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ABSTRACT

Built on our previous study on green simulation assisted policy gradient (GS-PG), in this paper, we
consider infinite-horizon Markov decision processes and create a new importance sampling based policy
gradient optimization approach to support dynamic decision making. The existing GS-PG method was
designed to learn from complete episodes or process trajectories, which limits its applicability to low-data
situations and flexible online process control. To overcome this limitation, the proposed approach utilizes a
mixture likelihood ratio (MLR) based policy gradient and intelligently select and reuse the most related
historical transition samples to improve the policy gradient estimation and accelerate the learning of optimal
policy. Our empirical study demonstrates that it can improve optimization convergence and enhance the
performance of state-of-the-art policy optimization approaches such as actor-critic method and proximal
policy optimizations.

1 INTRODUCTION

In recent years, various policy optimization approaches are developed to solve reinforcement learning (RL)
and process control problems. They often consider parametric policies and search for optimal solution
through stochastic policy gradient approach. Historical observations or samples can be reused to improve
optimization convergence, especially in low-data situations. According to the base unit of observations to
reuse, policy gradient algorithms can be classified into episode-based and step-based approaches (Metelli
et al. 2020). Episode-based approaches perform importance sampling (IS) on full trajectories accounting for
the distributional difference induced by target and behavior policies. The importance weight is built on the
cumulative product of likelihood ratios (LR) of state-action transitions occurring within each trajectory. This
can lead to extremely high variance, especially for those problems with long planning horizon (Andradóttir
et al. 1995; Schlegel et al. 2019). Thus, the trajectory-based reuse strategy is not applicable to many
applications, such as personalized bio-drug manufacturing, with: (1) small amount of data; (2) complex
state-action transition model and long planning horizon; and (3) requiring real-time flexible process control.

Instead of reusing entire historical trajectory samples, we need to create an intelligent and flexible
strategy that can select and reuse the most related parts of trajectory which can change for different random
scenarios. For example, during cell therapy manufacturing, the metabolic state can evolve with time during
the cell life cycle and also therapeutic cells can have metabolic shift under heterogeneous culture conditions.
To improve prediction and guide real-time process control, we can reuse historical step-based observations
that have cell metabolic state and bioprocessing dynamics similar to the target distribution. Therefore,
step-based policy gradient algorithms can take state-action transitions as the base unit of observations to
reuse (Metelli et al. 2020) and overcome the limitations of the trajectory-based reuse strategy.
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In this paper, we focus on step-based policy gradient for infinite-horizon Markov Decision Processes
(MDPs). That means we update policy parameters per step (or mini-batch of steps), which requires a single
state-action transition LR for each historical sample to account for the difference in the state-occupancy
measure or the stationary state distribution induced by different target and behavior policies. Various
step-based policy gradient algorithms have been proposed during recent years. The studies in distribution
correction (DICE) (Nachum et al. 2019; Yang et al. 2020) provide ways to estimate these state occupancy
ratios in RL. Proximal policy optimization (PPO), as one of the most popular step-based policy gradient
approaches (Schulman et al. 2017), uses a clipped surrogate objective to control incentives for the new
candidate policy to get far from the old policy and thus avoid too much policy parameter updates at one
step. Actor-Critic algorithm, as a classic and theoretically solid policy optimization framework, jointly
optimizes the value function (critic) and the policy (actor); see for example Bhatnagar et al. (2009).

In our previous study (Zheng et al. 2020), we created a new experience replay approach called green
simulation assisted reinforcement learning (GS-RL) for episode-based policy optimization. This approach
can automatically select the most relevant historical trajectory episodes based on a comparison of gradient
variance between historical episodes and current episodes, i.e., episodes collected by following the candidate
policy. Then the selected historical trajectories are used to improve policy gradient estimation through
multiple importance sampling techniques. Our theoretical and empirical studies have showed that the
VRER based policy gradient estimator can improve sample efficiency and lead to a superior performance in
convergence.

Build on Zheng et al. (2020), in this paper, we extend the GS-RL from a episode/trajectory-based
algorithm to a step-based algorithm and create a variance reduction based epxerience replay (VRER)
approach for infinite horizon MDPs. This approach can select and reuse the most relevant historical
observations on state-action transitions to improve policy gradient estimation. The proposed VRER approach
is general and it can be integrated into various stochastic policy gradient approaches to improve optimization
convergence. In the paper, we provide an algorithm to utilize it to enhance two state-of-the-art policy
optimization algorithms, including Actor-Critic algorithm and PPO.

Therefore, the key contributions of this study include: (1) create the VRER based policy optimization
that can selectively reuse the most relevant historical transitions or partial trajectory observations; (2)
develop multiple importance sampling (MIS) based off-policy actor-critic method; and (3) analytically and
empirically show that the proposed VRER based policy gradient approach can improve the policy gradient
estimation, speed up the optimal convergence for RL problems, and support real-time process control.

