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ABSTRACT

Input models that drive stochastic simulations are often estimated from real-world samples of data. This
leads to uncertainty in the input models that propagates through to the simulation outputs. Input uncertainty
typically refers to the variance of the output performance measure due to the estimated input models. Many
methods exist for quantifying input uncertainty when the performance measure is the sample mean of the
simulation outputs, however quantiles that are frequently used to evaluate simulation output risk cannot
be incorporated into this framework. Here we adapt two input uncertainty quantification techniques for
when the performance measure is a quantile of the simulation outputs rather than the sample mean. We
implement the methods on two examples and show that both methods accurately estimate an analytical
approximation of the true value of input uncertainty.

1 INTRODUCTION

The randomness in stochastic simulation models comes from input models that are typically represented
by some probability distributions or processes. Often these input models are fit using samples of data
taken from the real-world system. Since the samples are necessarily finite the fitted input models are
never truly representative of reality. This introduces a source of uncertainty into the simulation model that
will propagate through to the outputs. If this uncertainty is not considered in simulation output analysis
then important decisions are at risk of being made with misleading levels of confidence. Input uncertainty
broadly refers to the impact of input model uncertainty on simulation outputs. More specifically input
uncertainty quantification aims to quantify the variance in the performance measure due to having estimated
the input models. These methods often consider the performance measure to be the sample mean of the
simulation outputs however alternative performance measures might be helpful, for example to learn about
the distributional properties of the simulation output or to identify different features between two systems
that have similar sample means.

Quantiles are useful for assessing risk. They are particularly common in financial portfolio management
where they are referred to as value at risk. Quantiles can be estimated from simulation outputs using the
empirical cumulative distribution function. Existing work on quantile uncertainty quantification accounts
for the uncertainty in the quantile estimate due to the finite number of outputs. If the simulation model
is driven by input models fitted using real-world data then there is input model uncertainty which will
propagate through the model to the quantile estimate. Current methods do not account for this additional
source of error.

We are interested in quantifying the effect of input model uncertainty on quantile estimates calculated
from simulation outputs. That is, this work aims to quantify input uncertainty when considering a quantile
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of the simulation outputs, rather than the sample mean. In the following section we discuss the input
uncertainty quantification problem for the mean and describe how this changes for quantiles.

2 INPUT UNCERTAINTY

Consider a simulation model driven by L independent input distributions denoted by GGG = {G1, . . . ,GL},
each of which could be parametric or nonparametric. We represent the output of replication j as

Yj(GGG) = η(GGG)+ ε j(GGG),

where η(GGG) = E[Yj(GGG)] is the expected value of the simulation output random variable and ε j(GGG) is a
random variable with mean 0 representing stochastic noise. Assume there are true input distributions
denoted by GGG0 = {G0

1, . . . ,G
0
L}. Suppose the true input distributions are unknown but real-world data can

be collected from each distribution. Suppose we take a sample of ml observations from the lth input
distribution and compute a collection of fitted input distributions denoted by ĜGG = (Ĝ1, . . . , ĜL). A nominal
experiment consists of running n i.i.d. simulation replications using the fitted input distributions to obtain
outputs Y1(ĜGG),Y2(ĜGG), . . . ,Yn(ĜGG).

2.1 Input Uncertainty Quantification for the Mean

The original input uncertainty problem assumes the goal of the experiment is to estimate η(GGG0), the
expected value of the simulation output random variable under the true input distributions. We estimate
this via the sample mean of the simulation outputs

Ȳ (ĜGG) =
1
n

n

∑
j=1

Yj(ĜGG) = η(ĜGG)+
1
n

n

∑
j=1

ε j(ĜGG).

The variance of this point estimator is

Var[Ȳ (ĜGG)] =
1
n

E
[
Var(ε1(ĜGG) | ĜGG)

]
+Var

[
η(ĜGG)

]
, (1)

where the outer expectation and variance on the right-hand side of the equation are with respect to the
sampling distribution of ĜGG. The first term in Equation (1) measures the expected variability due to the
stochastic noise, given the fitted input distributions. We shall define this as stochastic uncertainty for the
mean and denote with σ2

S,M

σ
2
S,M =

1
n

E
[
Var(ε1(ĜGG) | ĜGG)

]
. (2)

This can be driven towards 0 by increasing the number of replications. The second term in Equation (1)
measures the variance in the system mean due to having estimated the input distributions. We shall define
this as input uncertainty for the mean and denote with σ2

I,M

σ
2
I,M = Var

[
η(ĜGG)

]
. (3)

This depends on the sample sizes of real-world data used to fit the input distributions, as well as the structure
of η(·), which is usually unknown. The aim of input uncertainty quantification is to estimate this term.

