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ABSTRACT

Gaussian processes, known to have versatile uses in several fields across engineering, science, economics,
show important advantages to several alternative approaches while controlling model complexity. However,
the use of this family of models is hindered for inputs that are high dimensional as well as large sample sizes
due to the intractability of the likelihood function, and the growth of the variance covariance matrix. This
article investigates state-of-art solutions to these challenges according classifying them into categories. The
goal is to select several algorithms covering each category and perform empirical experiments to compare
their performances on the same set of test functions. Our preliminary results focus on deterministic
implementations of a set of selected approaches. The results of the experiments may serve as a guidance
to future readers who want to study and use Gaussian process in problems with high dimensions and big
data sets.

1 INTRODUCTION & BACKGROUND

Gaussian process (GP) modeling (or kriging) is a type of nonparametric statistical model which takes any
smooth function as realization of a stationary Gaussian process (Mathesen et al. 2021). Surrogates are
used to approximate an, unknown, potentially nonlinear noncovex function learned from a set of inputs for
which outputs (possibly noisy) are available (Bouhlel and Martins 2019). Through their hyperparameters
Gaussian processes have flexibility to fit many different response types, making them among the most
commonly used surrogates.

A problem that has become increasingly critical is that Gaussian processes have decaying performances
when applied in problems with high dimensionality and large data sets. The difficulty of hyperparameter
estimation grows exponentially with the dimensionality of data sets, while the complexity of prediction
is caused by size of data sets. Recently, these challenges have drawn attention of scholars to developing
contributions in scaling GPs.

Background: Gaussian process modeling Given n locations X = (x1, ...,xn), each of d dimensional,
and associated outputs f = ( f (x1), ..., f (xn)), a Gaussian process M (X) = µ +Z (X) can be constructed
around the function, with µ the constant mean and Z (X)∼ GP

(
0,τ2K

)
, where τ2 is the process variance

and K = k(X,X′) = is the correlation matrix. One of the commonly adopted correlation function is, for
each entry of K, Ki j = ∏

d
l=1 e−(θl |xil−x jl |)2

, where θ is the d-dimensinoal smoothing length-scale parameter.

Noiseless Evaluations If the true function is deterministic, which means there is no random noise added to
the observations, the estimation of µ and τ2 is µ̂ =

(
1T K−11

)−1 1T K−1f and τ̂2 = 1
n (f−1µ̂)T K−1 (f−1µ̂),
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where f is the n-dimensional true function values at sample locations and 1 is n-vector of ones (Santner
et al. 2013).

The best linear unbiased predictor and model variance result are:

f̂ (x) = µ̂ + r(x)T K−1(f−1µ̂), (1)

ŝ2(x) = τ
2

(
1− r(x)T K−1r(x)+

(
1−1T K−1r(x)

)2

1T K−11

)
. (2)

where r(x) = ri(x) for each ri(x) = Corr(Z(x),Z(xi)) and i = 1, . . . ,n (Santner et al. 2013).

Noisy Evaluations The functions values in this case, are observed with noise, and Gaussian process model
M(x) is written as M (x) = µ (x)+δ (x)+ε (x), where µ (x) and δ (x) are mean and variance, ε (x) is the
models the noise associated to the observations. In many applications, such noise is considered as i.i.d.
N
(
0,σ2

ε

)
(Santner et al. 2013). A rich literature is also available for the case of heterogeneous, non i.i.d.

noise, where the noise variance is a function of the sample locations (Yin et al. 2011), though heterogeneous
noise is not in the scope of this paper. The inference of hyperparameters θ in this case can be obtained
through numerical optimization of the log likelihood function −n

2 log(2π)− 1
2 |K|− 1

2(f−1µ)T K−1(f−1µ),
where f is the n-dimensional true function values with noises at sample locations (Liu et al. 2020). While
such optimization is usually tractable for dimensionality d ≤ 20, the task becomes quickly intractable in
high dimensional problems.

Objective and paper outline In this paper, we present the recent literature that addresses these challenges,
leading to a categorization of approaches, namely scaling matrix computation, embedding and projection-
based methods, and additive modeling. A preliminary computational comparison of three models was also
implemented to provide insights on the effectiveness of approaches in diverse categories.

