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ABSTRACT

We present a hybrid importance sampling estimator that is strongly efficient for tail probabilities of the
all-time maximum of a branching random walk, where the increments satisfy a Cramer-Lundberg condition.
The estimator uses conditional Monte Carlo in combination with the population dynamics algorithm to
compute an expression for the tail of the distribution obtained from a spine change of measure. It has
computational complexity (measured by the number of input random vectors required) that is independent
of the offspring distribution, allowing for fast computation even when the mean number of offspring is
very large. We remark on consistency of this estimator and give numerical examples.

1 INTRODUCTION

We consider the all-time maximum W of a branching random walk with offspring distribution N and
increments X1, . . . ,XN . That is, starting from 0, at each time step all existing nodes produce a random
number N offspring with increment sizes determined by the random variables {Xi}. The random vector
ψψψ = (N,{Xi}) is allowed to have arbitrary dependence. An explicit construction of W is provided in Section
1.2.

It is known that when there exists α > 0 such that

E

[
N

∑
i=1

eαXi

]
= 1 and 0 < E

[
N

∑
i=1

XieαXi

]
< ∞, (1)

as well as some β ∈ (0,α) such that

ρβ := E

[
N

∑
i=1

eβXi

]
< 1, (2)

the maximum W satisfies the tail asymptotic

P(W > t)∼ He−αt , t→ ∞,

for some constant H > 0 with various representations (Basrak et al. 2022; Jelenković and Olvera-
Cravioto 2012a; Jelenković and Olvera-Cravioto 2012b; Jelenković and Olvera-Cravioto 2015). However,
in applications it is important to estimate P(W > t) itself, rather than relying on its asymptotic expression,
and this can be challenging. Although there exist efficient methods to generate samples from the law of
W (e.g., the population dynamics algorithm (Olvera-Cravioto 2019)), this is not enough to compute tail
probabilities. Specifically, given a sample from the law of W , the naive Monte Carlo estimator 1(W > t)
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has unbounded relative error, i.e.,

Var (1(W > t))
P(W > t)2 =

P(W > t)P(W ≤ t)
P(W > t)2 → ∞ as t→ ∞.

An importance sampling approach to estimating P(W > t) was developed in Basrak et al. (2022) based
on a representation of the tail event under a likelihood ratio change of measure. The result is an estimator
Z(t) for P(W > t) that is unbiased under the new probabiliy measure P̃ and that is strongly efficient, i.e.,

limsup
t→∞

Ṽar (Z(t))
P(W > t)2 < ∞, (3)

where Ṽar denotes variance with respect to P̃.
The change of measure P̃ is based on a “spine decomposition” of the branching process, which selects

one lineage at random to which it applies an exponential tilt, and is similar to the changes of measure used
in Lyons (2018) and Lyons et al. (1995). Under the condition (2), the paths of the walk have negative drift
since

E
[

max
1≤i≤N

Xi

]
≤ β

−1 logE
[

max
1≤i≤N

eβXi

]
≤ β

−1 logρβ < 0

by Jensen’s inequality. Under P̃, the chosen path is tilted to have positive drift µ > 0, while the drift on
the other branches remains unchanged. This chosen path along with its immediate offspring are referred
to as the spine. This generalizes the classical exponential change of measure used in renewal theory and
importance sampling for the (nonbranching) random walk on R. See Section 2 for more details.

The estimator Z(t) from Basrak et al. (2022) is generated by simulating the branching random walk until
the first time that any path exceeds the value t. While allowing for unbiased estimation, it is computationally
very costly when either E[N] or t is very large. Throughout, we measure the computational complexity of
an algorithm by the number of branching vectors ψψψ that need to be generated. By tilting only one path of the
branching random walk, the measure P̃ virtually guarantees that the algorithm will terminate there. If τ(t)
denotes the first passage time of t along that path, then it is shown in Basrak et al. (2022) that τ(t)∼ t/µ

as t → ∞ P̃-a.s., and hence the complexity of generating a single copy of Z(t) is at least (E[N])t/µ . In
practice, this cannot be done in a reasonable amount of time for large t when E[N] is significantly larger
than 1.