Various methods have been proposed to quantify input uncertainty for the mean of simulation outputs,
for an overview see Song et al. (2014) or Lam (2016). There are two existing methods that we will adapt
in this paper. The first, from Nelson (2013) (Section 7.2), uses bootstrapping to capture the variability
of the input distributions and simulation to propagate input model uncertainty. Input uncertainty can be
estimated by subtracting the stochastic uncertainty from the total variability of the bootstrapped outputs.
The second method, by Cheng and Holland (1997), considers the case of parametric input distributions.
Input uncertainty is modelled using a first-order Taylor series approximation and requires estimates of the
parameter variance and the gradient of η(·).
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2.2 Input Uncertainty Quantification for Quantiles

Suppose that instead of estimating the expected value of the simulation output random variable under the
true input distributions, we estimate a quantile of the simulation output random variable under the true input
distributions. For a random variable Y with a strictly increasing cumulative distribution function (CDF)
F , the p-quantile, for 0 < p < 1, is defined as the constant ξp = F−1(p) = inf{y : F(y)≥ p}. A common
example of a quantile is the median, which is the 0.5-quantile, ξ0.5.

Denote the simulation output random variable under the true input distributions by Y (GGG0), with CDF
F0. The p-quantile of F0, for 0 < p < 1, is given by ξp(GGG0) = F−1

0 (p) = inf{y : F0(y)≥ p}. Assume that
F0 is strictly increasing, differentiable at ξp(GGG0), and that f (ξp(GGG0))> 0, where f is the derivative of F .
Given n i.i.d. outputs we can construct an empirical CDF, which can be inverted to obtain a quantile point
estimate (Serfling 2009) (Section 2.3). We can estimate F0 via the empirical CDF F̂n, defined by

F̂n(y) =
1
n

n

∑
j=1

I(Yj(ĜGG)≤ y),

where I(·) denotes the indicator function. The p-quantile estimator from our nominal experiment is given
by ξp,n(ĜGG) = F̂−1

n (p). This is equivalent to ξp,n(ĜGG) =Y(dnpe)(ĜGG), where Y(1)(ĜGG)≤Y(2)(ĜGG)≤ ·· · ≤Y(n)(ĜGG)
are the order statistics of the outputs and d·e represents the ceiling function.

Applying the law of total variance to the quantile estimator gives

Var
[
ξp,n(ĜGG)

]
= E

[
Var(ξp,n(ĜGG)|ĜGG)

]
+Var

[
E(ξp,n(ĜGG)|ĜGG)

]
, (4)

where the outer expectation and variance on the right-hand side of the equation are with respect to the
sampling distribution of ĜGG. The first term in Equation (4) measures the expected variability of the quantile
estimate given the fitted input distributions. We shall define this as stochastic uncertainty for the quantile
and denote with σ2

S,Q

σ
2
S,Q = E

[
Var(ξp,n(ĜGG)|ĜGG)

]
. (5)

This is the uncertainty due to having estimated the quantile via simulation. This will tend towards 0
as the number of replications increases since given the fitted input distributions the simulated CDF will
approximate the true CDF. The second term in Equation (4) measures the variance of the expected value
of the quantile estimate given the fitted input distributions. We shall define this as input uncertainty for
the quantile and denote with σ2

I,Q

σ
2
I,Q = Var

[
E(ξp,n(ĜGG)|ĜGG)

]
. (6)

This measures the uncertainty in the expectation of the quantile estimate due to having estimated the input
distributions. This is complex and depends upon the sample sizes used to estimate the input distributions
as well as the CDF of the simulation output random variable at the fitted input distributions, which is
usually unknown. As this term is different to input uncertainty for the mean in Equation (3), we will
require different methods to quantify it. Note that since the quantile estimator is asymptotically unbiased
(Nakayama 2014), then for large enough n it follows that

