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ABSTRACT

Ranking & selection (R&S) procedures are simulation-optimization algorithms for making one-time decisions
among a finite set of alternative system designs or feasible solutions with a statistical assurance of a good
selection. R&S with covariates (R&S+C) extends the paradigm to allow the optimal selection to depend
on contextual information that is obtained just prior to the need for a decision. The dominant approach for
solving such problems is to employ offline simulation to create metamodels that predict the performance
of each system or feasible solution as a function of the covariate. This paper introduces a fundamentally
different approach that solves individual R&S problems offline for various values of the covariate, and then
treats the real-time decision as a classification problem: given the covariate information, which system
is a good solution? Our approach exploits the availability of efficient R&S procedures, requires milder
assumptions than the metamodeling paradigm to provide strong guarantees, and can be more efficient.

1 INTRODUCTION

Simulation optimization (SO) is typically an offline exercise: Construct a simulation model of a real or
conceptual system; optimize the expected value of one or more performance measures over controllable
decision variables; and implement the resulting optimal decision in the real world. Recently there has been
interest in settings where the real or conceptual system can be simulated, but the decision may be deferred
until some real-world context or covariate information is available. Later in this paper we will consider
an inventory purchasing problem for multiple products where product demand in one period is strongly
correlated with demand in a previous period. By deferring the ordering decision until the previous period’s
demand is realized, better purchasing decisions are possible by refining the demand distribution with this
“covariate” information.

When the number of feasible solutions or systems is finite and not too large, ranking & selection (R&S)
procedures are the go-to SO tool. R&S procedures simulate all systems to estimate their performance and
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select a system to implement with some statistical guarantee of goodness. In this paper we focus on the
statistical guarantee of probability of good selection (PGS). PGS refers to the probability of the procedure
yielding a system whose performance is within a user-specified optimality gap, δ , of the best. We will
denote the desired or nominal PGS by 1−α .

An intuitive way to extend R&S procedures to problems with covariate information is to defer applying
the procedure until the covariate is observed. We denote the covariate by a random vector XXX ∈X and a
particular realized value of it by xxx0. Upon observing XXX = xxx0, a R&S procedure could be applied to select a
good system given the covariate. Thus, the procedure is effectively online since the simulations rely on the
observed value of the covariate, xxx0. Of course, if the simulations are computationally expensive then there
could be a significant delay between the observation of XXX and when a system is chosen by the procedure.
This delay may be too long for certain problems, requiring a different approach that we refer to as R&S
with covariates (R&S+C).

R&S+C is a generalization of R&S that accounts for the covariate by executing the simulations necessary
to support a selection offline, prior to the observation of the covariate’s value. Because the simulations are
executed offline, the delay between the observation of XXX = xxx0 and selecting a system does not depend on
the computational expense of the simulations. Another advantage of running simulations offline is that the
results can be reused. This advantage is relevant in problems when we repeatedly observe different values
of the covariate and want to make custom selections each time. For example, in inventory purchasing one
may need to select a product mix repeatedly, say for different periods or for different stores. Even though
the observed value of XXX , say the previous period’s demand, may change each time a product mix needs to
be selected, the simulation results can be reused because they were obtained offline.

The incumbent approach in the literature on R&S+C is to form metamodels that characterize each
system’s performance as a function of the covariate. Specifically, simulation output is used to construct a
metamodel, µ̂ j(xxx), for j = 1,2, . . . , p, where p denotes the number of distinct systems. Then given XXX = xxx0,
the selected system is argmax j µ̂ j(xxx0). Examples include Shen et al. (2021) and Hu and Ludkovski (2017).
We refer to this approach as “weight then optimize” (WtO), since the metamodels can often be viewed as
weighted averages of the simulation outputs and the optimization happens after the weighting.

In this paper, we propose an alternative to WtO that exploits established R&S procedures that provide
a PGS guarantee. Consider choosing an experimental design of covariate values in X , denoted by
Dm = {xxx1,xxx2, . . . ,xxxm}, and then executing a R&S procedure at each covariate value in the design. This
process creates a database that assigns to each covariate value in Dm a corresponding good system that
was selected by the R&S procedure. The database can then be used to calibrate a classifier, where here
“classification” means assigning a good system to any given covariate value. Various classification tools
can be used, but we employ K-nearest neighbors (KNN, James et al. 2013, Chapter 4) due to its relative
simplicity for this initial study. We refer to our approach of constructing a database through the use of
R&S and then calibrating a classifier as “optimize then weight” (OtW), since the classification can often be
viewed as a weighted average of the existing classes and the optimization happens before the weighting.