Herein we propose an estimator for P(W > t) that takes advantage of the fact that the algorithm will
almost always terminate on the spine to circumvent the computational complexity induced by N. The
idea is to only simulate the spine of the process by first accounting for the contribution of all other paths
using conditional Monte Carlo, and using population dynamics to numerically approximate this estimator.
The computational complexity of the population dynamics algorithm does not depend on E[N], and hence
neither does that for the hybrid approach presented here. Furthermore, it depends on t only linearly.

Throughout, we assume the following on the random vector ψψψ . Let D = ∑
N
i=1 eαXi , where α satisfies

(1).
Condition 1 There exists α > 0 such that (1) holds. Additionally,

(a) The probability measure E
[
∑

N
i=1 eαXi1(Xi ∈ dx)

]
on R is nonarithmetic,

(b) P(D > 0) = 1,
(c) ρβ < 1 for some β ∈ (0,α), and
(d) E[N]< ∞ and E[ND]< ∞.

Part (a) of Condition 1 will ensure that certain renewal-theoretic results from Basrak et al. (2022) hold.
Part (b) ensures that the change of measure defined in Section 2 is well defined. Note that (b) implies
that P(N ≥ 1) = 1, namely that no lineage of the branching random walk goes extinct. The condition
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that E[ND]< ∞ is needed for the mean of N under the change of measure to be finite, something that is
convenient for simulation. We also assume the following (see Jelenković and Olvera-Cravioto (2015)).

Condition 2 E
[(

∑
N
i=1 eXi

)α
]
< ∞ if α > 1 and E

[(
∑

N
i=1 eαXi/(1+ε)

)1+ε
]
< ∞ for some ε ∈ (0,1) if α ≤ 1.

Conditions 1 and 2 provide the only assumed dependencies among the components of the branching
vector ψψψ = (N,{Xi}).

1.1 The High-Order Lindley Equation

The law of the all time maximum of the branching random walk is a solution to the stochastic fixed point
equation

W D
=

(
max

1≤i≤N
(Xi +Wi)

)+

, (4)

where D
= denotes equality in distribution, and the {Wi} are i.i.d. copies of W independent of (N,{Xi}). (4)

is a special case of the more general high order Lindley equation

W D
= max

{
Y, max

1≤i≤N
(Xi +Wi)

}
,

when the random variable Y is identically 0.
Recursion (4) was studied in Olvera-Cravioto and Ruiz-Lacedelli (2021) (see also Karpelevich et al.

(1994)) in the context of queueing networks with n servers, whererin jobs are split into a random number
N fragments to be processed in a synchronized fashion. When Xi = χi−τi is the difference of the limiting
service time χi of a fragment and the limiting interarrival time τi of a job, W gives the stationary waiting
time distribution of jobs as n→ ∞. Note that when N is identically 1, (4) is simply the classical Lindley
equation, and the queueing network becomes the G/G/1 queue (Asmussen 2003, Section III.7). It is useful
in the context of the more general queueing systems to have efficient means to estimate the probability
that the limiting waiting time exceeds some large value. The importance sampling approach to estimating
stationary waiting time distributions in the simpler G/G/1 queue is part of the classical literature, for which
we refer to Siegmund (1976) and Chapter VI in Asmussen (2003).

1.2 The Marked Galton-Watson Process

Here we define the branching random walk and its all-time maximum W through a marked Galton-Watson
process that lives on a tree T constructed as follows.