E(ξp,n(ĜGG)|ĜGG)≈ ξp(ĜGG), (7)

where ξp(ĜGG) is the p-quantile of the simulation output random variable under the estimated input distributions.
There is little literature on input uncertainty quantification for quantiles. Zhu et al. (2020) define

and provide estimators to quantiles of the mean performance measure under input uncertainty. Xie et al.
(2018) develop a Bayesian framework to quantify both the stochastic uncertainty and input uncertainty
of percentiles of simulation outputs. Our work aims to quantify input uncertainty for quantiles from a
frequentist perspective.
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3 METHODS

We have outlined the original input uncertainty problem and discussed how this changes for quantiles. We
now develop two input uncertainty quantification techniques for quantiles. We consider a bootstrapping
approach and a Taylor series approximation, the latter of which is restricted to the case of parametric input
distributions. For each method we describe its application to the mean followed by our adaptation for
quantiles. When we refer to just input uncertainty or stochastic uncertainty in this section, this will be
specific to the mean or quantile depending on the subsection.

3.1 Bootstrapping for the Mean

Here we describe the bootstrapping method from (Nelson 2013) (Section 7.2) which is used to estimate
input uncertainty for the mean. Bootstrapping approximates the sampling distribution of the fitted input
models. A single bootstrap consists of three parts. Firstly for each input distribution we sample with
replacement ml observations from each set of ml initial observations. Secondly these samples are used to
estimate bootstrap fitted input distributions. Thirdly the bootstrap fitted input distributions are used to run
simulation replications. Suppose we use B bootstraps. We denote the bootstrap fitted input distributions
by ĜGGk for k = 1, . . . ,B, and we denote the outputs from the kth bootstrap by Y1(ĜGGk), . . . ,Yn(ĜGGk). This
diagnostic experiment requires a total of Bn replications.

Let the mean of the outputs from the kth bootstrap be denoted by Ȳ (ĜGGk) = ∑
n
j=1Yj(ĜGGk)/n, and let

the mean of these means be denoted by ¯̄Y = ∑
B
k=1 Ȳ (ĜGGk)/B. The total variance of the mean performance

measure from the nominal experiment is estimated by the sample variance of the bootstrapped means

σ̂
2
T,M =

1
B−1

B

∑
k=1

(Ȳ (ĜGGk)− ¯̄Y )2.

This term approximately measures both input uncertainty and stochastic uncertainty. Stochastic uncertainty
is approximated by calculating the sample variance of the outputs in each bootstrap, averaging these across
bootstraps, and dividing by a factor of n

σ̂
2
S,M =

1
n

(
1
B

B

∑
k=1

(
1

(n−1)

n

∑
j=1

(Yj(ĜGGk)− Ȳ (ĜGGk))
2

))
.

To estimate input uncertainty we subtract stochastic uncertainty from the total variance

σ̂
2
I,M = σ̂

2
T,M− σ̂

2
S,M.

Note that this could return a negative estimate of input uncertainty, which is interpreted as meaning that
the effect of input uncertainty is relatively small compared to stochastic uncertainty.

3.2 Bootstrapping for Quantiles

We now adapt the bootstrapping method for quantiles. For the kth bootstrap we can compute an empirical
CDF from the outputs of the n replications

F̂n,k(y) =
1
n

n

∑
j=1

I(Yj(ĜGGk)≤ y),

and a quantile estimate ξp,n(ĜGGk) = F̂−1
n,k (p). Let ξ̄p,n,B = ∑

B
k=1 ξp,n(ĜGGk)/B denote the average of the quantile

estimates across bootstraps. The total variance of the quantile estimate from the nominal experiment is
approximated by the sample variance of the bootstrapped quantile estimates

σ̂
2
T,Q =

1
B−1

B

∑
k=1

(ξp,n(ĜGGk)− ξ̄p,n,B)
2.
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This term approximately measures both input uncertainty and stochastic uncertainty. As previously, we
estimate input uncertainty by subtracting an estimate of stochastic uncertainty from the total variance,
however we cannot approximate stochastic uncertainty for the quantile in the same way as for the mean.
Recall that stochastic uncertainty for the quantile is the expectation of the variance of the quantile estimate
with respect to the sampling distribution of ĜGG. The sample variance of the simulation outputs does not
provide an approximation to the variance of the quantile estimate, so we require a different method here.