There are two potential advantages of OtW as an alternative to WtO. The first is the probabilistic char-
acteristics of OtW. The statistical guarantees of WtO typically rely on specific and restrictive metamodeling
choices and assumptions. One example is Shen et al. (2021), where the metamodel is assumed to be a
linear function of the covariate. In contrast, OtW methods inherit their statistical guarantees from R&S
procedures that have been refined through decades of study. A second potential advantage that OtW provides
over WtO is a better paradigm for allocating replications to each candidate system. WtO metamodels are
often built for predictive accuracy, which means suboptimal systems may still require many simulations
to construct metamodels with a high degree of predictive accuracy. On the other hand, OtW with modern
R&S procedures like KN (Kim and Nelson 2001) can lead to fewer simulations of systems that are clearly
suboptimal.
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Following a brief literature review in the following section, we introduce our OtW approach to R&S+C
and prove a basic consistency result in Section 3. We then provide empirical comparisons relative to the
WtO approach of Shen et al. (2021) in Section 4.

2 LITERATURE

Real-time decisions based on observed covariate information has recently received considerable academic
attention. For example, Bertsimas and Kallus (2020) adopt a WtO approach to minimize the conditional
expected cost by solving static, continuous optimization problems in the areas of operations research
and operations management. Their approach constructs an approximation that employs various classes of
nonparametric learning methods, including KNN, Classification and Regression Trees (CART), random
forests, and kernels (James et al. 2013), to create metamodels. Using a set of historical data on the observed
system performance and covariate information, each data point is weighted according to some measure of
proximity to the current observed value of the covariate, and the optimization happens after the weighting.
Another recent paper that adopts a WtO approach to responsive decisions is Kannan et al. (2022), where
the authors focus on parametric learning metamodels in the same vein as those in Shen et al. (2021). In this
larger view of decisions, Ban and Rudin (2019) propose several ways to handle covariates, including an
empirical risk minimization approach that seems to fit under an OtW philosophy: Using a set of historical
data on the observed performance measure and covariate information, they solve an optimization problem
once to learn an optimal mapping from the covariate space, X , to the decision space (i.e., a policy). Then
when covariate information is observed, a decision for such a realization is readily available.

Although the literature on R&S+C is relatively young, there have been papers that deploy various
choices of metamodels, and also others that opt not to use a metamodel at all. Gao et al. (2019) and
Jin et al. (2019) assume that the covariate space, X , is finite and small enough that every system and
covariate combination can be simulated; therefore, no metamodel is required. They derive experiment
designs to efficiently allocate a finite simulation budget to maximize a measure of probability of correct
selection (PCS) across all combinations. Of course, when no metamodel is constructed, no information can
be gained for covariate values that were not simulated, which will always be the case when X is infinite.

Many R&S+C methods apply Bayesian metamodels by leveraging their posterior distribution. A
workhorse Bayesian metamodel is Gaussian process regression. To design the simulation experiment, these
methods typically employ acquisition functions, which are myopic approximations of the optimal allocation
of simulation effort to facilitate sequential design. Examples of acquisition functions include expected
improvement (Jones et al. 1998) and the knowledge gradient (Ryzhov et al. 2012). Although Cakmak
et al. (2022) assume X is finite, they use a Gaussian process metamodel to more efficiently maximize the
posterior PCS (PPCS).

In a setting where X is infinite and it is therefore not possible to simulate every covariate value, a
“design” consists of which covariate values in X to simulate and the number of simulation replications to
allocate to them. Hu and Ludkovski (2017), Pearce and Branke (2018), and Ding et al. (2022) all derive
sequential designs for a Gaussian process regression to maximize the posterior PGS (PPGS) for a fixed
simulation budget. The differences among these papers stem from the choice of acquisition function.

Instead of using a Gaussian process metamodel, Li et al. (2022) and Li et al. (2020) use a Gaussian
mixture model. Under their framework, the covariate space, X , and the systems {1,2, . . . , p}, are grouped
into clusters so that the systems’ performances are similarly distributed within each cluster. This clustering
aids in the allocation of simulation effort to attain the best possible worst-case PPCS.

In contrast to the Bayesian approaches, Shen et al. (2021) consider R&S+C from a frequentist perspective.
For a fixed covariate design, they derive two-stage simulation-replication algorithms that provide a PGS
guarantee when averaged across the covariate space. To attain this guarantee, Shen et al. (2021) assume
that each system’s mean is a linear function of the covariate, and that the real-world distribution of the
covariates is known. Two algorithms for setting the number of replications are given: One applies when
the simulation output variance does not depend on the value of the covariate, while the second allows for
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a non-constant variance across X . Li et al. (2018) extend this paradigm to the case when X is high
dimensional. Specifically, they use LASSO (James et al. 2013) to estimate a reduced set of parameters in
the linear metamodel. They also consider a larger class of basis functions than linear, which generalizes
the approach of Shen et al. (2021). Their focus is on maximizing the minimum PCS across X .