LetU =
⋃

∞
k=0Nk

+ be the set of all finite sequences i=(i1, . . . , ik), k≥ 0. We take the conventionN0
+= { /0},

where /0 denotes the null sequence, which will be the root node of our tree T . For i = (i1, . . . , ik) ∈U ,
we will write i|r = (i1, . . . , ir) when r ≤ k to denote truncation, and we will write (i, j) = (i1, . . . ik, j) for
j ∈ N+ to denote concatenation. When needed, we use the convention (i|0) = /0 and ( /0, j) = j. We will
also write |i|= k to denote length, and we order U according to length-lexicographic order, denoted by ≺.
That is, for i, j ∈U , i≺ j if either |i|< |j| or |i|= |j| and for some r ≤ |i|, in = jn for n = 1, . . . ,r−1 and
ir < jr.

Now let {ψψψ i = (Ni,X(i,1),X(i,2), . . .) : i∈U} be i.i.d. copies of ψψψ . For convenience, we will often denote
ψψψ /0 = ψψψ . The structure of T is defined as follows. Let An denote the set of nodes in the nth generation,
where A0 = { /0},

A1 = {i ∈ N+ : 1≤ i≤ N/0} , and

An = {(i, j) ∈U : i ∈ An−1,1≤ j ≤ Ni} , n≥ 2.
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S /0 = 0

S1 = X1 S2 = X2 S3 = X3

S(1,1) = X(1,1)+X1

S(1,2) = X(1,2)+X1

S(2,1) = X(2,1)+X2

S(3,1) = X(3,1)+X3

S(3,2) = X(3,2)+X3

S(3,3) = X(3,3)+X3

Figure 1: A weighted branching tree.

To each node i, we assign the increment Xi and the value of the branching random walk Si, where

S /0 = 0, Si =
n

∑
k=1

Xi|k, i ∈ An, n≥ 1.

This construction is visualized in Figure 1. Note that Si is the sum of independent but not necessarily
identically distributed random variables. Then,

W := sup
i∈T

Si.

2 CHANGE OF MEASURE ALONG THE SPINE

We start from the root node of T and recursively construct the chosen path {Jk : k ≥ 0} by choosing one
offspring at each step to continue the path with probability proportional to its exponentiated increment to
the power of α . We begin with J0 = /0 and for k ≥ 1 we let

Jk = (Jk−1, i) with probability
eαX(Jk−1 ,i)

DJk−1

, 1≤ i≤ NJk−1 ,

where Di = ∑
Ni
i=1 eαX(i,i) for each i ∈T .

Then, define the process {Lk : k ≥ 0} by

L0 = 1, Lk =
k−1

∏
r=0

DJr , k ≥ 1,

and the filtration {Gk : k ≥ 0} by

G0 = σ(∅), Gk = σ(ψψψ i, i ∈ Ar,r < k;Jr,r ≤ k), k ≥ 1.

It follows that Lk is a mean-1 positive martingale with respect to Gk, and therefore we can define the
measure P̃ on σ (

⋃
∞
k=0 Gk) induced by

P̃(A) = E [1(A)Lk] for A ∈ Gk.

As mentioned in the Introduction, this change of measure affects only the spine and leaves all other paths
unchanged. This observation is formalized as follows.
Lemma 1 (Lemma 2.5 in Basrak et al. (2022)) For k ≥ 0, i ∈ Ak, and measurable B⊂ N+×R∞,

P̃(ψψψ i ∈ B| i 6= Jk) = P(ψψψ ∈ B), and

P̃(ψψψ i ∈ B| i = Jk) = E [1(ψψψ ∈ B)D] .

Moreover, under P̃ the vectors {ψψψ i : i ∈ Ak} are conditionally independent given Gk−1.
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Si Si

|i| |i|

Figure 2: A branching random walk simulated under both P (left) and P̃ (right).

To identify the random walk along {Jk}, define X̂k = XJk and let

V0 = 0, Vk = SJk = X̂1 + · · ·+ X̂k, k ≥ 1.

