
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew, T. Roeder, and
P. Lendermann, eds.

TOWARDS REUSABLE BUILDING BLOCKS
TO DEVELOP COVID-19 SIMULATION MODELS

Shane A. Schroeder
Christopher Vendome
Philippe J. Giabbanelli

Department of Computer
Science & Software Engineering

Miami University
205W Benton Hall, 510 E. High St.

Oxford, OH 45056, USA

Alan M. Montfort

IMT Mines Ales
6 Av. de Clavières

30100 Alès, FRANCE

ABSTRACT

Modeling & Simulation has played an essential role in supporting the decision-making activities of pol-
icymakers for COVID-19. However, a proliferation of models has been noted in the literature, and new
models are only more likely to emerge given the shift to long-term management of the disease and the call
for highly tailored tools. Having a multiplicity of models can have benefits, for example when contributing
to ensembles of models. However, if each model is created from scratch, there is significant redundancy in
efforts hence time inefficiency and a heightened risk of bugs. Our study examines the naturally occurring
practices of modelers who wrote COVID-19 models in NetLogo to identify redundancy in code and thus
suggest reusable ‘building blocks’ that would speed-up the process of model development as well as
improving code quality. Based on 28 models, we identified five themes and discussed their transformation
into potential building blocks for simulation.

1 INTRODUCTION

COVID-19 has caused over 6 million deaths worldwide, out of almost half a billion cases. As an example,
COVID-19 is a leading cause of death in the USA (Woolf, Chapman, and Lee 2021), where it is among the
contributing factors explaining the largest decline in life expectancy in over 75 years (Stephenson 2022) –
a decline that exceeds the effects of both World War II and the flu pandemics that followed. Several studies
showed that life expectancy decreased in most of the countries that were examined (Aburto et al. 2022;
Islam et al. 2021), which underscores the global impact of the disease. Given the eventual shift from a
pandemic to an endemic phase, the global community will need to manage COVID-19 for the long term,
without any ‘misplaced complacency’ (Katzourakis 2022). There is thus an ongoing need for tools that
support the decision-making processes of policymakers with regard to specific populations (e.g., elderly,
children), places, and times (e.g., prevalence, seasonal effects). Modeling & Simulation has been a part of
this toolbox from the very beginning (Lorig et al. 2021; Padmanabhan et al. 2021; Childs et al. 2021) and
has had to face numerous transitions (Giabbanelli et al. 2021), from new soft skills (e.g., communicating
expectations and results with the general population or policymakers) to improvements in data (e.g., detailed
mobility datasets as in Elarde et al. 2021 and the various under-exploited sources mentioned by Santosh
2020) and more comprehensive models (e.g., accounting for vaccine logistics as in Liu and Lou 2022).

The growing field of M&S applied to COVID-19 has often been portrayed as a “proliferation of
models, often diverging widely in their projections”, thus calling into question “to what extent results can
be trusted” (James et al. 2021). Practices have improved, for example by shifting from a single model

978-1-6654-7661-4/22/$31.00 ©2022 IEEE 569

Schroeder, Vendome, Giabbanelli, and Montfort

to ensembles of models (Kim et al. 2020), which can be accessed by policymakers via interactive web
portals for detailed queries about places and times (Srabanti et al. 2021). Instead of picking ‘whichever
curve’ (Hutson 2020) best aligned with a message, we thus rely on aggregated projections (e.g., via the
COVID-19 Forecast Hub). Similarly, lessons learnt from early mistakes in science communication (Kreps
and Kriner 2020; Van Dooren and Noordegraaf 2020) help us to more cautiously explain model uncertainty
and increase public involvement in modelling (Harvard et al. 2021). There is also a heightened awareness
in the M&S community about the tradeoff between model development costs and possible harms caused
by using the model for high-stakes decisions (Horner and Symons 2020). Finally, the wide confidence
margins of some models can be narrowed thanks to a much larger number of simulation repeats, made
possible by various forms of simulation acceleration (Kulkarni et al. 2022; Lutz and Giabbanelli 2022).

Despite these changes, the basic observation remains: there is a multitude of models, and calls to create
‘highly tailored models’ for specialized cross-sections of the population (Mokhtari 2022) can further fuel
this proliferation. Having so many models is not necessarily a problem. After all, they serve to answer
very precise questions at a local level: they differ in purpose, data, and stakeholders. Developing a myriad
of local models is thus one approach to ensure that each one is adequate, and having multiple models
helps to build rigorous aggregates. The challenge is when each of these models is developed from scratch,
which is often the case (Giabbanelli et al. 2021) despite the availability of COVID-19 frameworks such
as (Kerr et al. 2021) which can be customized for a population (Li and Giabbanelli 2021b) or extended to
account for new interventions (Li and Giabbanelli 2021a). Repeatedly developing models with the same
techniques (e.g., Agent Based Models, Compartmental Models) for the same disease leads to two issues
from a software engineering viewpoint. First, re-inventing the wheel is potentially inefficient, thus leading
to elevated model development costs. Second, it raises the possibility of bugs (Rahman and Farhana 2020),
which may be difficult to find since model code is not systematically shared (Barton et al. 2020).

In this paper, we examine whether COVID-19 simulation models independently created by several
teams share commonalities at the code level. The identification of such reusable code fragments or ‘building
blocks’ is a key step to then provide modelers with open and extensively tested libraries that can be easily
integrated in modeling projects, thus addressing potential inefficiencies in model implementation while
improving code quality. Our study focuses on the naturally occurring practices for COVID-19 simulation
models coded in NetLogo, which is one of the environments used in many publications (Daghriri and
Ozmen 2021; Cotfas et al. 2020; Li et al. 2021). NetLogo allows users to create and import libraries, as
observed in several COVID-19 projects (Saleem et al. 2022); hence, our identification of building blocks
in this environment can support later efforts at creating and integrating libraries specific to COVID-19.