In this paper we desire the sort of frequentist guarantees obtained by Shen et al. (2021) but with weaker
assumptions. We do not employ a metamodel for each system’s mean, but instead construct an overall
classification model that predicts a good system at any covariate value.

3 R&S+C AS CLASSIFICATION

In this section we formally introduce our R&S+C classifier. Recall that XXX is the covariate, which is treated
as a random vector prior to realization, and there are p competing systems. Let Yj,ℓ(xxx), be the output
of the ℓth replication from system j ∈ {1,2, . . . , p}, conditional on XXX = xxx. For any system j we assume
the Yj,ℓ(xxx) are i.i.d. N(µ j(xxx),σ2

j (xxx)), ℓ= 1,2, . . . , with neither the mean nor variance known. We further
assume that Yj,ℓ(xxx) and Ym,n(xxx′) are simulated independently, when xxx ̸= xxx′. However, for fixed replication ℓ
and covariate xxx, (Y1,ℓ(xxx),Y2,ℓ(xxx), . . . ,Yp,ℓ(xxx)) may be dependent due to the use of common random numbers.
When XXX = xxx, let µ⋆(xxx) = max j µ j(xxx) be the performance of the optimal selection, which is denoted by
j⋆(xxx) = argmax j µ j(xxx), with ties broken arbitrarily.

Revisiting the R&S+C setting, upon observing XXX = xxx0, we are interested in predicting j⋆(xxx0), or a
system whose performance does not differ from it by much, without additional simulation.

3.1 R&S+C Classifier Without Noise

To simplify the presentation and provide intuition, suppose that prior to being given a realized value of the
covariate, XXX , we can freely query j⋆(xxx) for any xxx. However, when given XXX = xxx0, no further queries are
possible. One strategy is to query j⋆(·) for some collection of covariate values, {xxx1,xxx2, . . . ,xxxm}, and then
to use these data to build a classifier for any xxx; we denote the classifier by ĵ⋆(xxx). Therefore, when given
XXX = xxx0, we choose ĵ⋆(xxx0).

Since we are treating R&S+C as a classification problem, many classifiers could be employed. For
this paper we use KNN. To build the KNN classifier, we construct a database of the optimal system
selections at different covariate values. Specifically, this database consists of a set of m design points, Dm =
{xxx1,xxx2, . . . ,xxxm} ⊂X , and a corresponding vector of classifications, Rm = { j⋆(xxx1), j⋆(xxx2), . . . , j⋆(xxxm)}. Let
d(xxx,xxx′) be a metric in X , and let T(xxx,Dm,k) be the set of the k closest design points to xxx in Dm using
this metric, with ties broken arbitrarily. Then the KNN classifier at an xxx is

KNNOtW(xxx,Dm,Rm,k) = argmax
j=1,...,p

m

∑
i=1

I( j⋆(xxxi) = j)I(xxxi ∈ T(xxx,Dm,k)), (1)

with ties broken arbitrarily. This is precisely the OtW approach described in Section 1: We first optimize
by obtaining j⋆(xxxi), i = 1,2, . . . ,m, and then weight each selection with I(xxxi ∈ T(xxx,Dm,k)) to classify.

To illustrate the differences between OtW and WtO, consider the corresponding WtO approach. In the
noiseless case this means one can query µ j(xxx) for any system j and covariate value xxx to build a metamodel
µ̂ j(xxx). To provide a parallel with our classification method, let KNN regression be the choice of metamodel.
While distinct covariate designs could be specified for each system, to make the explanation clearer assume
a single design, Dm = {xxx1,xxx2, . . . ,xxxm} and a corresponding collection of response values for each system
j, Rm, j = {µ j(xxx1),µ j(xxx2), . . . ,µ j(xxxm)}. Then for system j, the KNN regression metamodel is

µ̂ j(xxx) =
1
k

m

∑
i=1

µ j(xxxi)I(xxxi ∈ T(xxx,Dm,k)).
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This metamodel is constructed by weighting each performance value µ j(xxxi) by I(xxxi ∈ T(xxx,Dm,k))/k. Then
conditional on XXX = xxx, one can optimize by selecting

KNNWtO(xxx,Dm,{Rm, j}m
j=1,k) = argmax

j=1,...,p
µ̂ j(xxx) = argmax

j=1,...,p

m

∑
i=1

µ j(xxxi)I(xxxi ∈ T(xxx,Dm,k)).

