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ABSTRACT

Dropping out of STEM remains a critical issue today, and it would be useful for universities to have reliable
predictive models to detect students’ dropout risks. Generating a synthetic population of the true population
could be useful for simulating the system and testing scenarios. We outline an approach for creating
a synthetic population of students in STEM and build a microsimulation which simulates students’ risk
behaviors over time. This process has identified several areas that must be addressed before the synthetic
population represents the true population in a simulation.

1 INTRODUCTION

Sixty percent of college students dropout within their first two years of school (Chen et al. 2018), which
highlights the importance of early identification of students at risk of dropping out of college and intervention
to reduce this risk (Dewantoro and Ardisa 2020; Ortiz-Lozano et al. 2020; Villano et al. 2018; Golding and
Donaldson 2006). Studies have identified a number of potential factors related to departure from STEM
programs. Some studies have shown that some students drop out of STEM programs due to curriculum
difficulty (Marra et al. 2012; Seymour and Hewitt 1997), and many others have found that students primarily
dropout due to a lack of sense of belonging and institutional support (Watkins and Mazur 2013; Burke
2019). Furthermore, not only is the need for institutional support critical, but the timing of the support can
influence its effectiveness (Ishitani and Desjardins 2002). If at-risk students can be identified early, then
interventions could be targeted to reduce departures in ways that are cost-effective.

Machine learning has been used to predict student dropout using a variety of information such as
academic, financial, and admissions data at different points throughout the first semester (Dewantoro and
Ardisa 2020; Fernandes et al. 2019; Naseem et al. 2019). One study demonstrated a dynamic decision
model in which a student dropping out is influenced by their beliefs about future academic performance
(Stinebrickner and Stinebrickner 2014). Another study demonstrated a process for predicting the dropout
of distance learners while also considering the perceived reliability of model results by experts (Freitas
and Salgado 2020).

Population synthesis has been used in a wide range of social science studies from analyzing the
spread of infectious diseases among people in romantic relationships (Scholz et al. 2016) to addressing
workplace location assignments (Fournier et al. 2021) Although many studies have generated synthetic
social populations (Krauland et al. 2020; Wu et al. 2018; Wu et al. 2022), there is no clear consensus
on the best way to synthesize a population that most accurately represents the actual population, which
is likely due to the nuances of the attributes of the real population and the specific outcomes of interest
(Chapuis and Taillandier 2019). There have been several methods for creating a synthetic population that
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can address the correlations among attributes in a multivariate distribution, such as the Gibbs sampler and
Iterative Proportional Fitting (IPF). However, these common methods become too computationally intensive
as the number of features increases (Farooq et al. 2013). Bayesian Networks can be used to represent
underlying relationships between the large number of variables without requiring as much computational
effort (Sun and Erath 2015). Bayesian networks have been used to create synthetic representations of large
populations such as Jakarta, Indonesia (Ilahi and Axhausen 2019) and social influence on travel behaviors
(Zhang et al. 2019).

With a synthetic population that is representative of students over time, we are able to observe how
dropout risk fluctuates over time and understand how specific university interventions may impact students.
In this paper, we construct a simulation built upon a synthetic population, with the overarching goal of
evaluating potential interventions. We generate the synthetic population to represent the actual population
with more than 100 different attributes accumulated over time. We match individual people from an
historical test cohort with a representative synthetic agent and simulate dropout risk over several semesters.
We assess the approach in several ways to determine appropriateness.

2 DATA

We used historical data from 5,348 undergraduate engineering first-year students across four undergraduate
engineering cohorts at a large public institution between 2013 and 2016 to train our prediction models. The
2017 undergraduate engineering cohort consisting of 1,428 students, was used to test both the prediction
models and the simulation. The university defines a cohort as first-year and transfer students who were
admitted in either the summer or fall terms and enrolled in the fall term. Students whose first term is in the
spring are not included in the cohort. Note that we only included first-year students in our analyses. The
university defines “dropout” as a student who leaves the university and does not return within six years of
their first term. In our analysis, we focus on students whose dropout occurs by the beginning of the third
academic year, or within two years from their start at the university.