The remainder of this paper is organized as follows. In Section 2, we explain the notion of building
blocks within modeling generally, as well as within NetLogo specifically in the form of libraries. In
Section 3, we summarize our methods to identify and analyze NetLogo models of COVID-19. Results
are presented in Section 4, and their implications for building blocks are analyzed in Section 5.

2 BACKGROUND

Building blocks are generic and adaptable components that help simplify and improve the quality of models
built with them. Building blocks describe a documented and validated process so that it can be properly
implemented in a model. Since blocks should be validated (i.e. accurate results based on a range of real
world input), the modeler does not have to build a process up from scratch, which might introduce bias
and error into the model. In Section 2.1, we summarize the requirement to create and use building blocks,
and briefly contrast them with the related notion of sub-models. In Section 2.2, we exemplify the use of
building blocks in the context of NetLogo; note that building blocks, libraries, and extensions are used
interchangeably by modelers employing NetLogo to refer to the same idea.

570

Schroeder, Vendome, Giabbanelli, and Montfort

2.1 Sub-models and Building Blocks: General Modeling Perspectives

Sub-models constitute a distinct part of a larger model. That is, they describe an ‘inner’ model that has
been embedded in an ‘outer’ model. This embedding makes them less generic and more purpose built to
the models in which they are employed. For example, a sub-model in an Agent-Based Simulation could
take in the agent’s observation, run a machine learning algorithm (e.g., neural network), and output the
decision for the agent (Negahban and Giabbanelli 2021). In contrast, building blocks are defined as a
basic unit from which models are built upon and with (Verbraeck and Valentin 2008). Blocks are supposed
to be self-contained, inter-operable, reusable components. A building block is usually dedicated to a
domain (Valentin et al. 2005; Carley 2019), thus saving time to users of building blocks who do not have to
invest as heavily in finding relevant theoretical constructs and/or propose new complex rules. For example,
due to lockdown from COVID-19, commuting patterns were modified and ultimately pollution was affected.
A model for large scale impacts of the lockdown could thus rely on building blocks for household water
consumption, wastewater processing, and pollution (Dobson et al. 2021). In short, sub-models are usually
specific to a model and are less generic, whereas building blocks are meant to be generic and reusable in
many different models across different domains.

Each part of a Model Building Block describes a specific calculation or a step in a process, e.g. the
temperature impact of light on plankton growth (Albertyn and Kruger 2003). The block as a whole is
mainly characterized by its in- and out-going connectors, user dialog, and documentation. Independence
and reusability are key requirements to turn model components into building blocks. De Kok et al. (2010)
detail these requirements, including the quality of the documentation (e.g., thoroughness, clarity about
the functionality), encapsulation (i.e., the implementation can be hidden), easy to adapt, and scientifically
correct and mature. Reusability can be a challenge, as the frameworks employed by building blocks may
be specific to the needs and capacity of their own development team (Voinov and Shugart 2013). In order
to cope with that issue, blocks should (i) include data sets that exemplify to users how to communicate
with the block and (ii) favor standard methods of data importing and exporting.

To use a building block, users first identify where they can support a model, then search if the block
exists, and finally incorporate it or ‘integrate it’ into the model by making proper adjustments in the code for
inter-operability. Note that integration can be a complex step (Belete et al. 2017), involving pre-integration
assessment to check requirements, orchestration during simulation, and transformations to ensure inter-
operability in terms of structure and semantics (e.g., to deal with spatial and/or time inconsistencies between
blocks as discussed in Iwanaga et al. 2021).

2.2 Building Blocks as Libraries: The Case of NetLogo Extensions

There are two diametrically opposed motivations to create a building block. On the one hand, modelers
can engage in requirement gathering, for example by identifying and engaging with potential users to list
their needs, or by examining how tasks commonly accomplished within a given context define a set of
needs (Giabbanelli et al. 2019). On the other hand, modelers may assume that what they created for
themselves may be of interest to others, echoing the phrase “if you build it, they will come”. Knowing
which of these two approaches is most common in the case of NetLogo thus contributes to situating the
contributions of our work, which is concerned with requirement gathering for COVID-19.

We examined seven articles that introduced new extensions for NetLogo. Based on this sample,
the creation of building blocks is mostly driven by the needs of the authors (5 out of 7) rather than
a demonstrated desire for functionalities from the modeling community (Table 1). For example the
ontology (Polhill 2015), BDI (Sakellariou et al. 2008; Wiens and Monett 2013), GIS (Walker and Johnson
2019) and HubNet (Muscalagiu, Emil, and Negru 2014) extensions often explained the proposed usefulness
of the extension, but without evidence or a mention of the specific community needs that functionality. Few
works (two out of seven) discussed a need from the community: LevelSpace Extension (Hjorth et al. 2020)
and BDI Extension Expansion (Maleš and Ribarić 2016). For example, the LevelSpace extension justifies

571

Schroeder, Vendome, Giabbanelli, and Montfort

the need from the community based on a survey (Morvan 2012) about the increased research interest (as
evidenced by a growing number of publications) in multi-level agent-based modeling.

Note that Table 1 does not demonstrate the absence of a need. For example, Geographic Information
Systems are widely used in Agent-Based Model, and this extension is one of the most used in practice (Ven-
dome et al. 2020). Rather, Table 1 shows that (i) building blocks are developed but (ii) the need is either
assumed or implicit. While there exists qualitative research to study software engineering processes and
practices (Zhang et al. 2019), this line of work has not yet been applied to the building blocks used in
NetLogo models, which suggests that our approach (detailed in the next section) is more unique within
this context.