The paper is organized as follows. We start in Section 2 by introducing the notation and basics about
RL policy optimization, importance sampling (IS), and multiple importance sampling. Then we propose the
mixture likelihood ratio (MLR) based policy gradient estimation in Section 3. We create a selection rule
that allows us to automatically select the most relevant historical transitions to improve the policy gradient
estimation accuracy in Section 4. We further show how this selection strategy can be customized into the policy
gradient optimization and introduce the variance reduction experience replay with the resulting algorithms.
We conclude this paper with the comprehensive empirical study on the proposed framework in Section 5. The
implementation of our algorithm can be found at https://github.com/zhenghuazx/vrer policy optimization.

2 PROBLEM DESCRIPTION

We study reinforcement learning and process control problems in which an agent acts on a complex stochastic
system by sequentially choosing actions over a sequence of time steps in order to maximise a cumulative
reward. We formulate the problem of interest as an infinite-horizon Markov decision process (MDP)
specified by (S ,A ,r,P,sss1), where S is the state space, A is the action space, and a reward function is
denoted by r : S ×A → R. An initial state distribution is specified by the density p1(sss1). The stationary
state transition model p(ssst+1|ssst ,aaat) satisfies the Markov property p(ssst+1|ssst ,aaat , . . . ,sss1,aaa1) = p(ssst+1|ssst ,aaat).
The system starts at an initial state sss1 at time t = 1 drawn from p1(sss1). At time t, the agent observes the
state ssst ∈S , takes an action aaat ∈A by following a parametric policy distribution, denoted by π(ssst |aaat ;θθθ)
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specified with parameters θθθ , and receives a reward rt(ssst ,aaat) ∈ R. The future return is the total discounted
reward, denoted by rγ

t = ∑
∞

t ′=t γ t ′−tr(ssst ′ ,aaat ′), where γ ∈ (0,1) denotes the discount factor.
Suppose that the policy πθθθ is continuous and differentiable with respect to its parameters θθθ . For each

candidate policy specified by θθθ , the state value function V π(sss) and the Q-function Qπ(sss,aaa) are defined to
be the expected total discounted reward-to-go, i.e.,

V π(sss) = E[rγ

1|sss1 = sss;π] = E

[
∞

∑
t=1

γ
t−1r(ssst ,aaat)

∣∣∣∣∣sss1 = sss;π

]
,

Qπ(sss,aaa) = E[rγ

1|sss1 = sss,aaa1 = aaa;π] = E

[
∞

∑
t=1

γ
t−1r(ssst ,aaat)

∣∣∣∣∣sss1 = sss,aaa1 = aaa;π

]
.

The agent’s goal is to find an optimal policy that maximises the cumulative discounted reward, denoted by
J(π) = E[∑∞

t=1 γ t−1r(ssst ,aaat)|π]. For any feasible policy θθθ , we assume that the Markov chains, i.e., {ssst}t≥∞

and {ssst ,aaat}t≥∞, are irreducible and aperiodic. We denote the improper discounted state distribution as

dπ(sss) =
∫

S

∞

∑
t=1

γ
t−1 p(sss1)p(ssst = sss|sss1;π)dsss1.

Then we can write the policy optimization problem with the performance objective as an expectation,

max
θθθ

J(θθθ) = E

[
∞

∑
t=1

γ
t−1r(ssst ,aaat)

∣∣∣∣∣π

]
=

∫
dπ(sss)

∫
πθθθ (aaa|sss)r(sss,aaa)dsssdaaa = Esss∼dπ (sss),aaa∼πθθθ (aaa|sss)[r(sss,aaa)], (1)

where Esss∼dπ (sss),aaa∼πθθθ (aaa|sss)[·] denotes the expected value with respect to the discounted state distribution dπ(sss)
and the policy distribution πθθθ (aaa|sss). We denote the stationary probability function of state-action pair by

ρθθθ (sss,aaa) = πθθθ (aaa|sss)dπ(sss).

To simplify notation, we superscript the value function V π(sss) and the advantage function, denoted by
Aπ(sss,aaa) that will be defined in Section 2.1, by π rather than πθθθ .

2.1 Stochastic Policy Gradient Estimation

Policy gradient optimization is perhaps the most popular class of RL algorithms designed to solve the
optimization problem (1). At each k-th iteration, we can iteratively update the policy parameters,

θθθ k+1← θθθ k +ηk∇̂J(θθθ k),

where ηk is learning rate or step size and ∇̂J(θθθ k) is an estimator of policy gradient ∇J(θθθ k). For notational
convenience, ∇ denotes the gradient with respect to policy parameters θθθ unless specified otherwise. Under
regularity conditions, Policy Gradient Theorem (Sutton et al. 1999) reformulates the policy gradient as

∇J(θθθ) =
∫

dπ(sss)
∫

∇πθθθ (aaa|sss)Qπ(sss,aaa)dsssdaaa = Esss∼dπ (sss),aaa∼πθθθ (aaa|sss)[∇ logπθθθ (aaa|sss)Qπ(sss,aaa)]. (2)

This theorem has an important practical value because it reduces the computation of the performance
gradient to a simple expectation (Silver et al. 2014). By applying sample average approximation (SAA) on
the expectation in (2), we have the naive policy gradient (PG) estimator