The university records data on both the census day and the last day of the semester. Census day occurs
nine class days after the beginning of the semester and is the last day for students to change their course
schedule and receive tuition refunds. Table 1 provides a sample of the information included in each type
of model and when each variable is known within a given a semester. For example, we know how many
credits a student is enrolled in for the semester on census day, but we do not know the grade for those
credits until the end of the term. Note that the before start column only refers to the model built before
the beginning of their college career. There is only one instance of this model.

Our data primarily consists of nine types of information: academic performance, community engagement,
course load, demographics, financial aid, housing, admissions, residency and relatives’ education level.
Academic performance consists of GPA, AP credits earned, and SAT Score, among other indicators for
failing or dropping a course. Community engagement refers to a student’s involvement in various student
organizations that promote social connection. Course load describes the number of credits a student is
enrolled in during a semester. Demographics collected include race, ethnicity, age, and gender. Financial
aid information includes the types of financial aid received (e.g. Pell grant, private scholarship, federal
loan). Housing variables describe the area of campus a student lives in or indicates if the student lives off
campus. Admissions information includes factors related to a student’s registration and academic program
(e.g. student athlete, major). Residency refers to the location of the student’s permanent address. In our
data, relatives’ education level refers to the number of relatives who have received a college degree.

3 METHODS

3.1 Generating Agent Attributes

A Bayesian network was constructed at each point in time to randomly assign values to newly revealed
attributes. In this way, we are able to capture dependencies inherent in a multivariate distribution of a
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Table 1: Abbreviated list of factors included in each type of model. The “Census” and “End of Term”
columns show which types of information were known at those points in time for a given term.

Variable Type Before Start Census End of Term
Dropped out within two years Response x x x
AP Credits Academic x x x
SAT Composite Score Academic x x x
Student Athlete - x x x
Engineering First Year Major Program x x x
Federal Loan Recipient Financial Aid x x x
Private Scholarship Recipient Financial Aid x x x
First Generation Student Education Level x x x
Gender - x x x
In-State Residency Residency x x x
On-Campus Housing near Dining Hall Housing x x x
Race and Ethnicity (White, Black or
African American, Hispanic/Latino, Asian,
American Indian/Alaska Native, Not Spec-
ified, Native Hawaiian or Other Pacific Is-
lander)

Race/Ethnicity x x x

Off-Campus Housing Housing x x x
On-Campus Housing near Student Center Housing x x x
Civil Engineering Major Program x x x
Change in Degree Program Program x
Did Not Enroll in Term Registration x x x
Engineering Living & Learning Village
Member

Community Engagement x x x

Women in Science and Engineering Mem-
ber

Community Engagement x x

Suspended Registration x
Graded Credits Enrolled in at Census Course Load x x
Part-time at Census Course Load x x
Dropped at least 1 course Course Load x
International Student Residency x x x
Failed at least 1 course Academic x
Permanent Address in Southern US Residency x x x
Term GPA > 0.0, < 1.0 Academic x
Term GPA >= 1.0, < 2.0 Academic x
Both Relatives have College Degrees Education Level x x x
Term GPA >= 3.0, < 4.0 Academic x
Term GPA 4.0 Academic x

large set of attributes. Numeric variables were normalized by the min-max method and discretized before
constructing the Bayesian network. The structure of the network was determined using the tabu search
method, which is a heuristic method that identifies the best network structure according to some objective
without terminating at local optima that are not globally optimal (Glover and Laguna 1998). In our case, we
chose the network which minimized the Bayesian Information Criterion (BIC). Once the network structure
was determined, we learned the conditional distributions from fitting the test data and minimizing the BIC.
Sets of attributes known before the start of the first semester were randomly generated using this network. In
subsequent time steps, the additional information that is revealed is inferred based on the known attributes.
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Specifically, the distribution of a new attribute conditional upon the set of known attributes is determined by
using the ”bayes-lw” method in the R package ’bnlearn’ , which averages numerous likelihood weighting
simulations using all available information (Scutari 2010).