Table 1: Table of assessed NetLogo extension papers.

Extension Name What does it do? Evidence that the extension addresses
a need from the modeling community

Ontology (owl) Extract ontologies from simulation
models at a specific tick

None

LevelSpace (ls) Build multi-level agent-based model
systems with hundreds or thousands of
concurrent models

Growing research topic of Multi-level
Agent-based models, as evidenced by
a survey

BDI (beliefs-
desires-intentions)

Allows agents to now exhibit beliefs,
desires, and intentions to more accu-
rately depict behaviors.

None.

BDI Expansion Improved upon the original BDI exten-
sion by creating ‘clusters’, which are
clustered intentions.

The Berlin School of Economic & Law
used the library for curriculum devel-
opment, but nothing is mentioned for
other communities

Geographic In-
formation System
(GIS)

Includes spatial information in models
(e.g., maps)

Mention of a need to increase accu-
racy by using realistic maps. No need
mentioned from the community.

HubNet Runs models on various devices, such
as mobile devices (e.g., Android, iOS)

None

Type-2 Fuzzy Infer-
ence System (FIS)

Handles linguistic/numerical uncer-
tainties by representing concepts (e.g.,
large/small, fast/slow) as fuzzy sets

None

3 METHODS

3.1 Model Selection

In line with our previous work on mining NetLogo models (Vendome et al. 2020), we searched for them
on two platforms: (i) https://comses.net/, since it is the main hosting platform for academic ABM code per
the review of Janssen (2017); and (ii) GitHub.com, which has a leading position as a hosting platform for
software development. We searched for files including the keyword ‘COVID’ and bearing the extension
‘nlogo’, used by NetLogo. Models were identified in July 2021, then analyzed both manually for building
blocks (Section 3.2) and automatically for software quality (Section 3.3).

572

https://comses.net/
GitHub.com

Schroeder, Vendome, Giabbanelli, and Montfort

3.2 Qualitative Analysis: Thematic Analysis

The objective of our qualitative analysis is to manually identify commonalities (or ‘themes’) acrossNetLogo
codes on COVID-19. This is performed by using thematic analysis, one of the most common methods
within qualitative research. The two student authors received training on thematic analysis and performed
it via a four steps process. First, they ‘transcribed’ the data, which simply means moving it from NetLogo
files into Word such that they can be annotated. Students then independently tagged codes of interest with
labels created on the fly, such as ‘initialize agent traits’, or ‘placing agents in locations’. These labels were
then combined to generate initial themes; for example, both cited labels pertain to the theme of ‘agent
heterogeneity’. Themes were reviewed and reworked by re-reading the models, thus arriving at a final list
of themes. The objective is often to arrive at five to seven themes. These steps are detailed in numerous
textbooks (Guest et al. 2011), with a few examples of their application in software engineering (Cruzes
and Dyba 2011). For concision, the analysis of the model with the least code is shown in Figure 1. The
annotations for every model are available at the Open Science Framework portal https://osf.io/d7vqa/ to
provide full transparency into our analysis of publicly available models.

Figure 1: Thematic analysis for the model with the fewest lines of code. Our themes are first listed, with
a brief description, the corresponding color, and the number of lines in the model. These colors are then
used to highlight the original code. All codes with highlights are available at https://osf.io/d7vqa/.

573

https://osf.io/d7vqa/
https://osf.io/d7vqa/

Schroeder, Vendome, Giabbanelli, and Montfort

3.3 Quantitative Analysis: Software Quality

We used our custom parser to characterize each code with respect to metrics commonly used in software
engineering related complexity and readability. Several of the metrics tell us about the level of sophistication
of the implementation, for example by the number of functions, use of more advanced control-flow structures
(nested blocks), reliance on diverse types of agents (breeds), or the diversity of NetLogo constructs utilized
by the programmer (Unique Keywords). More sophisticated implementations would suggest that individuals
implementing these models are sufficiently skilled with the language to eventually integrate building blocks.
We also examined the efforts of programmers on creating quality code, as evidenced by the use of quality
identifiers for variables (at least three letters) and commenting. Greater efforts may suggest that programmers
are willing to spend the time on a quality model, thus they may be receptive to the idea of using validating
building blocks in the future. We also recorded the number of building blocks already in use (dependencies).

4 RESULTS

4.1 Thematic Analysis

We identified 28 models, with most originating from GitHub (n=21) and a few from Comses (n=7). Our
qualitative analysis focused on five themes (Figure 2): heterogeneity of the agents, their movements
and decision-making processes, disease transmission, disease development, and contact networks. Agent
Heterogeneity is used in all models, taking 38.9±46.1 lines on average to ensure that agents are diverse with
respect to demographic variables, most commonly age and health status, and a variety of model-specific
variables (e.g., nationality, income, trust in government). It also involves COVID-specific constructs, such
as mask wearing and their efficacy. Most of the time, those variables rely on official datasets. Initialization
also involves spatial variables to set the initial location of each agent, such as the positions of various
staff in a restaurant. While spatial aspects of initializations are rare and varied, demographic aspects form
repetitive sequences of assigning values to variables, which gets very lengthy (up to 247 lines).

Figure 2: Number of lines devoted to each theme per model (left) and across models (top inset).

The vast majority of models (26 out of 28) account for movements and decision-making processes
in the agents, dedicating on average 42.3±65.1 lines to this purpose. About half of the time (14 out of
26), these movements are random, hence agents are akin to spheres drifting through space and (optionally)
bouncing off the walls. These codes are highly similar and may be abstracted by making use of a few
variables, for example for the speed of drifting and whether the environment is closed. The other half

574

Schroeder, Vendome, Giabbanelli, and Montfort

of the time, agents have purposeful movements, accounting for the nature of the destination (e.g., taking
the elevator to a different floor, shopping or working, waiting in line) and their own status (e.g., essential
worker, infected). While the codes differ in these highly customized models, they often share the abstract
notion of identifying certain types of location and moving agents through them based on simple conditions.