The remainder of the paper is structured as follows: Section 2 provides an overview of Gaussian
processes in the model structure and likelihood estimation. We highlight the challenges that arise with high
dimensionality and large sample size, and propose a new categorization of recent approaches that tackle at
least one of these challenges. Section 3 dives into model formulation of three approaches that we aim to
compare. Section 4 presents our preliminary analysis and comparison of the different algorithms. Finally,
section 5 concludes the paper providing future directions for analysis and research avenues.

2 GAUSSIAN PROCESSES AND THE CHALLENGE OF HIGH DIMENSIONALITY AND
LARGE DATA SETS

As previously mentioned, the efficiency in the estimation and prediction using Gaussian processes is impacted
by both the sample size as well as the dimensionality of the input. More specifically, the complexity of
computing the inverse covariance matrix grows in O(n3) complexity with the number of points in the
sample set n. On the other hand, the size of the hyperparameters θ grows linearly with the dimensionality
of the input d. Such growth impacts the algorithm used to maximize the likelihood function (Bouhlel and
Martins 2019).

In fact, scalability is a challenge, in general, for statistical learning (Donoho et al. 2000). Advances
in sensor technology have made available large amounts of high dimensional data (a huge amount of
features can be measured and/or extracted - see the case of deep neural networks where inputs are purposely
made larger), while carrying the challenge to scale statistical models to large and high dimensional data
sets. Several approaches have been proposed in the literature with some of the approaches to solve
different aspects of the multiple challenges arising from large and high dimensional data sets. In order to
scale models to high dimensional problems, dimensionality reduction is often used, some works of which
include multidimensional scaling (Cox and Cox 1991), principal component analysis (Lee et al. 2012) and
nonlinear dimensionality reduction (Roweis and Saul 2000). More comparative reviews can be found in
(Van Der Maaten et al. 2009; Sorzano et al. 2014; Reddy et al. 2020). The most developed and commonly
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used approaches include variable selection or feature extraction (Fan and Lv 2010; Wasserman and Roeder
2009; Pang et al. 2008), used to recover information from massive data. A family of approaches within
the class of feature selection is based on penalized least squares (Fan et al. 2009), examples of which
include Akaike and Bayesian information criterion. In the past decade, a plethora of penalizing score
functions have been proposed, with a notable example being the Lasso penalized regularization (Tibshirani
1996; Zhao and Yu 2006; Greenshtein and Ritov 2004; Donoho 2006; Greenshtein 2006; Meinshausen
and Bühlmann 2006; Wainwright 2006). LASSO was demonstrated to perform well in feature selection
under scenarios where solutions to regression models are sparse. Also, a comparison between LASSO and
other selection methods can be found in (Bickel et al. 2009). A framework for penalized likelihoods was
proposed in (Fan and Li 2006) showing good performance across widely different statistical problems.
(Fan and Lv 2008) proposed to reduce high dimensionality by means of a sure screening method called
sure independence screening, which promises that, with probability going to 1, all important variables
survive after applying a variable screening procedure. Another family of methods are based on the use
of eigenvalues and eigenvectors of the covariance matrix (Johnstone and Titterington 2009), including
canonical correlation analysis (Zhu et al. 2012), and discriminant analysis (Bouveyron et al. 2007).

2.1 Proposed Classification for Scalable Gaussian Processes

In this paper, we distinguish three main classes of approaches that tackle scalability of Gaussian processes
with respect to the size of the training sample, and dimensionality of the input. We will highlight in the
following sections how the different approaches can be mixed by different learning algorithms in order to
solve both challenges (a representation of such interaction is in Figure 1).

Figure 1: Graphical representation for the classification dimensions.

Specifically, we propose the following approach-classes: (i) scaling matrix computation, which focuses
on reducing complexity coming from the computation of correlation matrix; (ii) embedding and projection-
based methods, which reduce the dimensionality of the original input space; and (iii) additive modeling,
which exploits the additive structure of the original function to produce kernels that can be efficiently
estimated. The intuition behind the classification comes from an investigation of how each algorithm
tackles the challenge of either high dimensionality or big data sets, or both. A graphical representation of
classification details is presented in Figure 1, with all approaches restricted to the scope of literature and
experiments within this review. The left and right sections are areas of challenges, high dimensionality
and big data sets, respectively. The three categories mentioned earlier are in dashed boxes, with several
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examples. The horizontal position of boxes indicates which challenge each category belongs to. Arrows
represent directions of scaling approaches in the direction of other challenges.

