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ABSTRACT

After designing a simulation and running it locally on a small network instance, the implementation can be
scaled-up via parallel and distributed computing (e.g., a cluster) to cope with massive networks. However,
implementation changes can create errors (e.g., parallelism errors), which are difficult to identify since
the aggregate behavior of an incorrect implementation of a stochastic network simulation can fall within
the distributions expected from correct implementations. In this paper, we propose the first approach
that applies machine learning to traces of network simulations to detect errors. Our technique transforms
simulation traces into images by reordering the network’s adjacency matrix, and then training supervised
machine learning models. Our evaluation on three simulation models shows that we can easily detect
previously encountered types of errors and even confidently detect new errors. This work opens up
numerous opportunities by examining other simulation models, representations (i.e., matrix reordering
algorithms), or machine learning techniques.

1 INTRODUCTION

Networks are commonly used to describe and analyze interactions and connections between individuals,
concepts, or places. Common application domains would include social networks, between humans (Mora-
Cantallops et al. 2021) or animals (Vanovac et al. 2021), as well as transportation networks (Ran and
Boyce 2012) or causal networks (Giabbanelli and Tawfik 2021). Some networks can be described as static
since the values of their nodes or edges do not change over time. For example, a causal network may state
that the concept nodes ‘eating’ and ‘physical activity’ impact ‘weight’, which would always be factual. In
contrast, some networks are dynamic because nodes and/or edges change over time. For instance, in an
epidemic spread, the state of the nodes (e.g., healthy, infected) changes over time based on neighboring
nodes. Network simulation models can capture these changes and provide essential decision-support tools,
as recently witnessed during the COVID-19 pandemic (Giabbanelli et al. 2021) or as we routinely see in
infrastructure management (Dai et al. 2020). Although some simulations may be performed over a very
small number of instances (e.g., 500 people), numerous scenarios call for large populations (e.g., when
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modeling the nationwide spread of COVID-19 as in Li et al. 2021). In such scenarios, the computational
load becomes significant and precludes simulations on a local computer.

Several initiatives strive to minimize the computational cost of network simulation models (Severiukhina
et al. 2020; Bhatele et al. 2017). These efforts are essential to either improve forecasting accuracy (e.g., by
simulating events at a finer time unit and/or over a larger geographical area) or remove barriers to access for
decision-makers (e.g., allowing county-level officials to compare forecasts on their laptops). An improved
implementation consists of transitioning from an existing code into a newer one, which leverages code
optimization and/or runs on more efficient hardware platforms. In particular, parallelism is key (Wu et al.
2019) in enabling simulations to use hardware solutions for scaling (e.g., a high performance computing
cluster). The importance of parallelism for network simulations was echoed by Lytton et al. 2016, who
noted that the “(g)rowth of computational neuroscience and network computation will increasingly depend
on the ease and accessibility of parallel computing” (Lytton et al. 2016). This point has come up in
numerous domains, such as optical networks (Zhang et al. 2015) or, more recently, when accelerating
simulations in quantum computing by several orders of magnitude (Huang et al. 2021).

However, the task of taking a serial network simulation and scaling it up through parallelism does
come with challenges. Chief among them is the possibility of introducing errors in the scaled-up code.
Consequently, verification of the code needs to be performed again, since the system level of the (presumably
verified) legacy serial implementation has now changed. As emphasized in Beisbart and Saam 2019,
Chapter 24, verification should be process-oriented and automatic. Since simulation models are stochastic,
dynamic, and consist of many entities (nodes or agents), their output is typically aggregated and simplified
via the mean or median (Lee et al. 2015). The aggregated time series of one model is thus compared with
the series from another model for verification. We recently showed in the context of Cellular Automata
(CA) that errors introduced in a scaled-up code may not be detected at this aggregate level and we thus
proposed an inspection that could inspect minute differences in vast amounts of simulation runs (Wozniak
and Giabbanelli 2021). Since each of the cells in a CA could readily be mapped to a pixel of an image, our
approach used machine learning techniques rooted in computer vision to discriminate correct simulation
runs from incorrect ones. This mapping is not directly possible in a network simulation, as a network
only defines the structure of elements without assigning them a position in space. In short, the prevailing
approach of comparing aggregates is at risk of considering buggy implementations to be valid (i.e., false
negative), while a detailed inspection of the rich data offered by simulation traces has not been feasible due
to the volume and its unstructured characteristics (e.g., no mapping to space). In this paper, we propose the
first approach that leverages network simulation traces to examine the correctness of an implementation.