There are myriad ways to approximate the variance of the quantile estimator. The quantile estimator
satisfies a central limit theorem (Serfling 2009) (Section 2.3.3), however the asymptotic variance contains
the density function which is typically unknown. Computing a consistent estimator of the asymptotic
variance is non-trivial (Nakayama 2014). Although finite differences can be used to estimate the density
(Serfling 2009) (Section 2.6.2), this requires specification of a suitable bandwidth parameter. Alternatively
bootstrapping methods can be used to directly estimate the variance. The conventional unsmoothed bootstrap
is shown to have high relative error (Hall and Martin 1988), which can be reduced by using a smoothed
bootstrap based on a kernel density estimate (Hall et al. 1989). However this requires stronger smoothness
conditions on the density and a suitable choice of smoothing bandwidth. Cheung and Lee (2005) estimate
the variance of the quantile estimator using a modification of the bootstrap known as the m out of n
bootstrap. Although this requires a choice for m it seems to be less crucial than the choice of the smoothing
bandwidth in terms of the sensitivity and stability of the mean squared error of each estimator. Shao and Wu
(1989) show that the jackknife estimator with d observations removed gives consistent and asymptotically
unbiased estimates of the quantile estimator variance for suitable choices of d.

Alternatively we can approximate the variance of the quantile estimator by applying batching or sectioning
(Asmussen and Glynn 2007) (Section III.5a). These methods avoid the complication of consistently
estimating the density function and are less computationally intensive than bootstrapping procedures, since
they only use the results from the nominal experiment. Both involve dividing the outputs into batches and
taking quantile estimates from each batch. Batching utilises the variance of the batch quantile estimates,
whilst sectioning replaces the sample mean in the variance calculation with the quantile estimator from
all the outputs. The batching and sectioning variance divided by the number of batches provides an
approximation to the quantile estimator variance.

Whichever method is used, suppose that σ2
k represents the variance of the quantile estimate from the

kth bootstrap. We estimate stochastic uncertainty by averaging these variance estimates across bootstraps

σ̂
2
S,Q =

1
B

B

∑
k=1

σ
2
k .

To estimate input uncertainty we subtract stochastic uncertainty from the total variance

σ̂
2
I,Q = σ̂

2
T,Q− σ̂

2
S,Q.

Again note that this could return a negative estimate of input uncertainty which we interpret similar to
previously. We now describe the Taylor series approximation for the mean.

3.3 Taylor Series Approximation for the Mean

Suppose that the L input distributions follow known parametric distributions. In this case input model
uncertainty becomes input parameter uncertainty so the input models can be denoted by a set of parameters
GGG = θθθ = (θ1, . . . ,θq), where q ≥ L. The true input models are given by the true parameters of the
distributions, denoted by GGG0 = θθθ

0 = (θ 0
1 , . . . ,θ

0
q ). We suppose the parameters are estimated via maximum

likelihood estimators (MLEs), which we denote by θ̂θθ = (θ̂1, . . . , θ̂q).
Cheng and Holland (1997) use a Taylor series approximation to estimate input uncertainty when taking

the sample mean of simulation outputs. Input uncertainty can be approximated by

σ̂
2
I,M = ∇η(θθθ 0)Var(θ̂θθ)∇η(θθθ 0)>,
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where ∇η(θθθ 0) is the gradient of the expected value of the simulation output with respect to the input
parameters θθθ , evaluated at θθθ

0. This approximation of input uncertainty combines the sensitivity of the
expected simulation output with respect to the input parameters, with how accurately the input parameters
have been estimated. To use this approximation we need to estimate both the parameter variance and the
gradient of the expected value of the simulation output.

Since the input parameters are estimated via maximum likelihood, we can approximate the parameter
variance by the inverse Fisher information matrix evaluated at the MLEs

V̂ar(θ̂θθ) = I(θ̂θθ)−1.

This follows since the asymptotic distribution of the MLEs is multivariate normal with covariance matrix
I(θθθ 0)−1, which can be consistently estimated by I(θ̂θθ)−1. Lin et al. (2015) note that MLEs are not required
for the Taylor series approximation method, only that the covariance matrix of the parameter estimates can
be approximated, which is most easily done when using MLEs.

There are many ways to estimate the gradient of the expected value of the simulation output. Cheng
and Holland (1997) describe the delta method, which employs finite forward differences and requires
computational effort that increases linearly with the number of parameters. To improve upon this they
develop the two-point method (Cheng and Holland 1998), which utilises the delta method but makes most
simulation replications at just two settings of parameter values. Lin et al. (2015) provide a method for
estimating the gradient that requires no diagnostic experiment, only the replications from the nominal
experiment.