Disease transmission happens in all models, taking on average 43.8±47.2 lines. The overwhelming
pattern (25 out of 28 models) consists of checking for each susceptible agent whether its neighbors are
infected; if so, we compute the probability of infection depending on characteristics such as age and personal
precautions, which abstract preventative measures including mask wearing. There is thus a high potential
for simplification in most models. In contrast, there are only three models in which the spread can happen
via infected surfaces. These three models account for aspects as varied as sanitation procedures, air flow
(e.g., confined public spaces vs. open spaces), or sneezing/coughing frequencies.

Since disease transmission is mostly a stochastic event when agents are close to each other, it is not
necessary to use networks. This may explain why they are only used by 6 out of 28 models. Network
codes are short, comprised of 2.4±4.9 lines on average, and serve more often to create a complete social
network of the population (4 out of 6 models) rather than for contact tracing after an agent is exposed (2
out of 6 models). There are thus little opportunities to simplify network codes by building blocks.

All models handle disease development, devoted on average 57.7±49.9 lines to this goal. Depending on
age, agents will express various forms of symptom severity and ultimately either recover or die. Additional
aspects include the handle of isolation and quarantine, or whether individuals were vaccinated. Few models
represent the health system (5 out of 28), through the abstract notion of ‘being hospitalized’ or ‘sent to
the ICU’, which affects the severity of the infection. Although disease development tends to be the most
complex part of the models, the models have several parts in common in terms of both states and transition,
owning to the underlying SIR and SEIR compartmental models of disease progression.

Table 2: Results for each software metrics. ‘COVID Models’ refer to the 28 NetLogo models identified
here, while CoMSES and GitHub refer to characteristics of NetLogo models found on these platforms in
general, per our previous work (Vendome et al. 2020).

Category Metric
COVID Models CoMSES GitHub

Mean±Std Dev Median Mean±Std Dev Median Mean±Std Dev Median

Readability

Blank Lines 93.5 ± 109.5 58 114.0 ± 123.6 69 76.8 ± 90.3 49
#Breeds 3.6 ± 10.4 0 3.7 ± 6.6 2 2.9 ± 4.5 2
#Comments 111.9 ± 132.1 64 150.7 ± 167.0 99.5 87.5 ± 111.3 55
#Conditionals 57.4 ± 56.9 51 74.6 ± 91.2 44.5 39.6 ± 48.9 22
#Loops 17.8 ± 19.7 13 20.5 ± 22.1 14.5 16.0 ± 25.1 9
#Identifiers 21 ± 32.7 7 40.1 ± 45.8 24 18.6 ± 23.7 10
#Quality Identifiers 19.0 ± 29.7 7 33.1 ± 39.1 20 15.1 ± 19.9 8
#Nested Blocks 1.4 ± 3.5 0 2.4 ± 10.8 0 2.9 ± 18.5 0
#Keywords 444.7 ± 454.0 315 673.6 ± 636.6 529 361.5 ± 382.6 215
#Unique Keyword 36.6 ± 15.8 34 47.1 ± 19.3 45 36.7 ± 14.8 34
Func Size (Avg) 16.4 ± 7.5 16.29 22.8 ± 16.0 18.6 17.8 ± 14.4 12.6
Func Size (Max) 68.2 ± 59.9 54 134.7 ± 367.2 67.5 64.4 ± 84.7 39
Line Length (Avg) 38.3 ± 23.3 32.91 43.5 ± 14.9 41.1 35.6 ± 12.1 32.9
Line Length (Max) 176.6 ± 71.2 161 397.2 ± 1478.4 211 172.9 ± 84.6 156

Complexity
Dependencies 0.5 ± 0.9 0 0.8 ± 1.3 0 0.5 ± 0.8 0
Functions 22 ± 18.3 19 22.5 ± 19.7 17 17.2 ± 15.9 13

4.2 Software Quality

For the quality evaluation, we focused on metrics related to readability and complexity, which impact
comprehension of the code and the ability to modify existing code. Our chosen readability metrics are

575

Schroeder, Vendome, Giabbanelli, and Montfort

●
●

●

●

●

0

20

40

#Identifiers #Quality
Identifiers

#Unique
Keywords

#Loops #Functions

F
re

qu
en

cy

●

●

●

0

50

100

150

#Blank
Lines

#Conditionals #Commented
Lines

F
re

qu
en

cy

Figure 3: Distribution of software metrics; note the two different vertical (y-axis) scales.

●

●

0

100

200

300

#Function
LOC (Max)

#Line
Length (Max)

S
iz

e

●

●

0

20

40

#Line
Length (Avg)

#Function
LOC (Max)

S
iz

e

●

●

●

0

2

4

6

#Breeds #Nested
Blocks

#Dependencies

F
re

qu
en

cy

●

0

200

400

600

#Keywords

F
re

qu
en

cy

Figure 4: Distribution of software metrics quantified either in size (left) or frequency (right).

derived from the prior work of Dorn (2012) and Buse and Weimer (2008) and have been leveraged in
recent work (Scalabrino et al. 2021). While their readability models are based on correlative analysis for
features like line length or number of loops and conditionals, there are other works that have considered it
from a cognitive perspective. For example, lower quality and number of identifiers can reduce the ability
to understand some existing code based on limitations of human memory (Binkley et al. 2008). Similarly,
guidelines suggest function size to be smaller (20-100 lines of code) (Martin 2008), since programmers
are typically limited to what they currently see immediately on the screen and recalling information not
currently visible increases the cognitive load of memory (Weinberg 1985). Additionally, comments in code
have been shown to increase understanding (Takang et al. 1996). Readability of software is an important
component of understanding software and has been shown as the dominant activity, taking over 40% of the
time, when understanding some code (LaToza, Venolia, and DeLine 2006). From the complexity metrics,
the number of functions provides insight on how many different behaviors are implemented (if the model
has more behaviors, it is more complex). The number of dependencies relates to the coupling of a model
to other libraries, which increases complexity through this linkage to the dependencies.