3.2 Dynamic Logistic Regression

We built multiple step-wise logistic regression models using these data at seven points in time. For each
of the seven types of prediction, we created 100 fully balanced training sets by pairing all of the dropouts
with an equal-sized bootstrap sample of non-dropouts. Training sets were balanced to enhance prediction
of relatively low proportion of drop-out response. Figure 1 displays each type of prediction built and which
information was used in each prediction. The first model (“Before Start”) was built using information known
before the start of the first fall semester. Then, we built a “Fall 1 Census” model using information known
on census day of the first fall semester, in addition to the average risk score across the 100 regression models
built before the start of the semester. Similarly, we built the subsequent models using the information known
at that time in addition to the average predicted dropout probability across all models built at the previous
time step. Our models span the first three terms of students’ academic careers excluding the summer term
between the first spring term and the second fall term. Numerical data was normalized according to the
min-max method, in which the minimum value of a given numeric variable x was subtracted from each
instance of x and divided by the range of x.

Figure 1: Predictions built and the information known for each prediction. There are always nine days of
class between the start of a semester and its census day. The average risk score across the 100 models
from a given time step was used as a predictor in models built during the subsequent time step.

3.3 Matching Agents to Actual Student Outcomes

In order to establish a ground truth to evaluate our simulation performance, we matched agents with
students from the test cohort and used the outcome of the matched student as the “true” outcome of the
agent. We first randomly generated 3,000 agents from the Before Start Bayesian Network. Then, we
calculated the distance between a student and an agent in the test population based on the 48 attributes
known before the start of the first semester. Since we have a mix of numerical and binary variables, we
used the Heterogeneous Euclidean-Overlap Metric (HEOM) distance metric as discussed in (Wilson and
Martinez 1997). As shown by Equations 1 through 3 (reproduced from (Wilson and Martinez 1997)) we
define a distance function for numerical variables based on the normalized range of the attribute and an
overlap function for categorical variables. Because we did not have any missing values in our dataset, the
distance function to handle unknown or missing values is omitted.

da(x,y) =
{

overlap(x,y), if a is nominal, else
rn di f fa(x,y)

(1)
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overlap(x,y) =
{

0, if x = y
1, otherwise

(2)

rn di f fa(x,y) =
|x− y|

maxa −mina
(3)

We followed an iterative process for matching students to agents. For a given student and agent, if the
HEOM distance was less than or equal to 1.5, then the student was matched with the agent. Otherwise,
the HEOM distance would be calculated between that student and other agents until the student matched
with an agent. If all distances between a student and available agents are greater than 1.5, then the student
remains unmatched and the next student is considered for matching. Once an agent is matched with a
student, that agent is no longer available for matching with other students. Once all possible matches
have been made within a distance of 1.5, we increased the distance threshold for an acceptable match to
2 and repeated the matching process for the unmatched students and the available agents. We continued
increasing the distance threshold and repeating the matching process until all students were matched with
an agent.

3.4 Simulation Process Flow

Our simulation models the risk behavior of each agent over time as more information is revealed, spanning
the first year and a half of a student’s academic career. Profiles for each agent were built prior to running the
simulation and consist of two components: student attributes and initial risk score. As shown in Figure 2,
the Bayesian Network built before the start of the first semester generated an agent with a set of attributes.
Based on these attributes, an initial risk score is then calculated using a randomly selected “Before Start”
prediction model.

Figure 2: Process flow of simulation.