Outside the input uncertainty literature, Fu (2006) provides an overview of gradient estimation techniques.
Approaches for gradient estimation are divided into two main categories, direct and indirect. Direct
approaches aim to estimate the true gradient via some analysis of the underlying mechanism of the
simulation model. Methods include perturbation analysis, the likelihood ratio method, and weak derivatives
(also known as measure-valued differentiation). Indirect approaches are characterised by two features; they
estimate an approximation to the true gradient and they only utilise evaluations of the simulation model.
Methods include finite differences and simultaneous perturbations. Generally indirect gradient estimators
are more widely applicable since direct estimators can involve analysis specific to the problem and may also
require some changes to how the simulation model runs. However direct estimators usually give unbiased
estimators and eliminate the choice of a suitable perturbation parameter.

The gradient estimate can be combined with the parameter variance estimate to employ the Taylor series
approximation of input uncertainty. Lin et al. (2015) note that the approximation also provides estimates
of the contribution made to input uncertainty by each input distribution. Let θθθ l denote the parameters
belonging to the lth input distribution, note that this could a scalar or a vector depending on the distribution.
Under the initial assumption that the input distributions are independent, it follows that

∇η(θθθ 0)Var(θ̂θθ)∇η(θθθ 0)> =
L

∑
l=1

∇η(θθθ 0
l )Var(θ̂θθ l)∇η(θθθ 0

l )
>,

where Var(θ̂θθ l) is the covariance matrix of θ̂θθ l . Each term in the summation represents the contribution to
input uncertainty from the lth input distribution. These measures can be useful when input uncertainty is
large, as we can identify which distributions it would be most beneficial to collect additional data from in
order to reduce input uncertainty. Typically input distributions with the largest contributions would be the
best target for additional data collection.

3.4 Taylor Series Approximation for Quantiles

We now adapt the Taylor series approximation for quantiles. Applying Equations (6) and (7) in the context
of known parametric input distributions, for large enough n it follows that

σ
2
I,Q ≈ Var

[
ξp(θ̂θθ)

]
,
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where ξp(θ̂θθ) is the p-quantile of the simulation output random variable at the estimated parameters.
Subsequently under the same regularity conditions as stated in Cheng and Holland (1997), we have that

σ̂
2
I,Q = ∇ξp(θθθ

0)Var(θ̂θθ)∇ξp(θθθ
0)>,

where ∇ξp(θθθ
0) is the gradient of the p-quantile with respect to the input parameters θθθ , evaluated at θθθ

0.
This approximation of input uncertainty combines the sensitivity of the quantile with respect to the input
parameters, with how accurately the input parameters have been estimated. To use this approximation we
need to estimate both the parameter variance and the gradient of the p-quantile. As in the mean case,
we can estimate the parameter variance using the inverse Fisher information matrix, however the gradient
estimation requires a bit more thought.

A point of difference between the mean and quantiles is the number of estimates we obtain. For the
mean each of the n outputs provides an estimate to the expectation of the simulation output random variable.
However for quantiles we only obtain a single estimate from a set of n outputs. Consequently the gradient
estimation methods described by Cheng and Holland (1997), Cheng and Holland (1998), and Lin et al.
(2015), which can be used for the mean are not applicable for quantiles. Neither are the direct gradient
estimators described in Fu (2006), since they are specifically derived for performances measures that are
expectations. The indirect gradient estimators described in Fu (2006) however can be applied when the
performance measure is a quantile.

There is a small amount of fairly recent literature on direct gradient estimators for quantiles. Hong (2009)
proposes a consistent estimator by combining infinitesimal perturbation analysis with batching. Alternatively
Heidergott and Volk-Makarewicz (2009) present a quantile gradient estimate based on measure-valued
differentiation. Liu and Hong (2009) describe a kernel estimator that is consistent and more efficient than
Hong (2009). Fu et al. (2009) use conditional Monte Carlo to derive a consistent estimator that does not
require batching. More recently Lei et al. (2018) applied a generalised likelihood ratio method to develop
an estimator that also does not require batching. Since these methods all fall under the category of direct
gradient estimation they typically require some problem-specific analysis and consequently they are not
applicable to a broad range of simulation models.