∇̂J
PG
k ≡ ∇̂J

PG
(θθθ k) =

1
n

n

∑
j=1

gk

(
sss(k, j),aaa(k, j)

)
,

where n is the number of replications. The scenario-based policy gradient estimate at θθθ k is represented as,

gk (sss,aaa)≡ g(sss,aaa|θθθ k) = Qπ(sss,aaa)∇ logπθθθ k (aaa |sss) .
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A widely used variation of policy gradient (2) is to subtract a baseline value from the return Qπ(sss,aaa) to
reduce the variance of gradient estimation while keeping the unbiased property. A common baseline is to
subtract a value function V π(sss); see Bhatnagar et al. (2009), Lemma 2. Then we have a new unbiased
policy gradient estimator with lower variance,

∇J(θθθ) = Esss∼dπ (sss),aaa∼πθθθ (aaa|sss) [∇ logπθθθ (aaa|sss)(Qπ(sss,aaa)−V π(sss))] . (3)

The difference Aπ(sss,aaa)≡Qπ(sss,aaa)−V π(sss) is called advantage. It intuitively measures the extra reward that
an agent can obtain by taking that a particular action aaa. This leads to the “vanilla” policy gradient estimator,

gk (sss,aaa)≡ g(sss,aaa|θθθ k) = Aπθθθk (sss,aaa)∇ logπθθθ k (aaa |sss) .

According to the Bellman equation, i.e., Qπ(sss,aaa) = r(sss,aaa)+γEsss′∼p(sss′|sss,aaa)[V π(sss′)], the advantage function
can be expressed as

Aπ(sss,aaa) = r(sss,aaa)+ γEsss′∼p(sss′|sss,aaa)[V
π(sss′)]−V π(sss). (4)

Let V̂ (sss) denote an unbiased estimator of the value function at state sss. Then, for any given state-action
transition sample, denoted by (sss,aaa,sss′), the temporal difference (TD) error, i.e.,

δ (sss,aaa,sss′) = r(sss,aaa)+ γV̂ (sss′)−V̂ (sss)

is an unbiased estimator of the advantage (4); see Bhatnagar et al. (2009), Lemma 3.
In a nutshell, estimating the advantage function requires a set of observations {(ssst ,aaat ,ssst+1,rt)} while the

policy gradient estimate involves the estimated advantage function Aπ(sss,aaa) and the estimated score function
∇ logπθθθ k (aaa|sss) at state-action pairs {(ssst ,aaat)}. We will discuss the policy gradient estimation and advantage
estimation separately. From Section 2.2 to Section 3.1, we will focus on the multiple importance sampling
based policy optimization and policy gradient estimation, while supposing that an unbiased estimator of
advantage function is given. Then in Section 3.2, we will show how to estimate the advantage function
through temporal difference learning. In this paper, we will focus on creating a selective historical transition
replay approach in order to improve the policy gradient estimation.

2.2 Importance Sampling and Multiple Likelihood Ratio

In this section, we describe how to utilize important sampling (IS) and multiple likelihood ratio (MLR) to
improve the policy gradient estimation. Denote the state-action input pair as xxx≡ (sss,aaa). Let ρi(xxx) = ρθθθ i(sss,aaa)
represent the stationary sampling generative distribution at the i-th episode obtained under a policy specified
by θθθ i. For any candidate policy specified by θθθ , let ρ(xxx) = ρθθθ (sss,aaa) denote the target distribution or likelihood.
We are interested in estimating the expected gradient ∇J(θθθ) = Eρ(xxx) [g(xxx)] = Eρθθθ (sss,aaa) [g(sss,aaa|θθθ)].

When the historical samples generated from the sampling distribution ρi are selected and reused to
estimate the candidate policy gradient ∇J(θθθ k) under the target distribution ρk, the importance sampling
estimator (Andradóttir et al. 1995; Rubinstein and Kroese 2016) corrects the sampling distribution with the
importance weight or likelihood ratio defined as f (xxx) = ρk(xxx)/ρi(xxx), i.e.,

∇̂J(θθθ k) =
1
n

n

∑
j=1

f
(

xxx(i, j)
)

gk

(
xxx(i, j)

)
,

where xxx(i, j) i.i.d.∼ ρi(xxx) with j = 1,2, . . . ,n. For simplification, we allocate a constant number of replications
(i,e., n) for each visit at θθθ . We assume ρi(xxx)> 0 whenever ρk(xxx)gk(xxx) ̸= 0. This estimator is unbiased,

Eρi

[
∇̂J(θθθ k)

]
=

∫
ρk(xxx)
ρi(xxx)

ρi(xxx)gk(xxx)dxxx =
∫

ρk (xxx)gk (xxx)dxxx = ∇J(θθθ k).
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However, the likelihood ratio ρk(xxx)/ρi(xxx) can be extremely large or small at sample xxx. Without any
bound on the likelihood ratio ρk(xxx)/ρi(xxx), the importance sampling estimator ∇̂J can have inflated variance,
which is typically induced by large difference between target and proposal distributions. Inspired by the
BLR-M metamodel (Feng and Staum 2017) and multiple importance sampling (Veach and Guibas 1995), we
utilize the mixture likelihood ratio (MLR) method to address this issue. It has a mixture sampling distribution,
denoted by ℓM(xxx)≡∑i∈U αiρi(xxx) with ∑i∈U αi = 1, composed of multiple distribution components, denoted
by {ρi(xxx) : i ∈U}, where U represents the reuse set. Thus, the MLR can avoid the limitations induced by
using a single proposal distribution ρi(xxx) and reduce the variance inflation issue.