2.1.1 Scaling Matrix Computation

An important task to improve estimation scalability is to efficiently process the variance covariance matrix.
A common family of approaches within this category is approximate/sparse Gaussian processes, which build
the model based on a small set of m inducing points thus reducing the time complexity for the variance
covariance matrix inversion to O

(
nm2

)
, where n is the, large, sample size. (Snelson and Ghahramani

2006) parametrizes the GP variance by generating pseudo-inputs that are learnt through a gradient based
optimization. The authors demonstrate that even small number of such points give good performance. A
variation of the inducing point method was developed by (Titsias 2009) using joint inference of inducing
points and maximization of the likelihood lower bound. (Bouhlel and Martins 2019) improved method
of sampling points during previous gradient-based models to achieve controllable correlation matrix size.
Another family of methods, rather than approximation, focuses on improving Matrix-Vector Multiplications
(MVMs), specifically through linear solves and log determinants based on iterative methods to reduce the
complexity significantly. Expressing the covariance matrix as a Kronecker product allows the eigen-
decomposition of the matrix to be efficiently discovered. If the covariance matrix is generated from a
stationary covariance kernel, a Toeplitz matrix can be obtained which provides opportunity for faster matrix
vector products (Wilson and Nickisch 2015). Additionally, (Gardner et al. 2018) developed fast MVMs
through Lanczos decomposition of components of kernels with product structure.

2.1.2 Embedding and Projection-based Models

Embedding and projection-based methods work with the basic idea to reduce the dimensions by mapping
the original input into low-dimensional spaces. An example of approach in this family is the active
subspace method (Chen et al. 2021), which detects active subspaces, i.e., low dimensional subspaces,
by exploiting the gradients of the function. The approach follows two steps: first, the active subspace is
identified using the gradient defined with respect to the original space. subsequently, the Gaussian process
is estimated over the resulting low-dimensional space. Partial Least Squares (PLS) handle high dimensional
problems through maximization of the variance between input and output variables by representing them
into a smaller subspace using principal components or latent variables. PLS applied with kriging achieved
reduction of hyperparamter space (Bouhlel et al. 2016). Stochastic Gaussian process modeling average
(SGPMA) (Xuereb et al. 2020) uses embedding on the original input space to achieve a number of subsets
of lower dimensions and with smaller sample sizes. The number of subsets, the associated dimensionality,
and the, smaller, sample sizes are user defined. This framework addresses challenges from both high
dimensionality and large sample size. Similarly, random embedding Bayesian optimization (Wang et al.
2016) draws a random embedding matrix and performs optimization on the embedded space, resulting
in good invariance properties; hashing-enhanced subspace Bayesian optimization (Nayebi et al. 2019),
on the other hand, implements a hashing based mapping strategy that allows to map to low dimensions.
Recently, (Letham et al. 2020) reexamined the linear embeddings in high dimensional Bayesian optimization
and achieved performance improvement through a Mahalanobis kernel tailored for the linear embeddings
and adding polytope bounds to the embedding.

2.1.3 Additive Models

An alternative way to reduce the complexity of the likelihood for the Gaussian process hyperparameter
estimation is exploiting additive structure of the model. Some recent works use the additive structure of the
original function to accelerate the modeling and optimization process. (Duvenaud et al. 2011) introduces a
tractable kernel parametrization method exploiting the additivity of the squared exponential kernel, resulting
in efficient evaluation of hyperparameters. Also based on additive kernel structure, (Durrande et al. 2011)
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proposed a numerical method for data-driven parameter estimation combined with kernel additivity. (Meng
and Ng 2015) combines a global Gaussian process model and a piecewise local GP model into an additive
GP model with a composite covariance structure, during which inducing points are selected based on a
mechanism of dividing the space into local regions (clustering). (Gardner et al. 2017) proposes a Monte
Carlo Markov Chain (MCMC) based algorithm that uses Metropolis-Hastings to sample several models
from the proposal distribution. Given a partition that is assumed to have an additive structure, a proposal
distribution is defined over all the subpartitions that could be possibly formed. The model posterior is
computed as an average of a user-defined number of samples from the proposal distribution. (Eriksson
et al. 2019) uses Gaussian process as local surrogate model for robust noisy observations, followed by
an implicit multi-armed bandit strategy at each optimization iteration that allocates samples across trust
regions. For an additive structure of the model, (Kandasamy et al. 2015) proposes an additive Gaussian
process for Bayesian optimization.