The agent attributes and risk score carry over to the next time step. At the next time step (“Census Fall
1”), a new Bayesian network is built using all information from the test set known at census of the first
fall semester. This new Bayesian network is used to randomly assign values for the new attributes that are
revealed based on the values of the known attributes. Once the new attributes are determined, a new risk
score is calculated from a randomly sample Census Fall 1 prediction model. This process is repeated at
each time step to update the agent’s profile as new information is revealed. Note that each of the prediction
models may use a different subset of attributes, so the attributes that are used to calculate the risk score in
one time step may not be used to calculate the risk score in another time step.
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4 RESULTS

Table 2 presents several characteristics of the training and testing data. Each racial group was considered
separately in the analysis. However, American Indian/Alaska Native, Native Hawaiian/Other Pacific Islander,
and Not Specified have been aggregated in the table for reporting purposes. Among the four cohorts included
in the training set, 440 students or roughly 8.22 percent, dropped out within two years. Similarly, 8.19
percent, or 117 students in the test population dropped out within two years.

Table 2: Summary of characteristics describing the training, testing, and synthetic populations. The training
population is the set of students used to build the prediction models.

Variable Training (n=5,348) Testing (n=1,428) Synthetic (n=1,428)
Gender
Male 75.22% 72.27% 75.28%
Female 24.78% 27.73% 24.72%
Race
White 80.60% 76.75% 76.26%
Black or African American 4.52% 4.97% 4.41%
Asian 12.86% 15.83% 16.46%
American Indian/Alaska Native, Native
Hawaiian/Other Pacific Islander, or Not
specified

5.49% 6.09% 5.04%

Two or More Races 3.77% 3.99% 2.73%
Ethnicity
Hispanic/Latino 4.31% 5.32% 3.99%
Residency
In-State 81.11% 82.21% 83.89%
Student Status
First generation student 13.74% 13.24% 13.94%
Dropped out within two years 8.22% 8.19% 8.19%

4.1 Bayesian Network

Figure 3 shows the Bayesian Network that was built based on information known before the start of the
first semester. The colors in the figure indicate the type of information the attribute is related to. Note that
there are no attributes related to course load since this model is built before those attributes are known.
The types of information tend to be grouped together, however note that we are seeing direct relationships
between some housing attributes and demographics or admissions. This may be influenced by certain
housing restrictions imposed by the university. In Figure 4, we see that the means for all of the attributes
of the synthetic population fall within the 95 percent confidence interval of the attribute means for the test
population. The characteristics of the synthetic population are mostly consistent with both the training and
testing sets. The number of dropouts in the synthetic population reflect the number of matched outcomes
that were dropouts which should be identical to the number of dropouts in the test population.

4.2 Dynamic Logistic Regression Models

The average coefficients of significant predictors that appear in 100 models built before the start of the first
semester and at the end of the the second fall semester are shown in Figure 5. For brevity, we present only
significant predictors that appeared in at least 10 of the models at a given point in time. Note that many
of the attributes known in the first semester are still influential at the end of the second fall semester.
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Figure 3: Bayesian Network built before the start of the first semester.

4.3 Matching Agents to Test Cohort

Figure 6 shows the distribution of distances between an agent and its matched student. Ninety-two percent
of the matches were accepted in the first round of matching under the 1.5 distance threshold, and 98 percent
of the matches fell below the distance threshold of 2.

4.4 Simulation

To compare the risk behaviors of the test set and the synthetic population, we present several performance
measures for predicting students in the test set and with those of the synthetic agents. Figure 7 compares
the average area under the ROC curve (AUC), average sensitivity, and average specificity across all 100
prediction models built at each point in time for the test set and synthetic populations. Recall that the
ground truth for the agents is the outcome of the matched student in the test set.

5 DISCUSSION

The Bayesian Network was fairly effective for characterizing the conditional relationships for the agents
after the before start seeding. The test and synthetic populations are not significantly different for all but
one of the attributes. Because the HEOM distance metric uses a normalized range for numerical variables,
the possible distances between a given numerical attribute for any two observations typically fall between 0
and 1 (Wilson and Martinez 1997). Thus, squaring the overall HEOM distance could roughly indicate the
number of variables that are different between the two observations. This interpretation can be meaningful
especially in our case where we only have three numerical variables. Thus, most of the distances are either
0 or 1. Using this interpretation of the HEOM distance, we can see that for most matches, the students
and their corresponding agents differ by less than two attributes. In terms of predictive performance, we
see that the Census Fall 1 (time 1) and the Census Spring 1 (time 5) models correctly identified a higher
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Figure 4: Ninety-five percent confidence intervals around the mean of binary attributes for the synthetic
population and the test set.
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(a) Before Start (b) End of Fall 2