Our two specific contributions are as follows. First, we articulate a set of techniques to automatically
verify the correctness of a scaled-up network simulation vis-a-vis its legacy serial code. Similarly to our
prior work, these techniques continue to use machine learning, but a key innovation (to tackle network
simulations rather than CA) is the use of reordering algorithms that can rearrange an adjacency matrix to
facilitate the identification of patterns. This introduces an interesting research problem, which is to identify
the best pair of (representation–algorithm) since there are multiple ways in which a matrix can be reordered,
and several machine learning algorithms that can mine this representation. Our second contribution is thus
to experimentally assess which pairs are best, through network simulations applied to three different popular
domains: disease spread (via the Susceptible-Infected-Removed or ‘SIR’ model), infrastructures (cascading
failure in a power grid), and rumor spread. Since the behavior of a network simulation depends both on
its function (e.g., whether to spread a disease or a rumor) and on its structure, we run each of the three
simulations models on three common network structures: small-world, scale-free, and random.

The remainder of this paper is organized as follows. In Section 2, we briefly cover the three network
simulation models which we implemented (as they have been abundantly explained elsewhere) and explain
the reordering algorithms. Section 3 presents our method and experimental set-up. Results are provided in
Section 4 before succinct concluding remarks in Section 5.
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2 BACKGROUND

2.1 Three Network Simulation Models

The spread of a disease can be simulated through a network, in which nodes are people with their particular
health status and edges indicate interactions between people. In computational epidemiology, changes in
an individual’s status are governed by compartmental models which identify the possible states and their
transitions. In particular, the Susceptible-Infected-Removed (SIR) model considers that individuals have
three states (Brauer 2008): they are susceptible to an infection, then they can become infected based on
a transmission rate of β for each social tie, and finally they are removed from the population (either due
to death or recovery) at a rate of γ . This simple model of infectious diseases forms the backbone of more
elaborate versions in which states are added, for example to represent different doses of vaccines.

The diffusion of a rumor is another well-studied phenomenon in network simulations. Rumors are
an integral part of social communication as they can convey propaganda, slander, or divert attention.
Depending on the nature of the rumor, there can be a destabilizing effect (e.g., panic, mistrust) or a positive
outcome (e.g., as a marketing tactic for the alleged merits of a competing product as in Kostka, Oswald,
and Wattenhofer 2008). The rumor spread in a basic word-of-mouth model resembles the disease spread
in an SIR in two ways. First, they go through similar stages: ‘ignorants’ (i.e., susceptible) individuals
have not heard the rumor, ‘spreaders’ (i.e., infected) transmit it, and ‘stiflers’ (i.e., removed) have heard
the rumor but do not spread it. Second, transitions resemble the SIR approach: when spreaders encounter
an ignorant, the ignorant becomes a spreader with a certain probability, and spreaders may spontaneously
become stiflers with a certain probability (Kostka et al. 2008; Zhao et al. 2012). This basic model has
been extended through several approaches. We integrate the notion of rumor spread with refusal (Zhao
et al. 2012), that is, when an ‘ignorant’ agent directly becomes a ‘stifler’ (at a given refusal rate) because
they would reject a rumor right away instead of initially believing in it.

Finally, network simulations can represent cascading failures in a system, such as a power grid shutting
down or a transportation network collapsing. In essence, cascade failures occur when a node fails and then
causes other nodes to fail, thus triggering a loss of efficiency or even a collapse of the system. The failure
of one node can suffice to collapse the entire system if that node is among one of the largest load-bearing
nodes (Crucitti et al. 2004). A tolerance parameter α specifies how much a node can be over-loaded before
failing. If the nodes are below a critical threshold αc, and the right attack is placed, then the system would
collapse as its components cannot absorb the over-load. Attack schemes can target nodes at random, or
prioritize nodes with higher loads. The value of αc depends on the attack scheme and the structure of the
network, thus illustrating the need to perform simulations over various network structures (as we do in this
paper). For example, a scale-free network (via the Barabasi-Albert network generator) is less stable to both
random and load-based removals than a random network (via the Erdos-Renyi network generator) (Crucitti
et al. 2004). There are several models to represent the failure of a node. Under the inward constant load
model used in this paper, a node’s fragility is proportional to the number of its neighbors that failed. Other
models include various forms of (over)load redistribution (Lorenz et al. 2009) as well as mechanisms such
as load shedding where edges can also fail.