That is, we “weight then optimize,” which is the most common approach described in Section 2. The
primary difference in the approaches is the information being used: an OtW approach uses the queries of
the optimal system while the WtO approach uses the actual responses.

3.2 R&S+C Classifier With Noise

In a stochastic simulation we cannot query j⋆(xxx). However, R&S procedures provide a proxy for j⋆(xxx).
Given a covariate value xxx, a R&S procedure can be executed to obtain replications Yj,ℓ(xxx) for each
system j = 1,2, . . . , p as required by the procedure. A R&S procedure executed at xxx is a function,
R(xxx,α,δ ), where 1−α is a desired PGS and δ > 0 is the allowable optimality gap. Notice that this
function is itself a random variable, with outputs taking values in {1,2, . . . , p} and (we assume) it satisfies
Pr

{
µ⋆(xxx)−µR(xxx,α,δ )(xxx)≤ δ |XXX = xxx

}
≥ 1−α for each xxx ∈X .

For a design consisting of covariate values Dm = {xxx1,xxx2, . . . ,xxxm}, a desired PGS level of 1−α , and
an optimality gap of δ , let Rm = {R(xxx1,α,δ ),R(xxx2,α,δ ), . . . ,R(xxxm,α,δ )}, where R(xxxi,α,δ ) is the value
returned by the R&S procedure at covariate xxxi. Analogous to Equation (1), we propose the R&S+C classifier

KNN(xxx,Dm,Rm,k) = argmax
j=1,...,p

m

∑
i=1

I(R(xxxi,α,δ ) = j)I(xxxi ∈ T(xxx,Dm,k)), (2)

with ties broken arbitrarily; see Algorithm 1. We discuss the choice of design Dm and the number of
nearest neighbors k later.

Algorithm 1 R&S+C Classifier with KNN
Input: a R&S procedure, R(·,α,δ ), and design, Dm

initialize Rm = /0
for each design point, xxxi ∈Dm, i = 1,2, . . . ,m do

Rm←Rm
⋃

R(xxxi,α,δ )
end for
return KNN(·,Dm,Rm,k)

In Equation (2), the only change from Equation (1) in Section 3.1 is that the true optimal system at a
design point is replaced by the R&S outcome. This substitution produces two important differences. The
first is that at a design point xxxi, the R&S procedure only promises a good selection with probability 1−α ,
so there is some chance of returning a system whose mean is far from that of j⋆(xxxi). The second is that
the promise is of a good selection, not the best, where “good” is a system whose mean performance at xxxi
is within δ of the best system. Therefore, even when the procedure returns a good selection, there is some
chance that R(xxxi,α,δ ) ̸= j⋆(xxxi).

By employing a R&S procedure at each design point, our approach makes no assumptions regarding
the form of µi(·) or the relationships among the systems. Furthermore, it gives a probabilistic guarantee on
the selected system at each design point independent of our ultimate choice of classification metamodel.
Recall that to provide a PGS guarantee in the WtO procedure of Shen et al. (2021) they make a strong
assumption that each system’s mean performance is linear in the covariate.
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3.3 R&S+C Guarantees

As is standard in R&S, we would like to assess the statistical guarantees that Algorithm 1 provides.
Suppose that we desire PGS ≥ 1−α with optimality gap δ . To be meaningful, the “PGS” should have
some interpretation across the entire covariate space. There are at least two versions, the first being a
pointwise PGS guarantee:

Pr
{

µ
⋆(xxx0)−µKNN(xxx0,Dm,Rm,k)(xxx0)≤ δ |XXX = xxx0

}
≥ 1−α for each xxx0 ∈X . (3)

This is a marginal guarantee on every possible covariate value xxx0 individually, and therefore very strong.
We note that the only random variables in the pointwise PGS guarantee if Dm is fixed are the R&S results
Rm. The second guarantee is the expected PGS guarantee, defined as:

Pr
{

µ
⋆(XXX)−µKNN(XXX ,Dm,Rm,k)(XXX)≤ δ

}
≥ 1−α. (4)

Clearly, if a procedure attains the pointwise PGS guarantee then it attains the expected PGS guarantee as
well, but the reverse is not true. Shen et al. (2021) focus on expected PGS.