As the following lemma shows, {Vk : k ≥ 0} is a positive-drift random walk with i.i.d. increments under
P̃. Throughout, we use Ẽ to denote expectation with respect to P̃.
Lemma 2 (Lemma 2.6 in Basrak et al. (2022)) For k ≥ 1 and x1, . . . ,xk ∈ R,

P̃
(
X̂1 ≤ x1, . . . , X̂k ≤ xk

)
=

k

∏
j=1

G(x j),

where

G(x) = E

[
N

∑
i=1

eαXi1(Xi ≤ x)

]
.

Furthermore, Ẽ
[
|X̂1|
]
< ∞ and

µ := Ẽ
[
X̂1
]
= E

[
N

∑
i=1

XieαXi

]
∈ (0,∞).

Figure 2 shows a branching random walk simulated under both P and P̃, when the {Xi} are i.i.d.
with X1 = χ− τ with χ ∼ Exponential(5) independent of τ ∼ Exponential(1/4) (see Section 1.1). In the
simulation, N ∼ Bernoulli(1/4)+1 under P independent of the {Xi}. P̃ puts more weight on larger values
on N, as can be seen along the spine in the figure. Indeed, when N is independent of i.i.d. {Xi}, the first
equality in (1) becomes E[N]E

[
eαX1

]
= 1, and as a consequence of Lemma 1,

P̃(N = n) = E [1(N = n)D] = nP(N = n)E
[
eαX1

]
=

nP(N = n)
E[N]

.

That is, N has its size-biased distribution under P̃. In Figure 2, N has the size-biased distribution
Bernoulli(6/7)+1 along the spine.

A common challenge in importance sampling procedures is how to simulate under the change of
measure. It turns out that in this case the law of ψψψ under P̃ is relatively easy to simulate from since it
admits a mixture representation that essentially reduces it to simulating from a single exponentially tilted
distribution.
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Lemma 3 (Example 4.6 in Basrak et al. (2022)) For each n∈N+ and 1≤ i≤ n, let f{X j: j 6=i}|Xi,N(·|x,n) denote
the joint density of {X j : j 6= i} under P conditional on {Xi = x,N = n}. For each n, let {pi,n : 1≤ i≤ n}
be the discrete probability distribution given by

pi,n =
E
[

eαXi
∣∣N = n

]
∑

n
j=1 E

[
eαX j

∣∣N = n
] .

Then, the joint density of {Xi} under P̃ conditional on N = n satisfies

f̃{Xi}|N(x1, . . . ,xn|n) =
n

∑
i=1

pi,n f{X j: j 6=i}|Xi,N(x1, . . . ,xi−1,xi+1, . . . ,xn|xi,n)g̃i,n(xi),

where

g̃i,n(x) =
eαx fXi|N(x|n)

E [eαXi |N = n]
(5)

is the marginal density of Xi conditional on N = n after an exponential tilt. Therefore, after sampling N = n,
{Xi} can be sampled under P̃ by first picking i ∈ {1, . . . ,n} according to {pi,n : 1 ≤ i ≤ n}, sampling Xi
according to the tilted distribution (5), then sampling {X j : j 6= i} under P conditional on Xi and N.

3 THE HYBRID ESTIMATOR

Let γ(t) denote the first node in T (in length-lexicographic ordering) at which Si exceeds t, and similarly
let τ(t) be the first passage time of t for the random walk Vk. Namely,

γ(t) := inf{i ∈T : Si > t} and τ(t) := inf{k ≥ 0 : Vk > t}.