2.2 Reordering Methods and Adjacency Matrix

A network structure can be visualized in different ways (Figure 1). We use the adjacency matrix An×n,
where n is the number of nodes. The value of the cell Ai, j is the weight of the edge wi, j from node i to
j. If there is no such edge, then its value is 0. In a node-links representation, nodes can be dragged to a
different position on the screen while continuing to represent the same graph. Similarly, rows and columns
of an adjacency matrix can be reordered, while continuing to encode the same structure. Reordering or
‘reorganizing’ a matrix allows to reveal patterns in the connectivity of the network (Figure 2) (Behrisch
et al. 2016).
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Figure 1: Different representations of the same directed, unweighted network under an SIR model:
node-links (left), an adjacency matrix, and an image (right).

Matrix reordering algorithms can be divided into four main approaches (Behrisch et al. 2016). The
Robinsonian approach re-arranges the matrix so that its values decrease monotonically when moving away
from the diagonal (Petit 2004). Most of the time, these algorithms produce block patterns. There are three
main subgroups: greedy algorithms focus on placing the highest dissimilarities in the remotest cells, far
from the diagonal; hierarchical clustering orders the matrix elements so that the first and last elements in
the obtained order for the respective clusters should also be like the first (or last) element in the adjacent
cluster; optimal-leaf ordering focuses on smoothing the clusters by ordering the vertices according to their
neighborhood similarities. The Dimension Reduction approach seeks to create a one-dimensional order
of rows and columns which shows non-linear relationships between each of them (Hahsler et al. 2008). It
uses similar algorithms from dimension reduction in machine learning. In particular, a principal component
analysis (PCA) often yields an off-diagonal pattern, which is the same as a block pattern but goes through
counter diagonal. Graph theory algorithms treat reordering as a sorting problem, solved by finding
the shortest paths between nodes. That is, they compute a linear order that optimizes a graph-theoretic
layout cost function. Bandwidth minimization, profile minimization, and traveling salesman problem (TSP)
are commonly used (Dı́az et al. 2002). The most common structures obtained using these methods are
block and bands patterns. Heuristic approaches transform the reordering problem into smaller, more
computationally efficient ones (McCormick et al. 1969). That is, they reorder the adjacency matrix so the
entropy of the network is minimized. They often use subsets of rows and/or columns in order to iterate
over the permutation possibilities, choosing the most favorable ones. An example is a genetic algorithm. It
is possible to obtain every pattern, depending on the algorithm we choose. Bond Energy Algorithm (BEA)
tends to result in a block pattern organized as a star or off-diagonal patterns.

Figure 2: Block patterns create groups of interests or clusters, which can overlap or miss connections. Star
patterns (seen as lines in the matrix) show the connectivity of a node: the length of the line is proportional
to the number of connections (degree) and the band’s width shows the number of distinct paths.

3 METHODS

3.1 Overview

Our approach proceeds in three main consecutive steps (Figure 3). First, we perform simulations via each
of the three models described in section 2.1, on three different network topologies. The outputs (or ‘traces’)
of these simulation runs are transformed into images for analysis. Then, we reorder these images to favor
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Figure 3: Our approach is structured in three main components (A, B, C).

the emergence of patterns, leading to five different views for each image. Finally, we evaluate each of these
views via two optimized machine learning approaches, to identify the best pair of representation (i.e. matrix
reordering) and learning method. Each of these three main steps is now described in a subsection. While
space constraints prevent our algorithms to be detailed here, their implementation in Python is provided
alongside results and analyses on a public repository at the Open Science Framework (https://osf.io/c2wb5/).

3.2 Step A: Data Generation

Even by focusing on three simulation models, there is a massive potential search space within which to
demonstrate our approach. Indeed, each of these models has several parameters, each simulation must
execute on a specific network instance hence more parameters come from network generators, and the
endless ‘creativity’ of human errors produces even more unknowns. To provide a robust evaluation, we
focused on the harder cases: the situations in which (plausible) errors are most difficult to detect based
on the commonly used aggregation approach. We first describe the errors and then our search process to
identify hard cases for which our automatic approach can be most useful.