Note we do not advocate for any particular method to be used to estimate the quantile gradient, but
in the experiments that follow we use the symmetric difference estimator described in Fu (2006) (Section
3.1). Once we have an estimate for the quantile gradient we can combine this with the parameter variance
estimate to employ the Taylor series approximation of input uncertainty. Again this naturally yields the
approximate contribution to input uncertainty by each input distribution, where each term in the summation
represents the contribution to input uncertainty from the lth input distribution

∇ξp(θθθ
0)Var(θ̂θθ)∇ξp(θθθ

0)> =
L

∑
l=1

∇ξp(θθθ
0
l )Var(θ̂θθ l)∇ξp(θθθ

0
l )
>.

4 EXPERIMENTS

We now implement both input uncertainty methods for quantiles on two different examples. In the remainder
of this paper, when we refer to just input uncertainty or stochastic uncertainty, this will be for the quantile.
Firstly we derive an analytical example. This allows us to illustrate the problem of input uncertainty and
compare input uncertainty estimates produced by each method against an approximation of the true value.
We then use a stochastic activity network that utilises more input distributions than the analytical example.
This allows us to consider more interesting results for the estimated contributions to input uncertainty.

4.1 Analytical Example

To illustrate the problem of input uncertainty we shall create an analytical example. This is contrived to
enable input uncertainty to be derived analytically and is not meant to represent a realistic simulation problem.
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To create an analytical example we need to be able to compute both E(ξp,n(ĜGG)|ĜGG) and Var(ξp,n(ĜGG)|ĜGG).
If we know the CDF of the simulation output random variable and can derive the inverse CDF then we
can write ξp(ĜGG) explicitly. Since the quantile estimator is asymptotically unbiased this will give us an
approximation to E(ξp,n(ĜGG)|ĜGG). We can approximate the variance of the quantile estimator given the fitted
input models using the well-known asymptotic distribution of the sample quantile (Nelson 2013) (Section
7.1). Using the asymptotic variance it follows that

Var(ξp,n(ĜGG)|ĜGG)≈ p(1− p)
n f (ξp(ĜGG))2

, (8)

where f (ξp(ĜGG)) is the probability density function evaluated at the p-quantile under the fitted input models.
Suppose a simulation model has two input models which are known to follow exponential distributions

with unknown parameters. The input models are defined by two parameters GGG = (µ,β ) both of which are
to be estimated from real-world observations. In this case input model uncertainty can be thought of as
input parameter uncertainty. Suppose we observe m1 = m2 = m, i.i.d. observations from each distribution.
Observations x1, . . . ,xm are used to estimate µ and observations z1, . . . ,zm are used to estimate β . The fitted
input models are then given by the estimated parameters ĜGG = (µ̂, β̂ ). The parameters can be estimated by
their MLEs

µ̂ =

(
1
m

m

∑
i=1

xi

)−1

, β̂ =

(
1
m

m

∑
i=1

zi

)−1

.

Suppose that these parameters drive the simulation model for n i.i.d. replications and the distribution
of the simulation output random variable is given by Y ∼ Gumbel(µ̂, β̂ ). Using Equations (5) and (8),
and the probability density function of the Gumbel distribution, stochastic uncertainty for the quantile is
approximately

σ
2
S,Q ≈ E

[
p(1− p)n−1

(
e−(z+e−z)

β̂
−1
)−2
]
,

≈ p(1− p)n−1E
[(

e−(z+e−z)
β̂
−1
)−2
]
, (9)

where z = (ξp(µ̂, β̂ )− µ̂)/β̂ . Although we cannot compute this expectation analytically it can be approxi-
mated via numerical integration. The expectation term in Equation (9) will not depend upon the number of
outputs n and therefore stochastic uncertainty will tend towards 0 as n increases. Using Equations (6) and
(7), and the inverse CDF of the Gumbel distribution, input uncertainty for the quantile is approximately

σ
2
I,Q ≈ Var

[
µ̂− β̂ ln(−ln(p))

]
,

≈ m2µ2

(m−1)2(m−2)
+
(
ln(−ln(p))

)2 m2β 2

(m−1)2(m−2)
. (10)

This follows since if observations a1, . . . ,am are i.i.d. from an exponential distribution with rate θ and
X = ∑

m
i=1 ai, then 1/X ∼ Inv-Gamma(m,θ) and hence Var[1/X ] = θ 2/((m− 1)2(m− 2)). Equation (10)

does not depend on the number of outputs n, but does depend on the number of observations m used to fit
the input parameters.