The estimator in Basrak et al. (2022) is based on the representation

P(W > t) = Ẽ
[
1(γ(t) = Jτ(t))e

−αVτ(t)
]

(6)

(see Remark 2.7(a) therein). The indicator function in the above display is 1 when the first node at which
Si > t occurs is on the chosen path. Notably, if N ≡ 1, the indicator is always 1, and the representation
reduces to that commonly used in renewal theory and importance sampling for random walks (see, for
instance, Iglehart (1972), Siegmund (1976), and Chapter VIII in Asmussen (2003)). The display (6)
naturally suggests the unbiased importance sampling estimator

Z(t) := 1(γ(t) = Jτ(t))e
−αVτ(t)

for P(W > t) sampled under P̃. It was shown in Basrak et al. (2022), Lemma 4.3 that under Conditions
1 and 2, Z(t) also has bounded relative error in the sense of (3). As mentioned previously, generating a
single copy of Z(t) requires evaluating the indicator 1(γ(t) = Jτ(t)) and thus generating the entire branching
random walk until τ(t) occurs.

Now let W (k) := max|i|≤k Si for each k≥ 0, i.e., the maximum W truncated at the kth generation of the
branching random walk, and denote its CDF with respect to P by

Fk(x) := P
(

W (k) ≤ x
)
.

Note in particular that W (0) ≡ 0. Additionally, for each k define the nodes in the spine at generation k to
the left and the right of the chosen node as

B≺k = {i ∈ Ak : i|k−1 = Jk−1, i≺ Jk} and B�k = {i ∈ Ak : i|k−1 = Jk−1, i� Jk}.

Then the behavior of T under P̃ given by Lemma 1 gives the following.
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Theorem 1 For any t > 0,

P(W > t) = Ẽ

e−αVτ(t)

τ(t)

∏
i=1

∏
i∈B≺i

Fτ(t)−i(t−Si) ∏
j∈B�i

Fτ(t)−i−1(t−Sj)

 ,
with the conventions F−1(x)≡ 1 and ∏

0
i=1 xi ≡ 1 for any values {xi}.

Proof. Start by writing the event {Jτ(t) = γ(t)} in the representation (6) as

{Jτ(t) = γ(t)}=
{

max
i≺Jτ(t)

Si ≤ t
}
=

{
max

0≤k<τ(t)−1
Vk +U (τ(t)−k)

k ≤ t, max
i∈B≺

τ(t)

Si ≤ t

}
, (7)

where U (r)
k =

(
maxi∈B≺k+1

(Si−Vk +W (r−1)
i )

)
∨
(

maxi∈B�k+1
(Si−Vk +W (r−2)

i )
)

, and

W (r)
i = max

0≤k≤r
max

(i,j)∈A|i|+k

(S(i,j)−Si), i 6= Jk+1,

are i.i.d. with CDF Fr under both P and P̃, for each r ≥ 2. Next, define the filtration

Hn = σ
(
Jk,{X(Jk,i)} : 0≤ k ≤ n

)
,

and note that

P(W > t) = Ẽ
[
1(Jτ(t) = γ(t))e−αVτ(t)

]
= Ẽ

[
P̃
(

Jτ(t) = γ(t)
∣∣Hτ(t)

)
e−αVτ(t)

]
.

Since the W (r)
i are independent of Hn for all n, from (7) we have

P̃
(

Jτ(t) = γ(t)
∣∣Hτ(t)

)
=

τ(t)−2

∏
k=0

P̃
(

Vk +U (τ(t)−k)
k ≤ t

∣∣∣Hτ(t)

)
∏

i∈B≺
τ(t)

P̃
(

Si ≤ t|Hτ(t)
)

=
τ(t)−1

∏
k=0

∏
i∈B≺k+1

P̃
(

Si +W (τ(t)−k−1)
i ≤ t

∣∣∣Hτ(t)

)

×
τ(t)−2

∏
j=0

∏
j∈B�k+1

P̃
(

Sj +W (τ(t)− j−2)
j ≤ t

∣∣∣Hτ(t)

)

=
τ(t)

∏
k=1

∏
i∈B≺k

Fτ(t)−k(t−Si) ∏
j∈B�k

Fτ(t)−k−1(t−Sj).