Although most of our models (21 out of 28) come from GitHub, software metrics are higher than
expected in NetLogo models from GitHub (Table 2; Figures 3 and 4) for all but two aspects (number
of nested blocks and average function size). Indeed, we note significantly more comments, conditional
statements, types of agents (i.e., breeds), or functions. In sum, the models are not yet at the level of
a CoMSES sample (often used by professionals to support peer-reviewed articles), but they are more
sophisticated than the average GitHub model in several aspects. The metrics suggest that programmers (i)
have a sufficient level of skills in NetLogo and (ii) are are willing to put time into programming these
models, which are important conditions to later (i) be able to integrate a building block into the code and
(ii) be receptive to using building blocks as a means to improve code quality. The need for building blocks
is demonstrated both by the redundancy of functionality across themes (section 4.1) and the current lack
of libraries. Indeed, 20 codes do not use any library and the other ones use few, which result in an average
of 0.5±0.9 library per code. Only three libraries are used in more than one case: gis is used twice to
load maps, while csv and profiler are used three times, to load comma-separated files and monitor
time spent on each function, respectively.

5 DISCUSSION

The prolific creation of simulation models for COVID-19 is set to continue, given the need to manage the
disease for the long-term and the shift to highly tailored models supporting local decision-making activities.

576

Schroeder, Vendome, Giabbanelli, and Montfort

Our previous analysis of models in NetLogo together with the present analysis devoted to COVID-19 show
that modelers rarely use building blocks to develop these models. When building blocks (a.k.a. ‘libraries’
or ‘extensions’) are involved, they primarily support input/output operations such as loading maps or data
files, or serve as timers. The functions of each model are thus written from scratch repeatedly by modelers,
which can result in inefficiency for development and raises the risk of bugs.

Our work shows that COVID-19 models in NetLogo are more sophisticated than the average model
on GitHub, which suggests that modelers have the skills to work with libraries and are willing to spend time
on their models. To identify which libraries are needed, we performed a thematic analysis on the codes of
28 models and identified five themes. Three themes were present in all models and had significant code
redundancies: heterogeneity was achieved across models by repeatedly setting up a set of demographic
variables, disease transmission checked whether neighbors were infected and then computed a probability
of infection, and disease development followed classic compartmental models (SIR or SEIR). Movements
and decision-making processes were present in almost all codes; they either abstracted agents ‘drifting’
across space, or gave them series of conditions to move between designated locations. Although networks
is the only theme for which a library already exists (Nw), this theme was rarely present in models hence
there would be little benefits in transforming codes to use the library.

Once a need for a library is identified, the next steps consist of designing, implementing, and disseminating
each library. Our work contributes to guiding these future steps by offering several possibilities, based on
our observations in the practices of modelers. For agent heterogeneity, we suggest to create one building
block that initializes agents’ demographics from a standard configuration file, which can be as simple as a
CSV file (each line is one attribute followed by instructions to initialize it) or as comprehensive as an Excel
file (consisting of tables from the statistics office as in Hunter, Mac Namee, and Kelleher 2018). Moving
some of the agents’ initialization into a file instead of being hard-coded would also have two additional
benefits. First, models are easier to compare: using the configuration of one model for another can serve to
contrast results on the basis of differences in rules rather than in population. Second, models are easier to
run on different populations, either due to a naturally occurring change in the demographic or to account
for different demographic scenarios.

For disease transmission and disease development, it may not be desirable to split these two notions
through different libraries. Rather, we observed that the ‘skeleton’ used in every model was either a SIR or
SEIR compartmental model, which is relevant for transmission (how susceptible individuals become sick)
and development (how sick individuals recover or die). It may thus be possible to use a library from which
the user can point to a desired template, configure the relevant state transitions, and then add the custom
ones. For example, dozens of lines may be summarized as follows:

load − compar tmen t s (’ SEIR ’)
s e t − t r a n s i t i o n (’ S−>E ’ , ’ r a t e ’ , 0 . 4)
s e t − t r a n s i t i o n (’ E−>I ’ , ’ pdf ’ , l o g n o r m a l (4 . 1 , 4 . 8))
s e t − t r a n s i t i o n (’ I −>R’ , ’ pdf ’ , l o g n o r m a l (1 , 1 . 8))
add − s t a t e (’ v a c c i n e ’)
add − t r a n s i t i o n (’ S−>v a c c i n e ’ , ’ r a t e ’ , 0 . 2)
#no t r a n s i t i o n s o u t o f t h e v a c c i n e s t a t e hence a g e n t s c a n n o t be exposed

In contrast, movements and decision-making processes may require two libraries as modelers were split
about equally between drastically different approaches. One set of modelers did not represent physical space,
hence agents were randomly moving, optionally bouncing off the walls. This could be achieve solely by call-
ing a (hypothetical library) function such as move-randomly(distance,angle,bounceWalls?).
Another set of modelers defined locations and activities that take agents between them, for example going
home after work. The corresponding abstraction consists of a graph, where locations are nodes and tran-
sitions are labeled edges. While this can be straightforwardly handled in a multi-paradigm environment

577

Schroeder, Vendome, Giabbanelli, and Montfort

such as AnyLogic, NetLogo is primarily geared towards Agent-Based Models and it is not designed to
alternate between graphical representations of a system.