Given the samples generated from those sampling distributions, denoted by {xxx(i, j) : i ∈U and j =
1,2, . . . ,n}, the MLR estimator, as stratified sampling from the mixture distribution ℓM(xxx), becomes

∇̂J
MLR
k =

1
|U | ∑i∈U

1
n

n

∑
j=1

fM

(
xxx(i, j)

)
gk

(
xxx(i, j)

)
with fM(xxx) =

ρk(xxx)
ℓM(xxx)

=
ρk(xxx)

∑i∈U αiρi(xxx)
. (5)

To have a unbiased MLR estimator, the weight is selected to be the proportion of historical sample size
generated from each proposal distribution component ρi(xxx), i.e., αi =

n
∑i∈U n . Suppose there are n historical

samples generated from each distribution. Then, we allocate equal weight on ρi(xxx), i.e., αi = 1/|U | for
i ∈U , where | · | denotes set cardinality. This MLR estimator is unbiased (Veach and Guibas 1995),

E
[
∇̂J

MLR
k

]
= E

[
1
|U | ∑i∈U

1
n

n

∑
j=1

ρk
(
xxx(i, j)

)
∑i∈U αiρi

(
xxx(i, j)

)gk

(
xxx(i, j)

)]
=

1
|U | ∑i∈U

∫
ρk(xxx)

1
|U | ∑i∈U ρi(xxx)

gk (xxx)ρi(xxx)dxxx = ∇J(θθθ k).

The major advantage of the MLR estimator, compared with the standard IS, is higher sample-efficiency
and lower gradient estimation variance. Since we always include the transitions generated in the current
iteration, the mixture likelihood ratio fM(xxx) in (5) reaches its max value when the likelihood ρi(xxx) = 0
for all remaining sampling distributions with i ∈U . Thus, this mixture likelihood ratio is bounded, i.e.,
fM(xxx) ≤ |U |, which can control the policy gradient estimation variance inflation issue. In this way, the
mixture likelihood ratio puts higher weight on the samples that are more likely to be generated by the
target distribution ρ(xxx) without assigning extremely large weights on the others.

3 MIXTURE LIKELIHOOD RATIO ASSISTED POLICY OPTIMIZATION

Given a set of historical samples collected under different stationary distributions and behavior policies, the
off-policy strategy is used to find the optimal policy maximizing the expected return. One can reuse the
past samples to improve the policy gradient estimation through MLR. Let Mk denote the set of all policies
(i.e., actor) and value functions (i.e., critic) that have been visited until the beginning of the k-th iteration.
Let Uk be a reuse set including the indices of model candidates whose transitions are selected and reused
for estimating the policy gradient ∇J(θθθ k). Denote its cardinality as |Uk|. For the discussions in this section,
suppose that Uk is given. We will present how to determine the reuse set Uk to improve the policy gradient
estimation accuracy in Section 4.

3.1 Off-policy Policy Gradient Estimation

Compared to on-policy alternatives, off-policy approaches do not require full trajectories and they can
reuse the selected historical transition samples (“experience replay”) to improve the sample efficiency.
Specifically, we modify the policy gradient (3) such that the mismatch between the sampling distribution
ρθθθ i(sss,aaa) and the target distribution ρθθθ k(sss,aaa) is compensated by importance sampling estimator (5), i.e.,

∇J(θθθ k) = Eρθθθ i
[ f (sss,aaa)g(sss,aaa)] = Eρθθθ i

[
ρθθθ k(sss,aaa)
ρθθθ i(sss,aaa)

Aπθθθk (sss,aaa)∇ logπθθθ k (aaa |sss)
]
. (6)

Let gk(sss,aaa) = ∇ logπθθθ k(aaa|sss)A
πθθθk (sss,aaa). We can obtain an unbiased estimator of policy gradient in (6)

by using sample average approximation (SAA),
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∇̂J
ILR
i,k =

1
n

n

∑
j=1

ρθθθ k

(
sss(i, j)t ,aaa(i, j)t

)
ρθθθ i

(
sss(i, j)t ,aaa(i, j)t

) gk

(
aaa(i, j)t ,sss(i, j)t

) and ∇̂J
ILR
k =

1
|Uk| ∑

i∈Uk

∇̂J
ILR
i,k , (7)

where the historical transitions are generated by sss(i, j)t ∼dπθθθ i (sss) and aaa(i, j)t ∼πθθθ i(aaa|sss
(i, j)
t ) for j = 1,2, . . . ,n. In

this paper, we use ILR to represent (individual) likelihood ratio. The MLR policy gradient estimator is