3 PRELIMINARY TESTING PLATFORM

In this section, we present a comparison platform for different modeling approaches. In this preliminary
version, we consider three approaches, which we used for testing and comparing performance of a sample
of methods. These were selected as representative of the categories presented in Section 2.1. In particular,
the methods we selected were shown to have good performance with respect to at least one of the two
challenges, high dimensionality and big data size. In this preliminary implementation, we considered
function evaluations without noise, and compared the following approaches:

(Scaling matrix computation) For this class, we chose the Gradient-enhanced Kriging with Partial Least
Squares (Bouhlel and Martins 2019) (GE-KPLS) method (Section 3.1);

(Embedding/Projection methods) For this class, we analyze the Stochastic Gaussian process with model
averaging (Xuereb et al. 2020) (SGPMA) approach (Section 3.2);

(Additive models) For this class, we chose the approach in (Gardner et al. 2017), which we refer to as
Gaussian process with MCMC sampling (in short GPMCMC) (Section 3.3).

3.1 Gradient-enhanced Kriging with Partial Least Squares (GE-KPLS)

Bouhlel and Martins (2019) proposes a model based on gradient-enhanced kriging (GEK), where the basic
idea is to accelerate the Gaussian process estimation using partial least squares (kriging with partial least
squares -KPLS). The existing GEK methods have intractable computation of correlation matrix when either
the number of sampling points or number of inputs becomes large. To tackle this issue, the gradient-
enhanced kriging with partial least squares (GE-KPLS) method suggests the following components. At
each sampling point, it uses PLS regression for the hyperparameter estimation over a lower dimensional
problem derived using principal component analysis. First-order Taylor approximation is used to generate
a set of additional locations around each sample point. PLS is then applied to subsets of points obtaining
a local influence of each component. The correlation function is

k
(
x,x′

)
= τ

2
h

∏
l=1

d

∏
i=1

exp
[
−θl(w

(l)
avixi −w(l)

avix
′
i)

2
]
, ∀θl ∈ [0,+∞)

where h is the number of principal components from PLS, d is the dimensionality of the input, and w(l)
avi

represents the weight associated to the l-th principal component in the i-th dimension. next ∈ [1,d] is the
number of approximating points generated around each sampling point, and it corresponds to the highest
coefficients obtained from PLS. Although not shown in the kernel form, it is a user-defined parameter
during GE-KPLS model training. The same predictors as in equations (1)-(2) is then used.
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3.2 Stochastic Gaussian Process Modeling Average (SGPMA)

The SGPMA approach was first proposed in (Xuereb et al. 2019), and extended in (Xuereb et al. 2020) with
the objective to address both the dimensionality and data size challenges. The algorithm tackles high input
dimensionality by decomposing the original dimensions into multiple, lower-dimensional, embeddings.
The predictions are then obtained for each embedding using a subset of samples. Finally, the predictions
are averaged using different weights for each model. Two projection operators were used by the authors:
(i) the πrandom that generates lower dimensional models randomly selecting a subset of dimensions for each
predictor; (ii) the πPCA, instead, uses principal component analysis over a subset of the training samples.
The number of desired predictors is decided by the user, while the locations (samples) to be assigned to
each model are selected uniform at random no matter the projection method used. Then, a Bayesian model
averaging approach is used to coalesce the predictions obtained from each of the models defined with a
potentially different projection method and sample data. The user defined parameters are the number of
subsets nsub, and, for each model i = 1, . . . ,nsub, the number of data points ni and dimensionality di of each
subset, which will be defined by users. The estimation of the low dimension models includes the estimation
of the weights associated to the sub-model. The authors defined a proxy pair, (ni,di), i = 1, . . . ,nsub, to
characterize the quantity of the prediction power of each lower dimensional model. The predictor is:

f̂ (x) =
n

∑
i=1

µi
(

fi
(
π

t
i (x)