We accounted for three types of errors that can be encountered when scaling up a simulation code.
In parallelism errors, the overall network is divided into subnetworks to support distributed and parallel
algorithms, which are routinely used on an HPC setting. The subnetworks need to overlap by a tunable
factor, since the status of nodes at the interface of two subnetworks depend on what happens in each part.
When the division is computed incorrectly, some of the connections are erroneously dropped (Figure 4). In
unequal resolutions, the different parts of the network have different resolutions. This is common practice
in scientific computing, for example to simplify the representation of a part of the network in which no
disease is spreading. Once the disease comes in, the resolution is refined accordingly. If the resolution is not
promptly set to a fine-grained level, an approximation error will occur. Finally, wrong probabilities signify
that the stochastic model had errors due to its implementation of random events, which are a common
target of optimization when scaling up a simulation (Köster et al. 2020). Note that we also considered
other types of errors, such as performing an asynchronous update instead of a synchronous one, but they
either (i) required too much ‘effort’ in making a mistake to be plausible, or (ii) the differences would be
easily visible and do not need an automated approach.
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Figure 4: Connections are dropped erroneously due to a mistake in assigning a network onto an HPC by
dividing it into subnetworks.

On some simulation models and network topologies, specific error combinations can be indistinguishable
from correct runs because the output distribution of the erroneous code falls within the correct output
distribution (Figure 5). When we cannot visually tell whether the code had errors, we need our proposed
fine-grained automatic investigation. For each of the three simulation models, we used a grid search to
identify the top k hardest errors. The grid search was made possible by writing each simulation model as a
Python script in which each error could be turned on/off via Boolean variables; the scripts are available on
our online repository. Hardness was measured as the distance between the erroneous distribution of inputs
and the correct ones; the smaller the distance, the harder to tell them apart. For each model, we observed
that the distance quickly rises beyond k = 30 (Figure 6) hence we focused on the top 30 harder errors.

Figure 5: To check if an implementation is correct, a typical approach runs several simulations with the
(questionable) implementation and compares the distributions of its outputs with expected distributions
from a trustworthy implementation. However, this comparison fails (i.e., produces a false positive) when
seemingly similar distributions hide implementation bugs. Here, the distributions from the incorrect
implementation (light tones) are within the expected distributions, particularly for early simulation steps.

3.3 Step B: Image Transformation

For each model, step A produces simulation runs from the 25 hard error cases (of the scaled-up code) and 1
correct case (from the verified, legacy implementation). This data is in the form of time series of networks
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(a) Characteristics of the 10 hardest cases. (b) Top k cases sorted by hardness (i.e. distance).

Figure 6: Identifying ‘hard errors’ for the cascade failure model. The plots for all 3 models are provided
as supplementary online material (https://osf.io/c2wb5/).

and it needs to be converted into images suitable for computer vision techniques. We thus transform each
network at each time step into an image based on its adjacency matrix. Note that an adjacency matrix
only encodes the connectivity (i.e. edge set) of a network, but the image must also account for the nodes’
states. If there is no connection in the matrix, the corresponding pixel is black. If there is a connection,
the color encodes the application-specific states of the two nodes involved. In the rumor spread and SIR
model (exemplified in Figure 1-right), colors are as follows: red if at least one node is infected or believes
a rumor, green if both nodes are susceptible/health, yellow when there is no transmission (i.e., if one or
both nodes are recovered/disbelievers). In the case of cascading failures, yellow indicates that one node
has failed and red shows that both nodes have failed.

The subsequent reordering of an image is an innovative feature that answers an open question: how can
we automatically rearrange simulation outputs to promote the emergence of patterns that can be accurately
detected? To answer this question, each original image is also transformed via four reordering algorithms
(two heuristics: BEA, BEA TSP; two dimension reductions: PCA, PCA angle) from the R Seriation
package (Hahsler et al. 2008), thus resulting in five representations. Examples are provided in Figure 7.

(a) Original (b) BEA algorithm (c) PCA algorithm

Figure 7: Simulation on a small-world network turned into different images.
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3.4 Step C: Machine Learning