∇̂J
MLR
k =

1
|Uk| ∑

i∈Uk

1
n

n

∑
j=1

fk

(
aaa(i, j)t ,sss(i, j)t

)
gk

(
aaa(i, j)t ,sss(i, j)t

)
with fk (aaat ,ssst) =

ρθθθ k (ssst ,aaat)
1
|Uk| ∑i∈Uk

ρθθθ i (ssst ,aaat)
. (8)

The key challenge of utilizing the ILR and MLR policy gradient estimators is computing the stationary
distributions dπ(sss) in ρθθθ k(sss,aaa) = πθθθ k(aaa|sss)dπ(sss). This problem is also known as distribution corrections
(DICE) in RL. Fortunately, a list of approaches has been recently proposed to address the challenge; see for
example Nachum et al. (2019), Yang et al. (2020).The off-policy gradient estimator can be simplified by
introducing bias. Degris et al. (2012) proposed an off-policy (actor-critic) gradient approximate,

∇J(θθθ k)≈ Eρθθθ i

[
πθθθ k

πθθθ i

∇ logπθθθ k(aaa|sss)A
πθθθk (sss,aaa)

]
. (9)

It can preserve the set of local optima to which gradient ascent converges. Although biased, this estimator
has been widely used in many state-of-the-art off-policy algorithms (Schulman et al. 2015; Schulman et al.
2017) due to its simplicity and computational efficiency.

The ILR and MLR policy gradient estimators for the approximation (9) can be obtained by replacing
stationary state-action distribution ρθθθ (sss,aaa) with policy πθθθ (aaa|sss). We conclude this section by pointing out that
we proceed the theoretical analysis with the unbiased off-policy policy gradient (6) and its SAA estimators
(7)-(8) in the following sections while the estimator (9) is used in the algorithm and the empirical study.

3.2 Actor-Critic

The actor-critic is a widely used architecture for policy optimization. It includes two main components: actor
and critic. The actor corresponds to an action-selection policy, mapping state to action in a probabilistic
manner. The critic corresponds to a value function, mapping state to the expected cumulative future reward.
The actor searches the optimal policy parameters by using stochastic gradient ascent (SGA) while the
critic estimates the action-value function Qπ(sss,aaa) by an appropriate policy evaluation algorithm such as
temporal-difference learning or Q-learning. Usually, the critic V π(sss) is approximated by a state-value
function Vwww(sss) specified by parameters www and the actor is represented by a policy function πθθθ (aaa|sss) specified
by θθθ . Such functional approximation of critic can be used in estimating the state-value function V̂ (sss) =Vwww(sss)
and thus the TD error (5) becomes δ (sss,aaa,sss′) = r(sss,aaa)+ γVwww(sss′)−Vwww(sss). Following the studies in Bhatnagar
et al. (2009), a typical actor-critic update can be written as

TD Error : δk = rt + γVwwwk(sss
′)−Vwwwk(sss) (10)

Critic : wwwk+1 =wwwk +ηwδk∇wVwwwk(sss) (11)

Actor : θθθ k+1 = θθθ k +ηθ ∇J(θθθ) (12)

where ηw and ηθ represent learning rates for critic and actor respectively. The step in (10) is also referred
as to temporal difference learning used to estimate the advantage function. The policy gradient ∇J(θθθ) in
(12) is estimated by the MLR policy gradient estimator (8).

4 VARIANCE REDUCTION EXPERIENCE REPLAY FOR POLICY GRADIENT ESTIMATION

In this section, we derive the variance reduced experience replay method and present a general VRER
based actor-critic algorithm. We provide a selection criteria in Section 4.1 that can automatically find
the most relevant historical transition observations for constructing the reuse set Uk at each k-th iteration
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and improving the policy gradient estimation accuracy. The dependencies between historical samples
collected under selected behavior policies in the previous iterations lead to a general obstacle for most
historical sample reusing mechanisms. The MLR, used to leverage the information from previous transition
observations, requires sampling distributions to be independent. Thus, in the proposed algorithm, we reduce
this interdependence through randomly sampling (Mnih et al. 2015). Specifically, we separate the optimal
policy learning algorithm into two steps. In the online step, we collect new samples by following the target
policy specified by θθθ k. In the offline step, we select historical samples and train the actor critic model by
stochastic gradient ascent. In this way, we can view the offline step as a normal offline optimization problem
where samples are assumed to be randomly generated from a set of independent stationary state-action
distributions ρi with i≤ k. Therefore, for the theoretical study in Section 4.1, we assume that the transitions
are drawn from a set of independent stationary state-action distributions in the offline optimization step.