Our examples showed that the translation of an identified need for libraries into their enactment requires
further work. In particular, we noted that needs and libraries do not have a one-to-one mapping, as several
needs may best be served by a joint library while variations of another need may require different libraries.

6 CONCLUSION

A physician recently described how “the pandemic’s greatest source of danger has transformed from a
pathogen into a behavior”, as the emphasis is now on modifiable health risks such as vaccination (Mazer
2022). From a modeling viewpoint, providing building blocks for the relatively stable pathogen part
(e.g., disease transmission and development) and basic aspects of human behaviors (e.g., heterogeneity in
demographics, random or scheduled movements) would allow modelers to devote their effort to aspects
that are truly unique in their model, such as the more complex facets of human behavior (e.g., vaccine
hesitancy). Our identification of redundancies in codes and its organization into themes thus support
modelers in providing such building blocks.

REFERENCES
Aburto, J. M., J. Schöley, I. Kashnitsky, L. Zhang, C. Rahal, T. I. Missov, M. C. Mills, J. B. Dowd, and R. Kashyap. 2022.

“Quantifying Impacts of the COVID-19 Pandemic Through Life-Expectancy Losses: a Population-Level Study of 29
Countries”. International Journal of Epidemiology 51(1):63–74.

Albertyn, M., and P. S. Kruger. 2003. “Generic Building Blocks for Simulation Modelling of Stochastic Continuous Systems”.
South African Journal of Industrial Engineering 14(2):47–61.

Barton, C. M., M. Alberti, D. Ames, J.-A. Atkinson, J. Bales, E. Burke, M. Chen, S. Y. Diallo, D. J. Earn, B. Fath et al.
2020. “Call for Transparency of COVID-19 Models”. Science 368(6490):482–483.

Belete, G. F., A. Voinov, and G. F. Laniak. 2017. “An Overview of the Model Integration Process: From Pre-Integration
Assessment to Testing”. Environmental Modelling & Software 87:49–63.

Binkley, D., D. Lawrie, S. Maex, and C. Morrell. 2008. “Impact of Limited Memory Resources”. In 2008 16th IEEE International
Conference on Program Comprehension, 83–92.

Buse, R. P., and W. R. Weimer. 2008. “A Metric for Software Readability”. In Proceedings of the 2008 International Symposium
on Software Testing and Analysis, ISSTA ’08, 121–130. New York, NY, USA: Association for Computing Machinery.

Carley, K. M. 2019. “Social-Behavioral Simulation: Key Challenges”. Social-Behavioral Modeling for Complex Systems:741–752.
Childs, M. L., M. P. Kain, M. J. Harris, D. Kirk, L. Couper, N. Nova, I. Delwel, J. Ritchie, A. D. Becker, and E. A. Mordecai.

2021. “The Impact of Long-Term Non-Pharmaceutical Interventions on COVID-19 Epidemic Dynamics and Control: The
Value and Limitations of Early Models”. Proceedings of the Royal Society B 288(1957):20210811.

Cotfas, L.-A., C. Delcea, R. J. Milne, and M. Salari. 2020. “Evaluating Classical Airplane Boarding Methods Considering
COVID-19 Flying Restrictions”. Symmetry 12(7):1087.

Cruzes, D. S., and T. Dyba. 2011. “Recommended Steps for Thematic Synthesis in Software Engineering”. In Proceedings of
the International Symposium on Empirical Software Engineering and Measurement, 275–284. IEEE.

Daghriri, T., and O. Ozmen. 2021. “Quantifying the Effects of Social Distancing on the Spread of COVID-19”. International
Journal of Environmental Research and Public Health 18(11):5566.

De Kok, J.-L., G. Engelen, and J. Maes. 2010. “Towards Model Component Reuse for the Design of Simulation Models–a
Case Study for ICZM”. In Proceedings of the 5th International Congress on Environmental Modelling and Software.

Dobson, B., T. Jovanovic, Y. Chen, A. Paschalis, A. Butler, and A. Mijic. 2021. “Integrated modelling to support analysis of
COVID-19 impacts on London’s water system and in-river water quality”. Frontiers in Water 3:641462.

Dorn, J. 2012. “A general software readability model”. Master’s thesis, University of Virginia, Charlottesville, VA, US.
Elarde, J., J.-S. Kim, H. Kavak, A. Züfle, and T. Anderson. 2021. “Change of Human Mobility During COVID-19: A United

States Case Study”. PloS one 16(11):e0259031.
Giabbanelli, P., M. Fattoruso, and M. L. Norman. 2019. “Cofluences: Simulating the Spread of Social Influences via a Hybrid

Agent-Based/Fuzzy Cognitive Maps Architecture”. In Proceedings of the 2019 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, 71–82.

Giabbanelli, P. J., J. Badham, B. Castellani, H. Kavak, V. Mago, A. Negahban, and S. Swarup. 2021. “Opportunities and
Challenges in Developing COVID-19 Simulation Models: Lessons From Six Funded Projects”. In 2021 Annual Modeling
and Simulation Conference (ANNSIM), 1–12. IEEE.