One advantage of our classification approach is the ability to prove results such as (3) and (4) under
certain conditions using well-established properties of the R&S procedures themselves; we leave those for
a future paper. Here we establish a third guarantee, asymptotic pointwise consistency as the number of
design points m and nearest neighbors k increase. This result provides assurance that the classification
performance gets better and better as we expend more and more simulation effort, so that any desired level
of PGS can be achieved. Theorem 1 below will employ the following assumptions:
(A1): X ⊆ℜd

(A2): XXX ∼ F with support X
(A3): µi(·), i = 1,2, . . . , p are continuous on X
(A4): For any xxx ∈X , Pr

{
µ⋆(xxx)−µR(xxx,α,δ )(xxx)≤ δ |XXX = xxx

}
≥ 1−α

(A5): Dm = {XXX1,XXX2, . . . ,XXXm}, where XXX1,XXX2, . . . are i.i.d. F .
(A6): R&S procedures executed at different design points in Dm are independent of each other.
(A7): The KNN metric is the Euclidean distance.
Theorem 1 If assumptions (A1)–(A7) hold, δ > 0, α < 1/p, and m→ ∞ implies k→ ∞ with k/m→ 0,
then for all xxx0 ∈X such that for any λ > 0, Pr{XXX ∈ B(xxx0,λ )}> 0, where B(xxx,λ ) is a Euclidean ball with
radius λ centered at xxx, we have

lim
m→∞

Pr
{

µ
⋆(xxx0)−µKNN(xxx0,Dm,Rm,k)(xxx0)≤ δ |XXX = xxx0

}
= 1.

Some additional notation and two basic results will be useful in the proof. For fixed xxx0, let X j:m be
the jth closest design point in Dm to xxx0 in Euclidean distance; therefore {X1:m,X2:m, . . . ,Xk:m} are the k
nearest neighbors to xxx0 in Dm. Furthermore, let

A j:m = I
(

µ
⋆(xxx0)−µR(X j:m,α,δ )(xxx0)≤ δ

)
be an indicator of whether the system selected via R&S for design point X j:m would be a good selection
for covariate value xxx0. Finally, let R(xxx) = R(xxx,α,δ ) for simplicity. The following elementary results will
be employed:

1. If Bm ∼ Binomial(m,q) with 0≤ q≤ 1 and k ≤ mq then from Hoeffding’s inequality

Pr{Bm ≤ k} ≤ exp

{
−2m

(
q− k

m

)2
}
. (5)
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2. For any xxx ∈ X , the random variable I
(
µ⋆(xxx)−µR(xxx,α,δ )(xxx)≤ δ

)
is stochastically larger than

C ∼ Bernoulli(1−α) by properties of the R&S procedure in (A4).

Proof. The key insight is that a good selection for xxx0 must occur if

k−
k

∑
j=1

A j:m <
1

p−1

k

∑
j=1

A j:m.

This can be seen by noting that the left-hand side is the number of non-good selections among the KNN,
while the right-hand side is the number of good selections, but spread out evenly over the maximum number
of possible “good” systems without all of them being good. We will show that for arbitrary ε > 0 there is
an mε large enough that for all m≥ mε

Pr

{
k−

k

∑
j=1

A j:m ≥
1

p−1

k

∑
j=1

A j:m

}
≤ ε.

Define G (xxx) = { j : µ⋆(xxx)−µ j(xxx)≤ δ} to be the set of good systems for covariate value xxx, and G c(xxx) its
complement. By the continuity assumption (A3), there exists a λ ⋆ > 0 but small enough that if j ∈ G c(xxx0)
then j ∈ G c(xxx) for xxx ∈ B(xxx0,λ

⋆); that is, if system j is not a good selection for xxx0 then it is also not a good
selection for any xxx ∈ B(xxx0,λ

⋆).
Let q(xxx0) = Pr{XXX ∈ B(xxx0,λ

⋆)}, which is greater than zero by assumption on xxx0, and

Nk,m = #{X1:m,X2:m, . . . ,Xk:m ∈ B(xxx0,λ
⋆)} .

To state the result entirely in terms of the number of design points m, let k = k(m) with the only restrictions
that k(m) is nondecreasing in m, k(m)→ ∞ and k(m)/m→ 0 as m→ ∞. Then using (5) we can show that
with (k(m)−1)≤ mq(xxx0) we have

Pr{Nk,m < k}= Pr{Bm ≤ k−1} ≤ exp

{
−2m

(
q(xxx0)−

k−1
m

)2
}
→ 0

as m→ ∞ and k(m)/m→ 0, where Bm ∼ Binomial(m,q(xxx0)). Thus, for ε1 = ε/2 there exists an m1 such
that Pr{Nk,m < k} ≤ ε1 for all m≥ m1.