3.4.1 Dividing data for training and testing.

Our objective is to tell whether a simulation code is correct vis-a-vis its legacy counterpart, based on their
simulated outputs. We thus face a supervised machine learning task known as binary classification, which
we perform using two different algorithms (decision trees, random forests). In the training phase, we build
a classification model from the data, by optimizing the hyper-parameters of the learning algorithm. In the
testing phase, we evaluate the model. Two observations are important to understand our methods. First, a
core requirement of classification is that the same data points cannot be used for both training and testing:
this would be akin to training students on homework questions that are reused verbatim in a later exam,
thus leading to inflated performance measurements. To apply this requirement, we cannot just use different
images for training and testing: if the image generated in a simulation at t goes to training while the one
from t+1 goes to testing, we will have nearly the same images in the training and testing set (Figure 8). To
avoid this situation, we separate the data by simulation configurations: when one configuration is assigned
to either training or testing, all associated runs and time steps are assigned with it. In a similar vein, it is
necessary to having a correct simulation that matches the configuration of an erroneous simulation, and
that both remain in the same testing or training dataset. Otherwise, consider an example in which the error
configuration is done on a random network, but the correct simulation is done on a small-world network.
In this situation, the machine learning model could be biased to predict that correct simulations look like
small-world networks, whereas all simulations on random networks are erroneous.

Figure 8: Similarity between images from two different time steps but the same simulation run.

The second observation from a simulation standpoint is that we should train a model to identify future
errors. That is, we cannot assume that all possible implementation errors have already been seen and
that our goal is merely to identify one of them from a set list. We thus perform two forms of testing.
We perform the most classic scheme of in-sample evaluation, which it assesses the model’s ability to
identify patterns (errors) that it has already seen. We also evaluate out-of-sample: some types of errors
are withheld from training and only encountered at testing time. Among the top 30 hardest errors, we
noticed that approximation errors were least prevalent. We used approximation as the out-of-sample-error,
so that the remaining errors are sufficiently hard for a rigorous in-sample evaluation. In short, training
and testing had the 25 hardest errors, which did not include approximation errors; a separate dataset for
out-of-sample evaluation included the 10 hardest errors involving approximations. We performed 20 runs
for each configuration of errors. For each of the three simulation models, this produced 25,000 error images
for testing and training plus 10,000 for out-of-sample. To avoid issues of imbalanced datasets, we produced
as many correct images thus leading to 50,000 and 20,000 images per model respectively.
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Table 1: Hyper parameters used for tuning machine learning models.

Machine learning model Hyper parameters Values

Random Forest, Decision Tree

max. depth 3, 5, 7, None
min. sample split 1, 10, 25, 50, None
criterion ‘gini’, ‘entropy’
min. samples per leaf 1, 2, 5, 10
max. features ‘sqrt’, ‘log2’
min. impurity decrease 0.0, 0.01, 0.05, 0.1

Decision Tree Splitter ‘best’, ‘random’
Random Forest number of estimators 25, 50, 75, 100

3.4.2 Obtaining robust performance estimates.

To measure the performance of a machine learning model, we avoid dividing the data a single time into
training and testing. This runs the risk of obtaining strong results because the testing data happened to be
‘easy’, or conversely to see mediocre performances due to rare and hard cases in the testing data. Rather,
the data is repeatedly divided into training and testing through a process known as k-fold cross-validation:
the model is built on k−1 folds, evaluated on the remaining fold, and the process is conducted k times to
provide k performance estimates. This process is necessary when there the machine learning algorithms
have hyper-parameters, which is often the case. In this situation, the building process of the model needs
to repeatedly train a model on a set of hyper-parameter values, evaluate it, and so on until the best values
have been found. This process in itself uses another set of k-fold cross-validation, leading to a nested
cross-validation scenario. Since we have 25 error scenarios, we used a 5×5 nested cross-validation.

Hyper-parameters were optimized via a grid search, based on the values listed in Table 1. The
choice of hyper-parameters to optimize depends on the algorithm. We use two algorithms (decision trees,
random forests) that provided strong performances in our previous work on cellular automata (Wozniak
and Giabbanelli 2021). Decision tree algorithms recursively divide the feature space via axis parallel cuts
to decrease the overall entropy (Maimon and Rokach 2014, p. 13). That is, after a cut, the subdivisions
should be more homogeneous. The decision tree algorithm is subject to several parameters, such as a
maximum depth (to limit the depth of the recursive partitioning) or a minimum sample split (i.e., a part
with too few samples cannot be subdivided). Since a random forest is an ensemble of decision trees, most
of these hyper-parameters are also used by the random forest algorithm. In addition, a random forest has
to determine how many trees should be used.