)
|fi
)

wi

where x is one d-dimensional sample location, fi is the ni-dimensional vector of true function evaluations, and

wi =
pi

∑
n
j=1 p j

, pi =
(ni

n

)2 ×
(

di
d

)η

, i ∈ 1, ...,nsub, and n, d are the original input data size and dimensionality.
η > 0 is another user-defined parameter that characterizes the model prediction power. Finally, the superscript
t of the projection operator can be either set to “PCA” or “random” based on the user choice.

3.3 Gaussian Processes with Monte Carlo Markov Chain (GPMCMC)

This models attempts to face the issue of high dimensional inputs by decomposing the full dimensional
model into the sum of several components (non-overlapping) each with a subset of the original dimensions.
Gardner et al. (2017) develops a decomposition approach that, combined with Markov chain Monte Carlo
(MCMC), attempts to learn and exploit the additive structure of the true function. If the true function is
indeed additive, then each model can be uniquely defined by the additive decomposition of its underlying
dimensions. However, given the exponentially growing size of possible additive decompositions, it remains
challenging to evaluate all possible models. Metropolis-Hasting sampling was used to obtain a proposal
distribution over all the possible partitions of a given model. For each sampled partition the additive
GP is estimated, and the likelihood of the model is used as evidence associated to the specific partition.
Such evidence is used to update the posterior over the space of all possible dimensions combinations.
Given an additive model with dimensions forming the partition P, the kernel can be formulated as
k (x,x∗) = ∑

|P|
i=1 k (x[Pi],x′[Pi]). As an example, given a 4-dimensinoal space, P = {[1], [2,3], [4]}, the

additive model will be f (x) = f1(x1)+ f2(x2,x3)+ f3(x4). The predictive distribution, given k models is:

p( f (x∗) |D,x∗)≈ 1
k

k

∑
j=1

p( f (x∗) |D,x∗,M j)

where D = {X, f} is the training set X, and evaluations f. M j is a model sampled from the proposal, i.e.,
a specific additive decomposition, and p( f (x∗) |D,x∗,M j) represents the posterior probability to observe
the function value f (x∗) conditional on the samples D, and the chosen additive model M j.
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4 NUMERICAL EXPERIMENTS

4.1 Experiment Design

As previously mentioned, this preliminary comparison presents the results over deterministic versions of
the three models, GE-KPLS, SGPMA, and GPMCMC introduced in Sections 3.2, 3.1, and 3.3, respectively.
We tested the approaches against three analytic functions, the Griewank (Griewank 1981) which has widely
spread and regularly distributed local minima, the Styblinski-Tang (Styblinski and Tang 1990), a multimodal
additive function, and the Michalewicz with parameter that describes the valley and ridges steepness set to
10 (Molga, Marcin and Smutnicki, Czesaw ), a multimodal additive function with d! local minima, where d
is dimensionality. The metrics used to compare the performance of each model are root mean squared error
(RMSE) and mean absolute error (MAE), which are commonly used error metrics to measure prediction
accuracy. Runtime (in seconds) is also considered to understand the computation efficiency of each model.

Experiment results are presented in two parts, the individual model performance (Section 4.2), and the
comparison across different approaches (Section 4.3). We consider different combinations of sample sizes
(n) and input dimensions (d) in ascending order, averaged over 50 macro-replications. The computing
resources used for all experiments were run on the AGAVE computing cluster. We consider the following
possible input parametrizations for the different methods:

• Dimensionality was set to d = 10,20,30,50,100,150,200;
• Choices of sample size n based on dimensionality include 10d, 20d;
• Concerning method-dependent parameters, we considered the following:

– GE-KPLPS: number of approximating points used in PLS, next = 0,2,4;
– SGPMA: number of subsets, nsub = 0.2d,0.5d; embedding method, π pca, πrandom; prediction

power parameter, η = 5,8,12;
– GPMCMC: number of models sampled from MCMC, k = 5,20,50; number of MCMC iterations

was set to 500 for all experiments.