Next, when Nk,m = k, a good selection for any of {X1:m,X2:m, . . . ,Xk:m} is also a good selection for xxx0
because Nk,m = k implies there are no covariates leading to bad selections at xxx0 in this set. Therefore,

Pr

{
k−

k

∑
j=1

A j:m ≥
1

p−1

k

∑
j=1

A j:m

∣∣∣∣∣Nk,m = k

}
= Pr

{
1
k

k

∑
j=1

A j:m ≤ 1− 1
p

∣∣∣∣∣Nk,m = k

}

≤ Pr

{
1
k

k

∑
j=1

C j ≤ 1− 1
p

}
(6)

where C1,C2, . . . are i.i.d. Bernoulli(1−α), by the stochastic ordering noted above. Then since 1−1/p <
1−α , the weak law of large numbers implies that there is an m2 such that (6) ≤ ε2 = ε/2 for all m≥ m2
(notice that here m2 ensures that k is large enough). Thus, by the law of total probability

Pr

{
k−

k

∑
j=1

A j:m ≥
1

p−1

k

∑
j=1

A j:m

}

= Pr

{
1
k

k

∑
j=1

A j:m ≤ 1− 1
p

∣∣∣∣∣Nk,m = k

}
Pr{Nk,m = k}+Pr

{
1
k

k

∑
j=1

A j:m ≤ 1− 1
p

∣∣∣∣∣Nk,m < k

}
Pr{Nk,m < k}

≤ Pr

{
1
k

k

∑
j=1

A j:m ≤ 1− 1
p

∣∣∣∣∣Nk,m = k

}
+Pr{Nk,m < k} ≤ ε1 + ε2 = ε
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for all m≥ mε = max{m1,m2}.

Remark 1 Theorem 1 holds for xxx0 such that the probability of design points falling in a neighborhood
around xxx0 is positive. Without this condition, design points may never be close enough to xxx0 to discover the
good systems at xxx0. This mild condition is easily satisfied. For example, any interior point of X satisfies
this condition if the density of F is positive and continuous at xxx0.

4 EMPIRICAL EVALUATION

In this section we empirically evaluate our R&S+C classifier (RSCC) using two separate problems: the first
being the benchmark problems in Shen et al. (2021), and the second a two-product single-period inventory
problem.

The RSCC procedure requires the following parameters: the R&S procedure to use, the PGS, 1−α ,
the optimality gap, δ , the initial number of replications for the procedure, n0, the covariate design, Dm,
and the choice of classifier. Here we employ KN (Kim and Nelson 2001) for R&S, 1−α = 0.95 and
KNN classifier with k = 1. KN is widely believed to provide a PGS guarantee, although this has not been
proven. The initial number of replications, optimality gap, and design depend on the problem.

We compare RSCC to the two procedures of Shen et al. (2021), TS and TS+. Given procedure
parameters Dm, n0, δ , and α , both procedures provide an expected PGS guarantee of 1−α under the
assumption that each µ j(·) is a linear function of the covariate. TS further assumes that the output variance
is a constant across the covariate space, while TS+ allows for unequal variances. The benchmark problems
satisfy the assumptions of either TS or TS+, but the inventory problem has neither a linear response nor
equal variances.

Two metrics are employed to evaluate the procedures: the expected PGS with respect to the covariate
distribution and the expected number of replications consumed by the procedures. As both test problems
are tractable, whether or not a good selection is made can be evaluated. A single fixed set of 10,000 points
is generated from the covariate distribution. Then each procedure is applied to each problem 1,000 times
(macroreplications) building a classifier (RSCC) or linear models (TS and TS+) in each case. The metrics
are then evaluated using the set of test points.

For each of the procedures, let ĵ⋆(xxx) represent the selected system at covariate xxx. Define xxxs as the sth
point in the test set. The expected PGS (EPGS) is estimated by

ÊPGS =
1

1,000 ·10,000

1,000

∑
r=1

10,000

∑
s=1

I(µ⋆(xxxs)−µ ĵ⋆(xxxs)
(xxxs)< δ )r,

where I(µ⋆(xxxs)−µ ĵ⋆(xxxs)
(xxxs)< δ )r is the indicator of whether the procedure made a good selection at xxxs for

macroreplication r. Let N(xxxs)r be the number of replications the procedure consumed at xxxs for replication
r. The expected number of replications, (ENR), is estimated by

ÊNR =
1

1,000 ·10,000

1,000

∑
r=1

10,000

∑
i=1

N(xxxs)r.