Were the CDFs {Fk : k ≥ 0} known, out of the above theorem would fall a conditional Monte Carlo
algorithm for estimating P(W > t) based on an unbiased estimator that depends only on {Fk} and the
values of Si on the spine. It is natural then to consider an approximation of this estimator in terms of some
estimators {F̂k : k ≥ 0} for the {Fk}. If such estimates exist, then the proposed estimator is

Ẑ(t) := e−αVτ(t)

τ(t)

∏
i=1

∏
i∈B≺i

F̂τ(t)−i(t−Si) ∏
j∈B�i

F̂τ(t)−i−1(t−Sj). (8)

The population dynamics algorithm, described in the following section, gives an efficient way to produce
these estimates.
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3.1 The Population Dynamics Algorithm

The population dynamics algorithm (Mezard and Montanari 2009; Olvera-Cravioto 2019) provides an
efficient way to generate samples of a given size m approximately from the distribution of W (k) based on
bootstrapping. Using the fact that W is the solution to (4), the algorithm starts with a sample of W (0) (all
zeros), then approximates a sample from W (1) by, for each 1≤ i≤ m, generating an independent copy of
ψψψ and setting

Ŵ (1,m)
i =

(
max

1≤ j≤N
X j

)+

.

It then proceeds by successively, for each 1 ≤ i ≤ m, generating another copy of ψψψ and sampling
{Ŵ (k−1,m)

(i,1) , . . . ,Ŵ (k−1,m)
(i,N) } from {Ŵ (k−1,m)

1 , . . . ,Ŵ (k−1,m)
m } uniformly with replacement to produce

Ŵ (k,m)
i =

(
max

1≤ j≤N

(
X j +Ŵ (k−1,m)

(i, j)

))+

.

For some pre-selected values K,m ∈ N+, the result is a collection of samples{
Ŵ (k,m)

1 , . . . ,Ŵ (k,m)
m

}
, k ≤ K,

generated with a computational complexity of K ·m. Estimates of {Fk} can then be made as the empirical
CDFs

F̂k,m(x) :=
1
m

m

∑
i=1

1
(

Ŵ (k,m)
i ≤ x

)
.

Of course, the estimator (8) requires the use of estimates F̂0, . . . , F̂τ(t) for a value of τ(t) that is a priori
unknown. The idea, then, is to choose a value of K large enough, generate {F̂k,m : k ≤ K}, and use these
estimates to sample Ẑ(t) by inputting F̂K,m when k > K. By Basrak et al. (2022), Lemma 4.2, τ(t)∼ t/µ

as t→ ∞ with P̃-probability one, and so picking K at least as large as t/µ is a safe choice. The following
result gives the sense in which the estimates {F̂k∧K,m : k ≥ 0} are consistent as K,m→ ∞.
Lemma 4 Suppose β ∈ (0,α) is such that ρβ < 1. Let

F(β )
k (x) = Fk

(
β
−1 logx

)
and F̂(β )

k,m (x) = F̂k,m
(
β
−1 logx

)
,

for k≥ 0, so that, for example, F(β )
k is the CDF of eβW (k)

. Then, there exists a constant C ∈ (0,∞) such that

sup
k≥0

E
[
d1

(
F(β )

k , F̂(β )
k∧K,m

)]
≤C

(
ρ

K
β
+m−1/2

)
,

where d1 denotes the Wasserstein-1 distance.

Proof. Combine Theorem 2.5, Lemma 2.6, and Theorem 2.8 in Olvera-Cravioto (2019).

3.2 Properties of the Algorithm

The proposed algorithm to estimate P(W > t) proceeds by picking K and m, generating {F̂k∧K,m : k ≥ 0}
by the population dynamics algorithm, then generating a sample of some size n of the estimator

ẐK,m(t) = e−αVτ(t)

τ(t)

∏
i=1

∏
i∈B≺i

F̂(τ(t)−i)∧K,m(t−Si) ∏
j∈B�i

F̂(τ(t)−i−1)∧K,m(t−Sj), (9)

using the same values {F̂k∧K,m} on each iteration. P(W > t) can then be estimated as a sample average of
the n copies of ẐK,m(t). Table 1 gives the pseudocode for simulating a single copy.
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Table 1: The hybrid importance sampling algorithm.