Hence, a total of (168+36+4)×3= 624 experiments were run, each with 50 replications. Implementations
can be found on Github.

4.2 Individual Algorithms Analysis

In the following we analyze the performance of GE-KPLS (Section 4.2.1), SGPMA (Section 4.2.2), and
GPMCMC (Section 4.2.3). Since RMSE and MAE showed similar patterns across the cases, we are only
providing the results for the RMSE.

4.2.1 Gradient-enhanced Kriging with Partial Least Squares

The prediction performance for GE-KPLS is presented in Figure 2.
While next = 2−4 results in large error, not adding such points improves performance. As dimensionality

goes above 10, the RMSE is below 1e-3 (similar to SGPMA for d = 10). This observation applies to both
choices of n.

GE-KPLS shows a consistent behavior in terms of runtime (Figure 3): increased dimensionality with
sample size hurts runtime, consistently across different test functions. The experiments only ran up to
d = 150 due to computation overhead.

4.2.2 Stochastic Gaussian Process with Model Averaging

Figures 4–5 show the performance of SGPMA with PCA embedding (similar results were observed for
the random projection case). The error decreases and the runtime increases with dimensionality and data
sizes, with an obviously larger variance associated with the RMSE values for the Griewank function.
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Figure 2: RMSE (y-axis) as a function of dimensionality and sample size (d,n) (x-axis) for GE-KPLS.
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Figure 3: Runtime (y-axis) as a function of dimensionality d (x-axis) Performance for GE-KPLS.
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(b) Styblinski-Tang, RMSE values.
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Figure 4: RMSE (y-axis) as a function of dimensionality and sample size (d,n) (x-axis) for SGPMA.

The runtime behavior associated to the Michalewicz function shows abnormal peaks at d = 50 and 100
with an inverse relationship between data size/dimension and runtime. Since experiments were replicated
multiple runs, it is unlikely for this behavior to be caused by randomness. Instead, we infer that it might
be related to certain conditions of the computing cluster, and how the data is allocated to subsets.

4.2.3 Gaussian Process with Monte Carlo Markov Chain

GPMCMC shows good performance in terms of error (see Figure 6). In the RMSE plots, different color
represents the different number of models k sampled used for prediction, but since this parameter is not
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Figure 5: Runtime (y-axis) as a function of dimensionality d (x-axis) for SGPMA.

of concern during modeling, varing its value does not have any impact in runtime. We observe that the
RMSE of Griewank decreases as d increases, given fixed n. This observation is consistent with the unusual
behavior of the performance other two models with Griewank when d = 10 and 20, thus, given the results
so far, we infer it is a consequence of the Griewank function performance in lower-dimensional settings.
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Figure 6: RMSE (y-axis) as a function of dimensionality, sample size (d,n) (x-axis) for GPMCMC.

However, Figure 7 shows how the runtime is extremely high even for one iteration of the MCMC
algorithm. As a result, we only tested this algorithm up to n = 400 and d = 20. Since the prameter k does
not influence the runtime, the plots in Figure 7 only report one value for each (d,n) condition. We can see
that the runtime plots show an extremely large gap between n = 10 and n = 20 for d = 10. This gives some
insight on the promising performance of GPMCMC only restricted to when both dimension and sample
size are small; as soon as either gets larger, the runtime performance decays tremendously.

4.3 Comparative Algorithms Analysis

The output statistics, averaged across 50 macro-replications, are summarized in Table 1 for a comprehensive
analysis of the three models. SGPMA and GE-KPLS outputs were obtained from the model with parameters
that returned the best accuracy and runtime, i.e., η = 5 and nsub = 0.5d subsets, and next = 0, respectively. For
dimensions up to 20, all three models have equally good accuracy, while SGPMA has the best runtime and
GPMCMC performs extremely poorly. Both SGPMA and GE-KPLS scale well to increasing dimensionality
and sample size, but the trade-off between good accuracy and efficient runtime is noticeable.

