 

process at the start of a simulation (i.e., simulation clock time of 0) and the process then simulated until all 
parts had been successfully powder coated. 
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4.3 Performance Metric, Scenarios, and Model Accuracy Evaluation 

The accuracy of the three alternative DES models was evaluated by comparing the values of a key 
performance indicator (KPI) output metric against those from the benchmark model resulting from the 

simulation of two different scenarios. The chosen KPI was the total time to successfully powder coat all 
100 parts. For each scenario, the specifications of 100 parts to be powder coated were generated. For the 
first scenario, the size and material properties were generated from the uniform distribution (i.e., the same 
distribution as the training data used to train the DRF and random forests). For the second scenario, the 
material properties were generated from a uniform distribution and the size properties were generated from 
a triangular distribution with minimum of 1, maximum of 5, and mode of 2. This specification of the parts 

from this second set therefore differs from the training data by having a smaller size on average. For each 
DES model, the powder coating of the parts from each scenario was simulated 100 times, where each 
repetition used a different random seed value, producing 100 values for the KPI of the total time to powder 
coat all parts. The distribution of this KPI for each alternative model was then compared to that from the 
benchmark model, with greater similarity indicating higher modelling accuracy. This comparison was 
performed visually through the use of box plots and quantile-quantile (Q-Q) plots. A box plot summarizes 

the minimum, first quartile, median, third quartile, and maximum of the distribution, whereas a Q-Q plot is 
a scatterplot of the quantiles from one data set (in this case, the “ground truth” model) against another (in 
this case, the three alternative modelling approaches).  

5 RESULTS 

The box plots and Q-Q plots are given in this section comparing the distributions of the total time to powder 
coat 100 parts output by the three alternative DES models, that differed only in the approach used to model 

the “Powder Coating Station” step of the manufacturing process, to the “ground truth” distribution output 
by the benchmark model. The box plot and Q-Q plots comparing the KPI distribution in Scenario 1 output 
by the benchmark and alternative models are shown in Figure 3 and  Figure 4, respectively. The box plot 
and Q-Q plots comparing the distributions of the KPI in Scenario 2 output by the benchmark and alternative 
models are shown in Figure 5 and  Figure 6, respectively. The solid black line shown in each Q-Q plot is a 
reference line representing perfect accuracy, i.e., where all quantiles have equal value. 

6 DISCUSSION AND CONCLUSIONS 

An approach for integrating DRF within DES models to predict the conditional distribution of multivariate 
event outcomes was proposed and tested in two scenarios for a model of a powder coating process. In each 
scenario, a DES model utilizing DRF was compared to approaches that instead used bootstrapped samples 
and random forests to determine outcomes of a key event in the modelled process. This compared the 
accuracy with which the DES models predicted the distribution of a key performance indicator (KPI) for 

the process, the total time to powder coat 100 parts. The box plot and QQ-plot for Scenario 1, show that the 
DRF approach is able to predict the distribution of the KPI with better accuracy than the other approaches. 
 
 The box plot shows that the median and other key quartiles, with the exception of overestimating the 
third and maximum, closely match those from the benchmark. In the QQ-plot, it is also evident that the 
quantiles follow the benchmark well as the deviations from the reference line are small overall. The 

bootstrap approach also does reasonably well. This could be expected since the distribution of the covariate 
values (i.e., the size and material for the parts) in this scenario is the same as in the training data that the 
bootstrapped samples are taken from. However, it cannot match the performance of the DRF approach 
which adjust the conditional distributions of the event outcome (i.e., the processing time and quality for the 
powder coating step of the process) for each individual part in the generated set of 100 parts. The random 
forest approach, which predicts and utilizes the expected outcomes for the event, performs badly. It severely 

underestimates the mean time to complete the processing of all 100 parts and also gives much lower 
variance for that KPI. 
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Figure 3: Box plot comparing the distribution of the total time for 100 parts to complete the powder 
coating process in Scenario 1 and the three alternative modelling approaches. 

 

Figure 4: Q-Q plot comparing the distribution of the total time for 100 parts to complete the powder 
coating process in Scenario 1 and the three alternate modelling approaches (note: plot points for random 
forest approach are outside axis range shown). 
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Figure 5: Box plot comparing the distribution of the total time for 100 parts to complete the powder 
coating process in Scenario 2 and the three alternate modelling approaches. 

 
Figure 6: Q-Q plot comparing the distribution of the total time for 100 parts to complete the powder 

coating process in Scenario 1 and the three alternate modelling approaches (note: plot points for random 
forest approach are outside axis range shown). 
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The main reason for this is that the expected quality level of powder coating for parts of any specification 
is such that it passes the inspection, therefore this model never simulates parts having to have the powder 
coating removed and re-applied due to poorer than expected quality. In Scenario 2, the plots show that the 

DRF based approach is able to achieve remarkably accurate results that are very close to the true distribution 
from the benchmark model, performing at least as well as it did in Scenario 1 . In contrast, the bootstrap 
approach has lower accuracy than it did in Scenario 1. This is to be expected, since it uses the event outcome 
distribution from the training data and, unlike the DRF approach, is unable to adjust for the values of the 
covariates, which have a different distribution in this scenario. The random forest approach again performs 
poorly, for the same reasons as discussed for Scenario 1. 

 
 These results appear to indicate that using DRF to predict the conditional distribution of event outcomes 
can increase the accuracy of DES models. This includes situations where event outcomes have a complex 
relationship with covariate values and are multivariate with dependencies between the individual outcome 
variables. The results also demonstrated a weakness in machine learning approaches which have been used 
in the past with DES, such as random forests, that predict only the expected value of event outcomes from 

covariate values. In DES models of many systems, such as the example process modelled in this paper, it 
is important that the variation in event outcomes is modelled to obtain accurate and useful predictions. 
Whilst promising, the statistical significance of these initial results require verification through future work 
that extends to a wider range of scenarios. The proposed DRF approach has potential Industry 4.0 (Lu 2017) 
and digital twin (Boschert and Rosen 2016) applications, where data collected from a production process 
can inform DES models used to predict and optimize its performance. By learning from past event outcomes 

and covariate values, such DES models could improve in accuracy over time and adapt to the changing 
circumstances of the real systems they represent. An area for further work is to compare the use of DRF to 
predict the conditional distribution of event outcomes to competing approaches, such as the ANN based 
approach described by Reed et al. (Reed et al. 2021), for models of a variety of different systems and 
scenarios. 
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