1: Input: t > 0 and Pop. Dyn. estimators {F̂k∧K,m : k ≥ 0}
2: Output: A single copy of ẐK,m(t)
3: Generate (N,X1, . . . ,XN)∼ E[1(ψψψ ∈ ·)D], i.e., from the tilted distribution of ψψψ

4: Choose j ∈ {1, . . . ,N} w.p. eαX j/D and set J1← j, i.e., pick the ‘chosen’ node in gen. 1
5: Set S j← X j for j = 1, . . . ,N
6: Initialize V0← 0, V1← SJ1 , k← 0, J0← /0
7: while Vk ≤ t do
8: Update k← k+1
10: Generate (NJk ,X(Jk,1), . . . ,X(Jk,NJk )

)∼ E[1(ψψψ ∈ ·)D]

11: Choose j ∈ {1, . . . ,NJk} w.p. eαX(Jk , j)/DJk and set Jk+1← (Jk, j)
12: Set S(Jk, j)← SJk +X(Jk, j) for j = 1, . . . ,NJk and Vk+1← SJk+1

13: end while
14: Compute F̂(k− j)∧K,m(t−Si) for i ∈ B≺j , j = 1, . . . ,k
15: Compute F̂(k− j−1)∧K,m(t−Si) for i ∈ B�j , j = 1, . . . ,k−1
16: Set ẐK,m(t)← e−αVk ∏

k
j=1 ∏i∈B≺j

F̂(k− j)∧K,m(t−Si)∏j∈B�j
F̂(k− j−1)∧K,m(t−Sj), i.e., compute (9)

17: Output ẐK,m(t)

Remark 1 The computational complexity of generating {F̂k∧K,m : k ≥ 0} is Km, and since τ(t) ∼ t/µ

P̃-a.s., the complexity of generating a sample of size n of copies of ẐK,m(t) is asymptotically of order

Km+
nt
µ
.

Notably, this does not depend on the distribution of N and grows only linearly in t.
While Lemma 4 suggests consistency of ẐK,m(t) as K,m→ ∞ in a distributional sense, an exact rate

of convergence will be provided in a forthcoming article. A main question is how the rate of convergence
varies with t. Since ẐK,m(t) is an estimate for a rare event probability, the relevant quantity to study is the
relative bias

Rel. Bias
(
ẐK,m(t)

)
:=

∣∣∣∣∣ Ẽ
[
ẐK,m(t)

]
−P(W > t)

P(W > t)

∣∣∣∣∣ .
In the numerical examples of the following section, we give some estimates of this quantity. In that
particular example, the relative bias appears to not be growing much, if at all, in t. We anticipate being
able to show that the realtive bias has a rate of converegence that is uniform in t > 0.

4 NUMERICAL EXAMPLES

We finish by showing the results of two numerical experiments. The first compares the hybrid approach
discussed here with the unbiased algorithm from Basrak et al. (2022) for a relatively small branching rate
E[N] = 2.5, and the second emphasizes the novelty of the hybrid algorithm by choosing E[N] = 50.