578

Schroeder, Vendome, Giabbanelli, and Montfort

Guest, G., K. M. MacQueen, and E. E. Namey. 2011. Applied Thematic Analysis. SAGE Publications.
Harvard, S., E. Winsberg, J. Symons, and A. Adibi. 2021. “Value Judgments in a COVID-19 Vaccination Model: A Case

Study in the Need for Public Involvement in Health-Oriented Modelling”. Social Science & Medicine 286:114323.
Hjorth, A., B. Head, C. Brady, and U. Wilensky. 2020. “Levelspace: A Netlogo Extension for Multi-Level Agent-Based

Modeling”. Journal of Artificial Societies and Social Simulation 23(1).
Horner, J. K., and J. F. Symons. 2020. “Software Engineering Standards for Epidemiological Models”. History and Philosophy

of the Life Sciences 42(4):1–24.
Hunter, E., B. Mac Namee, and J. Kelleher. 2018. “An Open-Data-Driven Agent-Based Model to Simulate Infectious Disease

Outbreaks”. PloS One 13(12):e0208775.
Hutson, M. 2020. “The Mess Behind the Models: Too Many of the COVID-19 Models Led Policymakers Astray. Here’s How

Tomorrow’s Models Will Get it Right”. IEEE Spectrum 57(10):30–35.
Islam, N., D. A. Jdanov, V. M. Shkolnikov, K. Khunti, I. Kawachi, M. White, S. Lewington, and B. Lacey. 2021. “Effects

of COVID-19 Pandemic on Life Expectancy and Premature Mortality in 2020: Time Series Analysis in 37 Countries”.
BMJ 375.

Iwanaga, T. et al. 2021. “Socio-Technical Scales in Socio-Environmental Modeling: Managing a System-of-Systems Modeling
Approach”. Environmental Modelling & Software 135:104885.

James, L. P., J. A. Salomon, C. O. Buckee, and N. A. Menzies. 2021. “The Use and Misuse of Mathematical Modeling for
Infectious Disease Policymaking: Lessons for the COVID-19 Pandemic”. Medical Decision Making 41(4):379–385.

Janssen, M. A. 2017. “The Practice of Archiving Model Code of Agent-Based Models”. Journal of Artificial Societies and
Social Simulation 20(1).

Katzourakis, A. 2022. “COVID-19: Endemic Doesn’t Mean Harmless.”. Nature:485–485.
Kerr, C. C. et al. 2021. “Covasim: an Agent-Based Model of COVID-19 Dynamics and Interventions”. PLOS Computational

Biology 17(7):e1009149.
Kim, J.-S., H. Kavak, A. Züfle, and T. Anderson. 2020. “COVID-19 Ensemble Models Using Representative Clustering”.

SIGSPATIAL Special 12(2):33–41.
Kreps, S. E., and D. L. Kriner. 2020. “Model Uncertainty, Political Contestation, and Public Trust in Science: Evidence From

the COVID-19 Pandemic”. Science Advances 6(43):eabd4563.
Kulkarni, S., M. M. Krell, S. Nabarro, and C. A. Moritz. 2022. “Hardware-Accelerated Simulation-Based Inference of Stochastic

Epidemiology Models for COVID-19”. ACM Journal on Emerging Technologies in Computing Systems (JETC) 18(2):1–24.
LaToza, T. D., G. Venolia, and R. DeLine. 2006. “Maintaining Mental Models: A Study of Developer Work Habits”. In

Proceedings of the 28th International Conference on Software Engineering, ICSE ’06, 492–501. New York, NY, USA:
Association for Computing Machinery.

Li, J., and P. Giabbanelli. 2021a. “Returning to a Normal Life via COVID-19 Vaccines in the United States: a Large-Scale
Agent-Based Simulation Study”. JMIR Medical Informatics 9(4):e27419.

Li, J., and P. J. Giabbanelli. 2021b. “Identifying Synergistic Interventions to Address COVID-19 Using a Large Scale Agent-Based
Model”. In International Conference on Computational Science, 655–662. Springer.

Li, K. K., S. A. Jarvis, and F. Minhas. 2021. “Elementary Effects Analysis of Factors Controlling COVID-19 Infections in
Computational Simulation Reveals the Importance of Social Distancing and Mask Usage”. Computers in Biology and
Medicine 134:104369.

Liu, K., and Y. Lou. 2022. “Optimizing COVID-19 Vaccination Programs During Vaccine Shortages: A Review of Mathematical
Models”. Infectious Disease Modelling 7:286–298.

Lorig, F., E. Johansson, and P. Davidsson. 2021. “Agent-Based Social Simulation of the COVID-19 Pandemic: A Systematic
Review”. JASSS: Journal of Artificial Societies and Social Simulation 24(3).

Lutz, C. B., and P. J. Giabbanelli. 2022. “When Do We Need Massive Computations to Perform Detailed COVID-19 Simulations?”.
Advanced Theory and Simulations 5(2):2100343.

Maleš, L., and S. Ribarić. 2016. “A Model of Extended BDI Agent with Autonomous Entities (Integrating Autonomous Entities
Within BDI Agent)”. In 2016 IEEE 8th International Conference on Intelligent Systems (IS), 205–214. IEEE.

Martin, R. C. 2008. Clean Code: A Handbook of Agile Software Craftsmanship. 1 ed. USA: Prentice Hall PTR.
Mazer, B. 2022. “COVID Won’t End Up Like the Flu. It Will Be Like Smoking.”. The Atlantic.
Mokhtari, A. 2022, January. “Learning From Covid-19 Requires a Modeling Renaissance”. STAT .
Morvan, G. 2012. “Multi-Level Agent-Based Modeling-A Literature Survey”. arXiv preprint arXiv:1205.0561.
Muscalagiu, I., P. H. Emil, and V. Negru. 2014. “Enhancing DisCSP-Netlogo From Simulation to Real-Execution of Agents

in Distributed Constraints”. Procedia Computer Science 35:261–270.
Negahban, A., and P. J. Giabbanelli. 2021. “Hybrid Agent-Based Simulation of Adoption Behavior and Social Interactions:

Alternatives, Opportunities, and Pitfalls”. IEEE Transactions on Computational Social Systems.
Padmanabhan, R., H. S. Abed, N. Meskin, T. Khattab, M. Shraim, and M. A. Al-Hitmi. 2021. “A Review of Mathematical Model-

Based Scenario Analysis and Interventions for COVID-19”. Computer Methods and Programs in Biomedicine 209:106301.