4.1 Selection Rule for MLR based Policy Gradient Estimator

We first introduce some properties of MLR based policy gradient estimator. Similar results can be found in
Veach and Guibas (1995) and Feng and Staum (2017).
Lemma 1 Conditional on the reuse set Uk, the MLR policy gradient estimator is unbiased, i.e.,

E
[

∇̂J
MLR
k

∣∣∣Uk

]
= E [gk(τττ)|θθθ k] = ∇J(θθθ k).

Proposition 1 Conditional on the reuse set Uk, the total variance of the MLR policy gradient estimator is
smaller and equal to that of the average ILR policy gradient estimator,

Tr
(

Var
[

∇̂J
MLR
k

∣∣∣Uk

])
≤ Tr

(
Var

[
∇̂J

ILR
k

∣∣∣Uk

])
.

Proof. Similar proofs can be found in Martino et al. (2015), Theorem A.2. and Feng and Staum (2017),
Proposition 2.5.

The perspective of multiple importance sampling and variance reduction experience replay is to select
and reuse historical transition samples generated from those behavioral policies and sampling distributions
that are close to the target one. We propose the selection criteria in Theorem 1, which measures the distance
between the behavioral and target distributions based on the variance of policy gradient estimators obtained
by using historical samples versus new samples generated in the current k-th iteration.
Theorem 1 (Selection Rule) At each k-th iteration with the target distribution ρk, the reuse set Uk is created
to include the stationary distributions, i.e., ρi specified by (θθθ i,wwwi) with i≤ k, whose ILR policy gradient
estimator variance is no greater than c times the total variance of the vanilla PG estimator for some constant
c > 1. Mathematically,

Tr
(

Var
[

∇̂J
ILR
i,k

∣∣∣Mk

])
≤ cTr

(
Var

[
∇̂J

PG
k

∣∣∣Mk

])
. (13)

Then, based on such reuse set Uk, the total variance of the MLR policy gradient estimator (8) is no greater
than c/|Uk| times the total variance of the vanilla PG estimator,

Tr
(

Var
[

∇̂J
MLR
k

∣∣∣Mk

])
≤ c
|Uk|

Tr
(

Var
[

∇̂J
PG
k

∣∣∣Mk

])
. (14)

Proof. We screen all historical models and select historical samples and visited models that satisfy the
rule (13). Let Uk represent the index set of models that are reused or equivalently experience to be replayed.
Conditional on all visited models Mk, the historical samples, i.e., {(sss,aaa,sss′)(i, j) with (θθθ i,wwwi) ∈Mk and j =
1,2, . . . ,n}, are independent. Thus, we have

Tr
(

Var
[

∇̂J
MLR
k

∣∣∣Mk

]) (⋆)

≤ Tr
(

Var
[

∇̂J
ILR
k

∣∣∣Mk

])
=

1
|Uk|2 ∑

i∈Uk

Tr
(

Var
[

∇̂J
ILR
i,k

∣∣∣Mk

])
(⋆⋆)

≤ c
|Uk|2 ∑

i∈Uk

Tr
(

Var
[

∇̂J
PG
k

∣∣∣Mk

])
=

c
|Uk|

Tr
(

Var
[

∇̂J
PG
k

∣∣∣Mk

])
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where (⋆) follows by applying Proposition 1 and (⋆⋆) holds by applying the selection rule (13).

Theorem 1 provides the selection criteria for dynamically and automatically determining the reuse set
Uk. It shows that the MLR can greatly reduce the policy gradient estimation variance compared to the
vanilla policy gradient estimator through reusing the historical transition samples in Uk. During the optimal
policy search, the number of reuse transitions (or |Uk|) increases as the iteration k increases. The total
variance of the MLR based policy gradient estimator can be significantly reduced.

4.2 Green Simulation Assisted Policy Gradient Algorithm for Partial Trajectory Reuse

We summarize the proposed VRER based policy optimization algorithm in an actor-critic framework in
Algorithm 1. At each k-th iteration, we generate n transitions by running experiments following the target
policy specified by parameters θθθ k and update the observation set Dk in Step 1. We select the historical
samples that satisfy the selection rule (13) and use the associated policies to create the reuse set Uk in Step 2.
For computational reasons, we use the policy gradient estimator (9) in the algorithm. This approximation
simplifies the calculation of the likelihood ratio ρk/ρi to the likelihood ratio of policies πθθθ k/πθθθ i and thus
avoid the substantial computation involved in estimating the stationary distribution dπ(sss).

Algorithm 1: Actor Critic Method with Variance Reduced Experience Replay.
Input: the selection threshold constant c; the maximum number of iterations K; the number of iterations in

offline optimization Ko f f ; the number of replications per iteration n; the set of historical trajectories from
the real system D0; the set of policy parameters visited so far U0; the set of stored likelihoods L0.