To illustrate the importance of input uncertainty quantification we will consider the following experiment.
Let µ = 2, β = 3 and m = 250. Suppose we use a nominal experiment of n = 10000 replications from which
we estimate the 0.95-quantile. If input uncertainty is not considered then we approximate the variance of
our quantile estimate by applying any of the methods described in Section 3.2. Suppose we use sectioning.
This involves dividing the outputs into batches and calculating the sum of squared errors between the batch
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quantile estimates and the overall quantile estimate. The variance is then given by the sum of squared errors
divided by the number of batches. We run 1000 macro replications of our nominal experiment and each
time we compute the variance of the quantile estimate using sectioning with 20 batches (Asmussen and
Glynn (2007) suggest choosing 30 batches or fewer). The average variance across the macro replications
is approximately 0.01812.

The variance of our quantile estimate from the nominal experiment should be given by the sum of
stochastic uncertainty and input uncertainty. Using Equations (9) and (10) these are approximately

σ
2
S,Q ≈ 0.01794, σ

2
I,Q ≈ 0.3390,

where we have used 1×105 samples of (µ̂, β̂ ) to estimate the expectation term in Equation (9). Sectioning
provides an approximation of stochastic uncertainty, but does not capture input uncertainty. Input uncertainty
is almost 19 times larger, so ignoring it could have serious practical consequences. Although we can derive
an analytical approximation of input uncertainty in this particular example, for most realistic simulation
problems this is not the case. This motivates the need for methods to quantify input uncertainty.

We use this analytical example to test the accuracy of our two methods. If a nominal experiment uses
n replications and we estimate input uncertainty via B bootstraps, then this diagnostic experiment requires
a total of Bn replications. For a fair comparison between the bootstrapping method and the Taylor series
approximation method we use the same number of total replications to estimate input uncertainty for each
method. Since estimating the parameter variance requires no replications, we utilise Bn replications to
estimate the quantile gradient.

We keep µ = 2, β = 3, n= 10000, and compare estimates of input uncertainty for quantiles p=(0.8,0.95)
and input sample sizes m = (250,1000). For the bootstrapping method we use B = 10000 bootstraps and
apply sectioning with 10 batches. For the Taylor series approximation we estimate the quantile gradient
using the symmetric difference gradient estimator described in Fu (2006) (Section 3.1), with c = (0.1,0.1).
This requires simulation runs at 4 sets of parameters, so for each set we use 2.5×107 replications. The
results from each approach, averaged across 1000 macro replications are shown in Table 1, along with the
analytical approximation of input uncertainty computed using Equation (10).

Table 1: Comparing input uncertainty estimates for the analytical example.

m Method
p = 0.8 p = 0.95

Mean Std. Error Mean Std. Error

250
Bootstrapping 9.967×10−2 1.564×10−2 3.432×10−1 6.002×10−2

Taylor Series Approximation 9.853×10−2 1.081×10−2 3.389×10−1 4.176×10−2

Analytical Approximation 9.856×10−2 - 3.390×10−1 -

1000
Bootstrapping 2.433×10−2 1.853×10−3 8.356×10−2 7.074×10−3

Taylor Series Approximation 2.433×10−2 1.321×10−3 8.361×10−2 5.068×10−3

Analytical Approximation 2.435×10−2 - 8.373×10−2 -

For m = 250 the Taylor series approximation estimates have a more accurate mean and a smaller
standard error than the bootstrapping estimates for both values of p. For m = 1000 the bootstrapping
estimates and the Taylor series approximation estimates return similarly accurate means for both values of
p, although the Taylor series approximation estimates have a smaller standard error. These results show
us that both methods are accurately estimating the approximate true value.

4.2 Stochastic Activity Network

Additionally we run experiments using the stochastic activity network described in Dong and Nakayama
(2014) and Nelson (2013) (Section 3.4). A stochastic activity network models the completion time of a
project using a group of activities with precedence constraints and random durations. The model consists
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of L = 5 random processes, each of which models the duration of an activity. Each follows an independent
exponential distribution and therefore we have q = 5 parameters, denoted by θθθ = (θ1,θ2,θ3,θ4,θ5). The
activities form 3 paths in the network, denoted by P1 = {1,2}, P2 = {1,3,5} and P3 = {4,5}. The
simulation output is the completion time of the project. This is measured by the longest path in the
network. Using A j to denote the duration of the jth activity, for 1 < j < 5, the simulation output is given
by Y = max{A1 +A2,A1 +A3 +A5,A4 +A5}.

4

1

3

2

5

Figure 1: A graphical representation of the stochastic activity network.