We use four scores to evaluate the machine learning models: accuracy, recall, precision, and F1 score.
Accuracy is the percentage of correctly classified samples. To understand the other scores in the context of
our error detection system, note that ‘true positives’ mean that we correctly predicted whether there was
an error in the simulation and ‘true negatives’ mean that we correctly predicted that a simulation had no
error (i.e., was correct). Precision is the fraction of true positives that were found. Recall is the fraction
of relevant cases that were found. For example, consider that the system flags 30 simulations as having
errors. In reality, only 20 of them are erroneous (true positives), and 40 other erroneous simulations were
not flagged. That leads to a precision of 20

30 = 2
3 and a recall of 20

20+40 = 1
3 . F1 score is defined as the

harmonic mean between precision and recall. All four scores range from 0 to 1, where 1 is best.

4 RESULTS

Based on the results shown in Figure 9, we confirm three expectations while noting important nuances. First,
we expected and found that correctly identifying a new type of error (i.e., out-of-sample) is significantly
harder than recognizing variations of previously encountered errors (i.e., in-sample). However, the decrease
in performance is mediated by the type of simulation model. For rumor spreads, all four performance
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Figure 9: Ability of our approach to automatically detect errors in simulation implementations, both within
sample (similar errors have been seen before) and out-of-sample (new types of errors are introduced). Each
measure ranges from 0 to 1, where 1 is best.

metrics can still be found above 0.9, whereas only precision remains high in the other two models (SIR,
cascade). Second, random forests outperformed decision trees on most performance metrics, as we may
generally expect. However, performances are mediated by the reordering algorithms, which shows that some
algorithms are more able to identify some patterns than others. For example, BEA reordering algorithms
produce patterns that decision trees can occasionally leverage more efficiently than decision trees. Third,
the way in which an image is reordered can influence the ability of machine learning algorithms to identify
patterns, in line with expectations. However, we find that it can be challenging to outperform the original
image. When performing in-sample testing (Figure 9-left half), we see that the original image is the best
representation followed by PCA representations (which only out-perform in one situation). When examining
out-of-sample testing (Figure 9-right half), we note that PCA algorithms offer equal or greater precision
across all models compared to the original image, with mixed results on other performance measures.

In the SIR model, all performance measures are high for in-sample testing, but they are all lower for
out-of-sample testing. We emphasize the out-of-sample results, because they resemble practical situations
in which we do not already know which errors are going to happen. The precision is sufficiently high for
practical settings, that is: if we tell a practitioner that there is an error, then it is likely that there is indeed an
error. A similar situation is encountered for cascading failures, where all performance measures are high
for in-sample testing, but only precision remains (very) high for out-of-sample testing. In rumor spread,
performance measures are excellent for in-sample testing and all remain very strong for out-of-sample,
meaning that we can detect very well whether an implementation of a rumor spread was correct.
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5 DISCUSSION

Implementation errors can be difficult to detect when changing the code of a stochastic simulation model.
In particular, comparing the aggregate output of a new implementation with a reference may result in
missing the errors that fall within the distribution of the correct output (Figure 5). We previously proposed
a solution to address this problem with Cellular Automata (CA). Since each cell already has a position in
space, these simulations could straightforwardly be handled as images. This is not the case in network
simulations, hence we examined the joint choice of a representation strategy (matrix reordering algorithm)
and a machine learning approach. Since our value-proposition is to detect errors when aggregates can be
misleading, we focused on the hardest error cases and emphasized the necessity of identifying previously
unseen errors. Our experimental evaluation was conducted on several network models, across three network
topologies. Results show that previously encountered types of errors can be accurately detected when using
certain pairs of algorithms (PCA-angle reordering and random forests), even when errors are combined in
previously unseen ways. Most importantly, results also show the possibility of detecting errors that have
never been encountered before, with high precision.

Since our approach is the first to detect implementation errors in network simulations via computer
vision, it is not currently possible to compare it with another approach solving the same problem. Such
comparisons will be an important element of future works, thus opening up a new area of research at the
interface of the simulation community and machine learning. Four directions are of particular interest.
There exist numerous algorithms to re-order images and favor the emergence of patterns (section 2.2), hence
additional approaches (e.g., Robinsonian, Graph theory) can be examined in future works. Similarly, we
only evaluated our approach on models belonging to epidemiological, infrastructural, and social domains.
Models used in other domains may behave differently, thus additional evaluations can examine how our
results are domain-specific. Third, the temporal dynamics of the network can reveal additional anomalies
and could be included among the data extracted from images. Finally, machine learning has an abundance
of algorithms. Other classifiers can thus be examined, either as variations of the ones employed here (e.g.,
gradient tree boosting) or as other types of approaches (e.g., support vector machines). Convolution Neural
Networks would also be a prime target given their extensive track-record in image analysis.
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