For the first, we choose P(N = 2) = P(N = 3) = 1/2, and independent of N, the {Xi} are i.i.d. with
X1 = χ− τ , where χ ∼ Exponential(5) independent of τ ∼ Exponential(1/4). We calculate α = 4.32 and
µ = 1.24. Under the change of measure, P̃(N = 2) = 2/5 and P̃(N = 3) = 3/5, and according to Lemma
3, we simulate from the law P̃({Xi} ∈ ·|N = n) by choosing i ∈ {1, . . . ,n} uniformly at random, sampling

Xi
D
= χ̃ − τ̃ , where χ̃ ∼ Exponential(5−α) is independent of τ̃ ∼ Exponential(1/4+α), then sampling

X j
D
= χ− τ independently for j 6= i.
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Table 2: Numerical results for the unbiased vs. hybrid experiment.

t Z(t) Time ẐK,m(t) Time Total time Rel. bias
1 1.8304e-03 5.95 1.8719e-03 2.13 6.20 0.0227
2 2.4038e-05 76.93 2.4425e-05 2.19 6.25 0.0161
3 3.1800e-07 133.84 3.3133e-07 2.81 6.88 0.0419
4 4.4749e-09 700.01 4.3597e-09 3.14 7.21 0.0257
5 5.7474e-11 1643.12 5.6500e-11 3.60 7.67 0.0170
6 7.3680e-13 5761.24 7.6879e-13 4.06 8.13 0.0434
7 1.0007e-14 46447.66 1.0447e-14 4.85 8.92 0.0440

The results of this experiment are displayed in Table 2 for a range of t values, and they include the
estimates and run times (in seconds) for both the biased and hybrid procedures. Both the unbiased estimates
Z(t) and the hybrid estimates ẐK,m(t) are based on a sample size of 5000. For the population dynamics
algorithm in the hybrid procedure, K = 20 and m = 5000 are chosen, and the same empirical CDFs are
used for each value of t in the table. For the hybrid estimates, two times are listed: the time in seconds
to generate 5000 copies of ẐK,m(t) after the CDFs are already generated (column 5) and that time added
to the time it took to generate the empirical CDFs, which was 4.07 seconds (column 6). Notably, when
t = 1, the procedures do not differ by much in time, but on the other extreme of t = 7, the hybrid estimator
can be generated in under 10 seconds while Z(t) takes over 12 hours. The final column of Table 2 gives
estimates of the relative bias in the hybrid estimates, which is calculated

Rel. Bias
(
ẐK,m(t)

)
≈
∣∣ẐK,m(t)−Z(t)

∣∣
Z(t)

,

with sample averages from the 5000 iterations used. As can be seen, despite the drastic reduction in
simulation time, the hybrid estimates are still quite accurate.

We conclude with an example where the offspring distribution is chosen to have very large mean. Again,
N and {Xi} are taken to be independent with {Xi} i.i.d. Normal(−5,1) and N ∼Uniform{1,2, . . . ,99}, so
that E[N] = 50. In this case, α = 9.14 and µ = 4.14. Under the change of measure, N has mass function
P̃(N = n) = n/4950, and the {Xi} are simulated according to Lemma 3 with all but one generated i.i.d. from
a Normal(−5,1) distribution and one chosen at random generated from the tilted distribution Normal(µ,1).
Estimates for a range of t values based on a sample size of 5000 are listed in Table 3 along with the
computation time (in seconds) for each estimate apart from sampling the CDFs and the total computation
time (i.e., with the time to generate the CDFs included, which was 19.21 seconds). Again, K = 20 and
m = 5000, and the same empirical CDFs are used for each value of t.

Table 3: Numerical results for E[N] = 50.

t ẐK,m(t) Time Total time
1 3.6419e-08 17.25 36.46
2 6.1537e-11 15.80 35.01
3 3.1472e-14 23.89 43.10
4 5.4582e-18 33.05 52.26
5 4.0702e-22 33.89 53.10

REFERENCES
Asmussen, S. 2003. Applied Probability and Queues. New York: Springer.
Basrak, B., M. Conroy, M. Olvera-Cravioto, and Z. Palmowski. 2022. “Importance Sampling for Maxima on Trees”. Stochastic

Processes and Their Applications 148:139–179.

154



Conroy and Olvera-Cravioto

Iglehart, D. L. 1972. “Extreme Values in the GI/G/1 Queue”. Annals of Mathematical Statistics 43(2):627–635.
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