Figure 5: Average coefficient estimates for significant predictors that appeared in at least 10 training
iterations for models built before the start of the first semester (a) and at the end of the second fall semester
(b). The size of the dot is proportional to the number of models the corresponding factor appeared significant
in at a specific point in time. Green dots represent a negative coefficient, or a factor that reduced the
likelihood of dropout. The red dots represent an average coefficient above zero, or a factor that increases
the likelihood of dropout.

proportion of the dropouts in synthetic population than in the test set. Before Start (time 0) and End of
Fall 1 (time 2) models correctly identify a higher proportion of non-dropouts in the synthetic population
than in the test population. The variability in the metrics suggests there are some sources of randomness
that have not been addressed.

From our analysis, we have identified potential improvements to model for the synthetic population
to represent a real population. Since matches are based only on information known at the beginning, the
advantage of using these attributes may decrease as the later prediction models are able to incorporate
more recent information. The high variability in the sensitivity and specificity may be caused by the
variability across the 100 models built at a given point in time. Specifically, some attributes may be
used to determine one agent’s risk while another agent’s risk may be determined by a different set of
attributes. When constructing the Bayesian Networks, the numerical variables are represented as categorical
variables after discretization, which may cause differences in the distribution of the values that are generated
for the synthetic agents. Moreover, the discretization of numerical variables, namely AP credits which
largely influence dropout risk, may be affecting how its relationship to other variables is considered when
constructing the network.

The method for matching actual students to synthetic agents can also influence the predictive performance
metrics of the simulation. Matching students with agents who are not alike may result in establishing a
non-representative ground truth for the agents and a poor comparison to the simulated outcomes regardless
of the performance of the prediction models embedded in the simulation. Therefore, other matching methods
should be explored to improve the performance metrics. For instance, it may be worthwhile to prioritize
the distance between a subset of attributes that have shown to be more influential of dropout risk. In our
current matching process, we do not discriminate between attributes when calculating the distance, rather
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Figure 6: Histogram of HEOM distances between matched student-agent pairs.

(a) Average AUC (b) Average Sensitivity (c) Average Specificity

Figure 7: Comparison of performance metrics between the test set and the synthetic population predictions.

we include all available attributes when computing the HEOM distance. However, a student and an agent
may have attributes in common that are not significant predictors and differ on attributes that consistently
appear significant across prediction models.

5.1 Limitations and Future Work

There are some limitations to this study, we present a single replication of the simulation creating a single
synthetic population to illustrate the proposed methods. The influential factors in the historical data may
not be the same in the future, especially during substantial disruptions such as the pandemic. Our models
are also based on a population from one university, although multiple years are represented. It is also
possible that there are some simulated agents with a combination of attributes that do not appear in the
actual population.

Our initial efforts are focused on generating a synthetic population that is representative. For future
work, additional randomness may be incorporated into the simulation. While matching on risk score holds
potential, there could be advantages to matching on both risk and a small set of variables. This process has
identified areas for future research to enhance the synthetic population. More replications of the simulation
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would allow us to compare performance across multiple synthetic populations. Generating additional
synthetic populations would also help us identify the sources of variability, however the computation time
for one replication of the simulation process is approximately 10 hours, which makes it difficult to conduct
many replications. Parallel processing should be considered when running any additional replications given
the lengthy computation time.

6 CONCLUSION

Dropping out of higher education remains a critical issue, and early dropout limits the opportunity for
universities to intervene. Additionally, the vast amount of sensitive data collected by universities suggest
a need for a representative synthetic population in order to better understand dropout risk behaviors and
to realize the effect certain interventions can have on dropout risk. While we explored an approach that
incorporates multiple matching methods and prediction models, our process highlighted many areas that
must be considered when creating a representative synthetic population.
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