5 CONCLUSIONS AND FUTURE WORKS

In this paper, three HDGP models were implemented and compared in their deterministic version, which
provides a foundation to the usage of GP models in high dimensionality with big data size. The experiment
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Figure 7: Runtime (y-axis) as a function of dimensionality and sample size (d,n) (x-axis) for GPMCMC.

Table 1: Performance comparison; ∗ means the model could not be run for certain dimensionality d and
sample size n; statistically better performance are highlighted in bold.

Test function n 10∗d 20∗d
d 10 20 30 50 100 150 200 10 20 30 50 100 150 200

Griewank RMSE SGPMA .045 .033 .040 .052 .074 .091 .105 .044 .032 .039 .052 .074 .091 .105
GE-KPLS .044 .001 .002 .003 .004 .005 * .040 .0005 .00005 .0008 .002 .002 *
GPMCMC .043 .026 * * * * * .039 .030 * * * * *

MAE SGPMA .029 .026 .032 .042 .059 .072 .084 .028 .026 .031 .041 .059 .073 .084
GE-KPLS .025 .0008 .001 .002 .003 .004 * .023 .0003 .00004 .0006 .001 .002 *
GPMCMC .026 .021 * * * * * .022 .024 * * * * *

Runtime SGPMA .326 .436 .715 .741 1.87 2.80 3.34 .22 .454 .702 .9 1.86 2.78 3.96
GE-KPLS .56 1.89 4.08 13.3 123 777 * 1.26 4.23 7.27 38.8 322 1771 *
GPMCMC 32706 87221 * * * * * 81308 88158 * * * * *

Styblinski-Tang RMSE SGPMA 39.2 56.8 69.5 89.1 126 154 177 39.1 56.0 68.2 89.2 125 154 177
GE-KPLS 35.4 48.9 59.4 75.9 106 128 * 34.8 48.3 58.1 74.1 103 126 *
GPMCMC 35.5 54.1 * * * * * 32.3 52.9 * * * * *

MAE SGPMA 31.6 45.3 55.7 71.1 101 124 142 31.6 44.8 54.7 71.2 100 123 142
GE-KPLS 28.3 39.3 47.3 60.6 84.3 102 * 27.7 38.5 46.5 59.1 81.9 100 *
GPMCMC 28.4 43.1 * * * * * 25.9 42.2 * * * * *

Runtime SGPMA .05 .125 .184 .318 .535 .653 .954 .068 .134 .201 .272 .601 .864 1.25
GE-KPLS .576 2.03 3.99 13.4 131 900 * 1.55 4.81 10.6 42.0 341 1989 *
GPMCMC 37736 89002 * * * * * 82763 93050 * * * * *

Michalewicz RMSE SGPMA .729 1.04 1.25 1.58 2.25 2.76 3.17 .711 1 1.22 1.59 2.25 2.74 3.17
GE-KPLS .83 1.19 1.45 1.89 2.66 3.27 * .783 1.16 1.43 1.85 2.62 3.17 *
GPMCMC .781 1.26 * * * * * .725 1.25 * * * * *

MAE SGPMA .587 .832 1 1.27 1.80 2.21 2.53 .575 .804 .979 1.27 1.80 2.19 2.53
GE-KPLS .669 .961 1.16 1.51 2.13 2.61 * .632 .927 1.15 1.47 2.09 2.53 *
GPMCMC .629 1.01 * * * * * .581 .995 * * * * *

Runtime SGPMA .040 .097 .649 .93 2.20 .687 .855 .051 .129 2.05 3.56 4.37 .719 .946
GE-KPLS .536 2.08 4.24 13.4 123 847 * 1.29 4.44 10.4 38.3 314 1812 *
GPMCMC 34485 88162 * * * * * 82075 92966 * * * * *

results show that SGPMA and GEKPLS have acceptable runtime while maintaining good accuracy even
when scaled up. GPMCMC has good accuracy but with much worse runtime. All algorithms fail to achieve
as good performance for Styblinski-Tang as the other two functions. Therefore, it is of our interest to
investigate into additional functions to find out how intrinsic characteristics impact model performance.
Based on this preliminary comparison, future directions would include an extension to the stochastic models
over an additional set of functions, as well as improving existing framework by automating choices of
SGPMA parameters for better results.
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