Initialize actor parameter θθθ 1 and critic parameter www1. Store them in M1 = M0∪{(θθθ 1,www1)};
for k = 1,2, . . . ,K do

1. Collect a set of transitions Tk = {(ssst ,aaat ,ssst+1,rt)}n
t=1 from real system by running policy πππθθθ k(aaat |ssst);

Update the sets Dk←Dk−1∪Tk;
2. Initialize Uk = /0, screen all historical transitions and policies in Uk, and construct the reuse set Uk;
for (θθθ i,wwwi) ∈Mk do

(a) Compute and store the new likelihoods:
Lk←Lk−1∪πθθθ k(Dk)∪πθθθ [1:k]

(Tk)

(b) if Tr
(

Var
[

∇̂J
ILR
i,k

∣∣∣Mk

])
≤ cTr

(
Var

[
∇̂J

PG
k

∣∣∣∣Mk

])
then Uk←Uk ∪{i}.

end
3. Reuse the historical samples associated with Uk and stored likelihoods Lk to update actor and critic:
(a) Let θθθ 0

k = θθθ k and www0
k =wwwk;

for h = 0,1, ...,Koff do
(b) TD Error: δ h

k = rt + γVwwwh
k
(sss′)−Qwwwh

k
(sss);

(c) Actor Update: θθθ
h+1
k ← θθθ h

k +ηk∇̂J
MLR
k ;

(d) Critic Update: wwwh+1
k =wwwh

k +ηkδk∇wVwwwh
k
(sss);

end
4. Update the actor and critic: θθθ k+1 = θθθ

Ko f f
k and wwwk+1 =www

Ko f f
k ;

5. Store them to the set Mk+1 = Mk ∪{(θθθ k+1,wwwk+1)};
end

The likelihoods are stored and reused in Step 2(a) to reduce the computation cost. Specifically, as the
iteration k increases, the number of historical transitions increases. It can be computationally expensive to
repeatedly calculate all likelihood ratios required for historical observation selection and policy gradient
estimation. Thus, we save and reuse the previous calculated likelihoods. Let Tk = {(ssst ,aaat ,ssst+1,rt)}n

t=1
represent the set of new transitions generated in the k-th iteration. Update the set of all transition
observations, i.e., Dk←Dk−1∪Tk. Then, the likelihoods of Tk under any previous visited policy θθθ i are
πθθθ i(Tk) = {πθθθ i(aaat |ssst) : (ssst ,aaat ,ssst+1,rt) ∈ Tk}. Let πθθθ [1:k]

(Tk) = {πθθθ i(Tk) : i = 1, . . . ,k}. Therefore, at the
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k-th iteration, all newly generated likelihoods are the joint set of the values of historical samples at new
policy θθθ k and new samples at historical policies θθθ i, i.e., πθθθ k(Dk)∪πθθθ [1:k]

(Tk). Then we get the MLR policy
gradient estimate by applying (8) and train the actor and critic by following (10)-(12) in Step 3. In this
offline step, we use the stochastic gradient ascent to iteratively optimize the performance objective with
the historical observations in Uk. At the end, we update actor and critic with latest parameters θθθ

Ko f f
k and

wwwKo f f
k from the offline optimization step and store them into memory buffer of models Mk+1. After that, we

repeat the procedure until reaching to the budget limit specified by K iterations.
We conclude this section by pointing out that the choice of optimizers for actor/critic training, the

hyperparamter Ko f f and the size of minibatch in SGA are task-specific. In some actor-critic algorithms,
the termination of offline optimization or the number of iterations Ko f f are often not fixed. For example,
PPO uses early stopping method to determine Ko f f : terminate the offline training if the KL divergence
between behavioral and target policies is smaller than some threshold. The interested reader is referred to
the literature of stochastic gradient methods (Goodfellow et al. 2016) for details of hyperparamter tuning.

5 EMPIRICAL STUDY

In this section, we present the empirical study assessing the performance VRER in combination with
actor critic algorithm (Bhatnagar et al. 2009) and PPO algorithm (Schulman et al. 2017). We study the
optimization convergence behavior by using control tasks in Section 5.1, present the sensitivity analysis on
the reuse set selection threshold constant c in Section 5.2, and investigate the effects of employing VRER to
the gradient variance reduction in Section 5.3. For the implementation, we use two open-sourced libraries,
Keras and TensorFlow for policy modeling and automatic differentiation. In addition, we use OpenAI gym
(Brockman et al. 2016) to provide the simulation environment of Cartpole and Acrobot problems.

We adopt the yeast cell fermentation simulator from Zheng et al. (2022). To provide the prediction
on the process dynamics, we add 4 additional state variables, including time t, the growth rate Ẋ f , the
production rate of citrate acid Ċ, and the consumption rate of substrate Ṡ. Therefore, the state vector is
sss = (X f ,C,S,N,V, t, Ẋ f ,Ċ, Ṡ), where X f represents lipid-free cell mass; C measures the citrate concentration,
i.e., the actual “product” to be harvested at the end of the fermentation process, generated by the cells’
metabolism; S and N are the amounts of substrate (a type of oil) and nitrogen, used for cell growth and
production; and V is the working volume of the entire batch. In this paper, we consider a setpoint control
problem that aims to maintain the substrate concentration St around a fixed value. The reward function is
defined as r(ssst) =−(St −S0

t )
2, where S0

t = 20 g/L is the setpoint of substrate concentration. We consider
the feed rate as the action representing the amount of substrate added in each time interval.