4.1 Benchmark Problems

We first reproduce the benchmark problem suite of Shen et al. (2021), which consists of a baseline problem
and variations on it. In the baseline problem, Yj,ℓ(xxx) = µ j(xxx)+ εℓ, j = β0 j + xxx⊤β + εℓ, j, where xxx and β are
d×1 with d = 3, and β01−δ = β0 j = 0, j = 2,3, . . . , p, with p = 5 and δ = 1. The ε j,ℓ are i.i.d. N(0,σ2). In
words, the mean responses of the systems as functions of the covariate are parallel planes; Shen et al. (2021)
establish that this is the least favorable configuration in terms of EPGS for their procedure. The elements of
the covariate XXX = (X1,X2, . . . ,Xd)

⊤ are i.i.d. Uniform(0,1). In addition, α = 0.05 and Dm = {0,0.5}d . The
variations include changing the number of systems, allowing the variances to be unequal across systems,
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Table 1: Results for the benchmark problem suite.

ÊPGS ÊNR
Procedure RSCC TS TS+ RSCC TS TS+

Baseline 0.96 0.96 0.98 21,982 48,276 67,222
p = 2 0.95 0.95 0.97 4,957 9,446 13,026
p = 8 0.96 0.97 0.99 39,877 95,707 133,034

Increasing σ 0.96 0.96 0.98 19,630 54,265 75,511
Decreasing σ 0.97 0.96 0.98 28,763 54,223 75,341

Heteroscedastic σ 0.97 0.94 0.99 31,591 60,242 83,994
d = 1 0.95 0.97 0.97 5,511 22,545 25,716
d = 5 0.96 0.96 0.99 88,014 72,821 117,234

Normal Covariates 0.96 0.96 0.98 22,066 47,477 65,886

changing the dimension of the covariate, and changing the distribution of the covariate. See Shen et al.
(2021) for complete details. Notice that since Shen et al. (2021) count the intercept term as a covariate
their values of d are one greater than ours, but these are only notational differences.

Although the benchmark problems are the least favorable for TS and TS+, they are favorable for RSCC
because a correct selection at one design point is a correct selection everywhere. Thus, our focus is on
comparing the number of replications consumed. Notice that we treat system 1 as the single good system,
even though in our assumption (A4) all systems would be considered “good.”

The empirical results are found in Table 1. We observe that the results for TS and TS+ are consistent with
the results in Shen et al. (2021). Because RSCC employs KN at each design point, and KN accommodates
unequal variances, the configuration of the variances does not affect the PGS guarantees of RSCC. Thus,
both RSCC and TS+ achieve the nominal 95% PGS for every set of problem parameters. TS might not
achieve the specified PGS when the variances are heteroscedastic, but it is close. The RSCC procedure
requires substantially fewer replications for every problem except for the case when d = 5. We attribute
this to the large size of the design in the higher dimension, which is much larger than RSCC actually needs
to achieve satisfactory EPGS on this particular problem. Nonetheless, this shows that in difficult settings
for TS and TS+, RSCC can perform quite well.

4.2 Two-product, Single-period Inventory Problem

We next compare TS+ and RSCC on a two-product, single-period inventory problem, primarily to evaluate
the impact of number of design points, m, as well as the type of design.

In the classical single-period inventory problem, a one-time order must be placed at the beginning
of the selling period to accommodate stochastic demand given the per-item purchase cost and sale price
to maximize the expected profit. In our example there are two products, and although their demands are
independent, the total order quantity of both products is constrained, and each product can only be ordered
in certain multiples. The feasible order quantities implied by these constraints define the set of competing
systems. Further, there are two selling periods (but with no carry over). The demand for each product is
identically distributed across both periods, but strongly correlated. Specifically, the demand for product i
in period 1 (denoted D1,i) and period 2 (denoted D2,i) are bivariate normally distributed. Therefore, after
observing D1,i, the demand for product i in period 2 can be refined to make a better decision. Thus, D1,i
can be employed as a covariate. Specifically, the demand in period 2 of product i, given covariate D1,i,
has distribution

D2,i | D1,i ∼ N
(
η +ρ(D1,i−ηi), (1−ρ

2)ς2)
where η and ς2 are the unconditional mean and variance of demand, respectively, and ρ is the correlation
between demands in periods 1 and 2. An analogous model holds for both products. The distribution
parameters are chosen to be the same for both products to simplify the analysis of the empirical evaluation.
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Figure 1: Good systems for a grid of covariate pairs for the two-product, single-period inventory problem.

To compare RSCC and TS+, the distribution parameters of the inventory problem are specified as follows:
ς2 = 40, η = 195, ρ = 0.9. For product 1, the per-item selling price and the per-item cost of purchase are
$10 and $6, respectively. For product 2, the per-item selling price and the per-item cost of purchase are $15
and $7, respectively. The total order constraint is set at 600. The multiples of product 1 that can be purchased
are 100 with a minimum purchase amount of 100 and the multiples of product 2 that can be purchased are
150 with a minimum purchase amount of 150. Therefore, the different order quantities of both products
are, (100,150),(100,300),(100,450),(200,150),(200,300),(300,150),(300,300),(400,150), which we
denote as systems 1,2, . . . ,8, respectively. Figure 1 lists the good systems at a grid of covariate pairs
(D1,1,D1,2) to give a sense of the problem.