Suppose the true parameters are given by θθθ
0 = (1,1,1,1,1) and each parameter is estimated using the

same number of observations, that is ml = m, for 1 < l < 5. Again our nominal experiment consists of
n= 10000 replications and we compare estimates of input uncertainty for p=(0.8,0.95) and m=(250,1000).
For the bootstrapping method we use B = 10000 bootstraps and apply sectioning with b = 10 batches.
For the Taylor series approximation we use the symmetric difference gradient estimator with cl = 0.1, for
1 < l < 5. This requires simulation runs at 10 sets of parameters, so for each set we use 1×107 replications.
The results from each approach, averaged across 1000 macro replications are shown in Table 2.

Table 2: Comparing input uncertainty estimates for the stochastic activity network.

m Method
p = 0.8 p = 0.95

Mean Std. Error Mean Std. Error

250
Bootstrapping 2.044×10−2 2.047×10−3 4.375×10−2 4.924×10−3

Taylor Series Approximation 2.015×10−2 1.549×10−3 4.296×10−2 3.934×10−3

1000
Bootstrapping 4.994×10−3 2.690×10−4 1.060×10−2 6.592×10−4

Taylor Series Approximation 4.971×10−3 1.891×10−4 1.055×10−2 4.831×10−4

For 3 of the 4 combinations of m and p, the mean estimates of input uncertainty from the bootstrapping
and Taylor series approximation match to 2 decimal places. Although we cannot approximate the true values
of input uncertainty it is reassuring that both methods are returning similar mean estimates. Across all 4
combinations we see that the Taylor series approximation has a smaller standard error than bootstrapping.
Although we see this smaller standard error across both experiments there are too many variables to conclude
whether we would expect to see this generally.

Using the results from the Taylor series approximation we can also look at the contributions made to
input uncertainty by each input distribution. We calculate the average normalised contribution to input
uncertainty by each input distribution across the 1000 macro replications. Table 3 shows the results for
p = (0.8,0.95) when m = 1000.

Table 3: Average normalised contributions to input uncertainty for the stochastic activity network.

p θ1 θ2 θ3 θ4 θ5

0.8 32.0% 6.4% 23.4% 6.4% 31.8%
0.95 33.8% 4.1% 24.5% 4.1% 33.5%
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Firstly note that for each quantile the normalised contributions to input uncertainty are approximately
the same for parameters θ1 and θ5, and also for θ2 and θ4. We would expect to see this due to the symmetry
of the stochastic activity network. We could switch the labels of these activities and the simulation model
would remain the same. Secondly for both quantiles we see that θ1 and θ5 make the largest contributions.
We would expect to see this since all activities are identically distributed and both these parameters represent
activities that feature in 2 out of the 3 paths in the network. Both also feature in the path with the highest
number of activities, which is likely to be the longest path. The second largest contributions to input
uncertainty for both quantiles comes from θ3, whilst θ2 and θ4 return the smallest contributions. Moving
from the 0.8-quantile to the 0.95-quantile the contributions made by θ1, θ3 and θ5 increase, whilst the
contributions made by θ2 and θ4 decrease. Parameters θ1 and θ5 should be targeted for additional data
collection since these make the largest normalised contribution for both quantiles.

5 CONCLUSION

In this work we considered input uncertainty quantification for quantile performance measures of simulation
outputs. This allows us to identify a source of uncertainty in quantile estimates that may previously have
been ignored, enabling simulation practitioners to make better-informed decisions.

We focused on the case where input models follow independent distributions and input modelling is
done from a frequentist perspective. We adapt two methods of quantifying input uncertainty for the mean,
a bootstrapping approach and a Taylor series approximation. The latter is only appropriate for parametric
input distributions. We applied both methods to an analytical example which shows they accurately estimate
an analytical approximation of the true value of input uncertainty. We also applied both methods to a
stochastic activity network where they returned similar mean estimates of input uncertainty.

In the future, we should consider how to construct asymptotically valid confidence intervals for the
quantile estimator, that account for both stochastic uncertainty and input uncertainty. This will help with
the interpretation of input uncertainty for quantiles. We could also consider how other input uncertainty
quantification techniques for the mean, which may offer benefits over both methods used here, could be
adapted for quantiles. We should also investigate how input uncertainty estimates are impacted when using
a smaller number of replications, which would violate the asymptotic relationship in Equation (7).
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