The actor and critic models for Actor-Critic and PPO are adopted from the Keras implementation
(Chollet et al. 2015). The Actor-Critic model is composed of a shared initial layer with 128 neurons and
separate outputs for the actor and critic. The PPO algorithm has separate actor and critic neural network
models, both of which have two layers with 64 neurons. For the problems with discrete action, we use
softmax activation function on top of the actor network, which calculates the probability of optimal actions.
For the fermentation problem with a continuous action (feeding rate of substrate), we use the Gaussian
policy for actor model (Sutton and Barto 2018). As the feed rate is strictly regulated and it should stay
within a regulation required acceptance range, we truncate the action sampled from Gassuain policy. At
each k-th iteration, based on the results obtained from 30 macro-replications, we represent the estimation
uncertainty of outputs (i.e., the expected discounted rewards and the total variance of policy gradient) by
using the 95% confidence bands based on asymptotic normality assumption.

5.1 Comparison of Algorithm Performance with and without Proposed VRER

In this section, we compare the optimal policy learning performance of VRER using Actor-Critic and PPO
algorithms on some classical continuous control benchmarks. We set the same initial learning rate for both
actor and critic in Actor-Critic algorithm (i.e., Cartpole: 0.005; Acrobot: 0.001; and Fermentation: 0.001).
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For PPO, the learning rates of actor and critic were set to be 0.001 and 0.005 respectively for all three
examples. The selection threshold constant was set to be c = 1.5 for all experiment in this section.
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Figure 1: Convergence results for the Actor-Critic algorithm with and without using the proposed VRER.

We plot the mean performance curves and 95% confidence intervals of the actor-critic with and without
VRER in Figure 1. For the Cartpole problem, although the Actor-Critic algorithms converge to the optimum
with and without using VRER, the Actor-Critic-VRER shows significantly faster convergence than the
Actor-Critic. This indicates that the use of VRER gives significant performance improvement. Similar
performance improvement can be also seen in Acrobot example (Figure 1b), where Actor-Critic-ARER
shows not only the convergence to the optimum but also faster convergence. For the fermentation problem,
Actor-Critic-VRER shows performance improvement while Actor-Critic method even fails to converge.

We plot the mean performance curves and 95% confidence intervals of PPO in Figure 2. In Cartpole, the
average return of PPO-VRER converges about 25 iterations earlier than PPO. In Acrobot and Fermentation
problems, PPO-VRER shows better performance with higher average return and lower variance.
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Figure 2: Convergence results for the PPO algorithm with and without using the proposed VRER.

5.2 Sensitivity Analysis on the Selection of Reuse Threshold c

We study the sensitivity of convergence performance of actor critic and PPO algorithms with VRER to the
choice of constant c used in the selection criteria (13). Figure 3 shows the convergence behaviors when we
solve the Cartpole problem with different values of c. All the performance curves stay close, which indicates
that the convergence of the proposed VRER based policy optimization approach is robust to the choice of c.

5.3 Variance Reduction

In this section, we present empirical results to assess the performance of the proposed VRER in terms of
reducing the policy gradient estimation variance. We first test the proposed VRER method in conjunction
with actor-critic algorithm (Actor-Critic-VRER) in three distinct control examples (Figure 4). The original
actor-critic method is an on-policy reinforcement learning algorithm that thus suffers from the high variability
of gradient estimators. By selectively reusing historical transition observations through the VRER-based
MLR approach, the Actor-Critic algorithm shows a significant reduction in the estimation variance of policy
gradient in all three examples, compared to the original policy gradient without any experience replay.
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Figure 3: Sensitivity analysis of the reuse selection threshold constant c in Cartpole example.

Similar results are also observed for the PPO algorithm. The PPO, instead of using multiple importance
sampling, clips/truncates likelihood ratio for policy regularization and therefore eliminates the inflated
gradient variance caused by extreme samples (Schulman et al. 2017). The chipping technique, as an
alternative to MLR method, provides a simple and computation efficient method to regularize the policy
gradient and adjust distributional difference. However it introduces extra bias and thus may cause the
algorithm stuck at suboptimum. The results in Figure 5 show that the use of VRER can still reduce the
estimation variance of PPO policy gradient estimator even if MLR is replaced by chipped likelihood ratio.
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Figure 4: Policy gradient estimation variance results of Actor-Critic algorithm with and without VRER.
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Figure 5: Policy gradient estimation variance results of PPO algorithm with and without VRER.

6 CONCLUSION

To guide real-time process control in low-data situations, we create a variance reduction experience replay
approach to accelerate policy gradient optimization. The proposed selection rule guarantees the variance
reduction in the policy gradient estimation through selectively reusing the most relevant historical transition
observations and automatically allocating more weights to those observations or partial trajectories that are
more likely generated by the target stochastic decision process model. The empirical studies show that the
incorporation of proposed VRER and MLR with the state-of-the-art policy optimization approaches can
substantially improve their optimization convergence especially under the situations with a tight budget.
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