579

Schroeder, Vendome, Giabbanelli, and Montfort

Polhill, J. G. 2015. “Extracting OWL Ontologies From Agent-Based Models: A Netlogo Extension”. Journal of Artificial
Societies and Social Simulation 18(2):15.

Rahman, A., and E. Farhana. 2020. “An Exploratory Characterization of Bugs in COVID-19 Software Projects”. arXiv preprint
arXiv:2006.00586.

Sakellariou, I., P. Kefalas, and I. Stamatopoulou. 2008. “Enhancing NetLogo to Simulate BDI Communicating Agents”. In
Hellenic Conference on Artificial Intelligence, 263–275. Springer.

Saleem, K., M. Saleem, R. Zeeshan, A. R. Javed, M. Alazab, T. R. Gadekallu, and A. Suleman. 2022. “Situation-Aware BDI
Reasoning to Detect Early Symptoms of Covid 19 Using Smartwatch”. IEEE Sensors Journal.

Santosh, K. 2020. “COVID-19 Prediction Models and Unexploited Data”. Journal of Medical Systems 44(9):1–4.
Scalabrino, S., G. Bavota, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and R. Oliveto. 2021. “Automatically Assessing

Code Understandability”. IEEE Transactions on Software Engineering 47(3):595–613.
Srabanti, S., G. E. Marai, and F. Miranda. 2021. “COVID-19 EnsembleVis: Visual Analysis of County-Level Ensemble Forecast

Models”. In 2021 IEEE Workshop on Visual Analytics in Healthcare (VAHC), 1–5. IEEE.
Stephenson, J. 2022. “COVID-19 Deaths Helped Drive Largest Drop in US Life Expectancy in More than 75 Years”. In JAMA

Health Forum, Volume 3, e215286–e215286. American Medical Association.
Takang, A., P. Grubb, and R. Macredie. 1996, 09. “The Effects of Comments and Identifier Names on Program Comprehensibility:

An Experimental Investigation”. Journal of Programming Languages 4:143–167.
Valentin, E. C., S. Steijaert, R. A. Bijlsma, and P. Silva. 2005. “Approach for Modelling of Large Maritime Infrastructure

Systems”. In Proceedings of the 2005 Winter Simulation Conference, 9–pp. IEEE.
Van Dooren, W., and M. Noordegraaf. 2020. “Staging Science: Authoritativeness and Fragility of Models and Measurement

in the COVID-19 Crisis”. Public Administration Review 80(4):610–615.
Vendome, C., D. M. Rao, and P. J. Giabbanelli. 2020. “How Do Modelers Code Artificial Societies? Investigating Practices

and Quality of NetLogo Codes from Large Repositories”. In 2020 Spring Simulation Conference (SpringSim), 1–12. IEEE.
Verbraeck, A., and E. C. Valentin. 2008. “Design Guidelines for Simulation Building Blocks”. In Proceeding of the 2008

Winter Simulation Conference, 923–932. IEEE.
Voinov, A., and H. H. Shugart. 2013. “‘Integronsters’, Integral and Integrated Modeling”. Environmental Modelling &

Software 39:149–158.
Walker, B., and T. Johnson. 2019. “NetLogo and GIS: A Powerful Combination”. EPiC Series in Computing 58:257–264.
Weinberg, G. M. 1985. The Psychology of Computer Programming. USA: John Wiley & Sons, Inc.
Wiens, J., and D. Monett. 2013. “Using BDI-extended NetLogo agents in undergraduate CS research and teaching”. In

Proceedings of the International Conference on Frontiers in Education: Computer Science and Computer Engineering
(FECS), 1. The World Congress in Computer Science.

Woolf, S. H., D. A. Chapman, and J. H. Lee. 2021. “COVID-19 as the Leading Cause of Death in the United States”.
Jama 325(2):123–124.

Zhang, H., X. Huang, X. Zhou, H. Huang, and M. A. Babar. 2019. “Ethnographic Research in Software Engineering: a
Critical Review and Checklist”. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 659–670.

AUTHOR BIOGRAPHIES
SHANE A. SCHROEDER is a Senior Computer Science Student at Miami University, where he performed funded summer
research under the supervision of Drs Giabbanelli and Vendome. His email address is schroe51@miamioh.edu.

CHRISTOPHER VENDOME is an Assistant Professor in the Department of Computer Science & Software Engineering at
Miami University (USA). His research interests include software evolution and maintenance, as well as software repository
mining. His email address is vendomcg@miamioh.edu.

PHILIPPE J. GIABBANELLI is an Associate Professor of Computer Science & Software Engineering at Miami University.
He holds a Ph.D. from Simon Fraser University. He has over 100 publications, primarily on Modeling & Simulation and Ma-
chine Learning. He is an associate editor for five journals, including SIMULATION. His email address is giabbapj@miamioh.edu.

ALAN MONTFORT is completing his studies in industrial performance and mechatronics at the IMT School of Mines in
Ales, which specializes on innovation in the fields of engineering and digital technology. His email is alan.montfort@mines-ales.org.

580

mailto://schroe51@miamioh.edu
mailto://vendomcg@miamioh.edu
mailto://giabbapj@miamioh.edu
mailto://alan.montfort@mines-ales.org

	INTRODUCTION
	BACKGROUND
	Sub-models and Building Blocks: General Modeling Perspectives
	Building Blocks as Libraries: The Case of NetLogo Extensions

	METHODS
	Model Selection
	Qualitative Analysis: Thematic Analysis
	Quantitative Analysis: Software Quality

	RESULTS
	Thematic Analysis
	Software Quality

	DISCUSSION
	CONCLUSION