The procedure parameters that are varied are the first-stage sample size n0 and the number of design
points m. The value of n0 is specified to be a function of δ and the average variance of the profits.
Specifically, n0 = (ψ/δ )2V̄ . To approximate V̄ , we use Monte Carlo simulation. Two different values of
ψ are used: 4 and 5. These values of ψ result in values of 6 and 9 for n0, respectively. Recall that the
main purpose of the inventory problem is to investigate how EPGS and number of replications change as
the number of design points m changes. To that end, m = 5,10,15,20,25,30 are tested.

We set α = 0.05. The remaining experiment parameters are δ and the choice of design points. To
ensure that δ is large enough that there is more than one good selection at most covariate values, while
ensuring that δ is small enough that at most covariate values not all the systems are good selections,
we choose δ such that Pr(µ⋆(D1)−max j ̸=i⋆ µ j(D1)≤ δ ) = 0.9. Thus, δ is the 90th percentile difference
between the mean profit of the optimal system and the mean profit of the second-best system at D1, where
D1 follows the covariate distribution described above. This approach gave δ = $363 using Monte Carlo.

For the experiment design we use Latin hypercube samples of increasing size. For a design of size
m, a random Latin hypercube sample of size m is generated taking values in [0,1]. The inverse cdf of the
covariate distribution then returns quantiles in the covariate space based on the uniform quantiles generated
from the Latin hypercube sample. The returned quantiles are the design. Since TS+ assumes a linear model,
we also apply it with the minimal full factorial design. If π is an extreme uniform quantile, a factorial
design of {π,1−π}2 is generated. The inverse cdf of the covariate distribution again returns the quantiles
in the covariate space for the factorial design. We use two factorial designs, π = 0.05 and π = 0.01.
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Table 2: Results for the two-product single-period inventory problem with LHS design.

Size of Design
Procedure Result 5 10 15 20 25 30
RSCC
ψ = 5

ÊPGS 0.95 0.98 0.99 0.99 0.99 1
ÊNR 430 860 1,293 1,724 2,154 2,582

RSCC
ψ = 4

ÊPGS 0.95 0.98 0.99 0.99 0.99 1
ÊNR 422 860 1,277 1,707 2,140 2,582

TS+

ψ = 5
ÊPGS 1 1 1 1 1 1
ÊNR 2,070 1,368 1,568 1,815 2,106 2,404

TS+

ψ = 4
ÊPGS 1 1 1 1 1 1
ÊNR 3,336 2,315 2,587 2,836 3,136 3,416

Table 3: Results for TS+ for the two-product single-period inventory problem with factorial design.

π ψ ÊPGS ÊNR

π = 0.05
ψ = 4 1 746
ψ = 5 1 469

π = 0.01
ψ = 4 0.95 591
ψ = 5 0.94 384

We ran 1,000 macro replications for each case. The ÊPGS and ÊNR results for the Latin hypercube
designs are found in Table 2. In all cases, both RSCC and TS+ achieve a PGS of at least 0.95. However,
both tend to overachieve the nominal PGS, in some cases substantially. RSCC consumes fewer replications
than TS+ until the design size grows above m = 25. Furthermore, the expected number of replications
consumed by TS+ appears not to be very sensitive to the design size. Since TS+ assumes a linear model,
replications and design points are essentially interchangeable. The replications consumed by RSCC are
directly related to the design size since it executes an independent R&S procedures at each design point.
Fortunately, RSCC achieves the desired PGS with a small design.

The factorial results for procedure TS+ are found in Table 3. Because the mean response functions are
not linear, the placement of the factorial points impacts the results. In principle, if the mean performance
functions were truly linear, then the more extreme the factorial design points are, the better. However, in
this example the more extreme design π = 0.01 yields lower EPGS than the less extreme design π = 0.05.
Considering ÊNR of TS+, the factorial designs give similar ÊNR to RSCC and far fewer replications than
the Latin hypercube design. However, a trade-off between a factorial and Latin hypercube design for TS+

exists. In the inventory problem, while fewer replications are needed for the factorial design, if the design
points are not appropriately placed, then the linear model may not well approximate the nonlinear surface
and the specified EPGS may not be achieved.

Overall, our empirical evaluation demonstrates that a classification approach, built on top of workhorse
R&S procedures, can be an effective and efficient solution to R&S+C problems without strong assumptions
or prior knowledge. Experiment design for RSCC is the key outstanding research problem.
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