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ABSTRACT

This article constructs confidence regions (CRs) of distortion risk measures and their gradients at different
risk levels based on replicate samples obtained from finite-horizon simulations. The CRs are constructed
by batching and sectioning methods which partition the sample into nonoverlapping batches. Preliminary
numerical results show that the estimated coverage rates of the CRs constructed are close to the nominal
values.

1 INTRODUCTION

An important class of risk measures widely used in finance and economics are distortion risk measures
(DRMs) that take the form

ϑ(α) =
∫

∞

0
ω(P(Z > z);α)dz, (1)

where Z is typically a nonnegative random variable with cumulative distribution function (c.d.f.) F(z) =
P(Z ≤ z), probability density function (p.d.f.) f (z) that is positive and has derivative d

dz f (z) at every z∈R+

(please refer to Glynn et al. (2021) to see the more-general case allowing negative Z), and the function
ω with parameter α is called the distortion function that is nondecreasing and satisfies ω(0;α) = 0 and
ω(1;α) = 1 for all α . Suppose the random variable Z is the output of a stochastic model: Z = g(X ;θ) for
some function g : Rm×Rk→ R, where X ∈ Rm is the input random variable and θ ∈ Rk is the decision
parameter. Notice that we allow not only the dependence of Z = g(X ;θ) on θ to be affected by θ in the
distribution of input random variables, but also the structural dependence on θ in the function g. When
ω(y;α) is left-continuous with respect to y, the expression of the DRM in (1) can also be rewritten as

ϑ(α) =−
∫ 1

0
F−1(y,θ)dω̃α(y), (2)

where ω̃α(y) = ω(1− y;α) (Dhaene et al. 2012, Theorem 6). The well-known risk measures value at
risk (VaR), also known as a quantile, and conditional value at risk (CVaR) at level α are special cases
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of the distortion risk measures, where ω(y;α) = 1(y > 1−α) (1(·) denotes the indicator function) and
ω(y;α) = min{y/(1−α),1}, respectively.

Previous studies discussed the estimation of ϑ(α) as well as gradients of ϑ(α) with respect to risk
level α (Gourieroux and Liu 2006) or parameter θ in the distribution function of Z (Glynn et al. 2021),
i.e., the estimation of ∂ϑ/∂α or ∂ϑ/∂θ . A confidence interval (CI) can be constructed of DRMs and the
gradients of distortion risk measures (GDRMs) at one risk level α . However, comprehensive risk analysis
requires the joint consideration for risk measures at various levels, so we may be interested in estimating
not only the DRM at one risk level but also simultaneously estimating a vector of DRMs or GDRMs
at risk measures α1, . . . ,αd . In addition, we may also wish to simultaneously estimate the GDRMs with
respect to different parameters θ1, . . . ,θk. Simultaneous estimation of distortion risk measures or their
gradients corresponding to either different risk levels α1, . . . ,αd or with respect to different parameters
θ1, . . . ,θk requires constructing a confidence region (CR) to measure the accuracy and precision of the
vector of estimates. Specifically, when we estimate a DRM at different risk levels, we wish to construct
a region R(n,β ) ⊂ Rd based on a dataset consisting of n independent and identically distributed (i.i.d.)
simulation responses Zu : u = 1, . . . ,n such that limn→∞ Pr[(ϑ(α1), . . . ,ϑ(αd)) ∈ R(n,β )] = 1− β ; and
when we estimate the respective GDRM with respect to θ` at different risk levels, we wish to construct
a region R(n,β ) ⊂ Rd such that limn→∞ Pr[(∇`ϑ(α1), . . . ,∇`ϑ(αd)) ∈ R(n,β )] = 1− β . Then when
we estimate the GDRM with respect to different parameters θ1, . . . ,θk, we aim at constructing a region
R(n,β )⊂ Rk such that limn→∞ Pr[∇ϑ(α) ∈R(n,β )] = 1−β for given confidence coefficient β ∈ (0,1),
where ∇`ϑ(α)

.
= ∂ϑ(α)/∂θ` and ∇ϑ(α)

.
=
(
∇1ϑ(α), . . . ,∇kϑ(α)

)
.

In this paper, we discuss CR construction for distortion risk measures and their gradients with respect to
different parameters θ1, . . . ,θk at different risk levels 0 < α1 < α2 < · · ·< αd < 1, in an unified framework
via batching and sectioning methods. GDRMs with respect to a given θ` at different risk levels 0 < α1 <
α2 < · · ·< αd < 1, and GDRMs with respect to different θ1, . . . ,θk at a fixed risk level αh are special cases
with k = 1 and d = 1, respectively. Batching and sectioning methods have been studied in the literature to
construct the CIs for quantiles (e.g., Nakayama 2014, Dong and Nakayama 2017), and CRs for a vector of
quantiles (e.g., Lei et al. 2020, Glynn et al. 2021). The batching method divides the n outputs into b≥ 2
batches, each of size m = n/b, and computes the DRM or GDRM estimator from each batch. Then the
sample mean and sample variance of the estimates across the batches are used to construct a CR for the
DRM and GDRM. Similar to batching, the sectioning method also divides the outputs into b≥ 2 batches,
but it replaces the average batched estimator with the estimator using all samples (Asmussen and Glynn
2007, Dong and Nakayama 2017).

The construction of CRs for DRMs or GDRMs is related to two streams of literature: gradient
estimation and CR construction. Gradient estimation or sensitivity analysis is an important area in stochastic
optimization. The information provided by the gradient of distortion risk measures is useful for selecting
an appropriate risk management strategy (Gourieroux and Liu 2006). Sensitivity estimation for VaRs and
CVaRs has been widely discussed in the literature (Hong 2009, Liu and Hong 2009, Fu et al. 2009, Lei
et al. 2018). Peng et al. (2017) developed central limit theorems for the quantile sensitivity estimators in
Liu and Hong (2009), Fu et al. (2009) and Lei et al. (2018). Further, sensitivity estimation for distortion
risk measures more general than VaR and CVaR have been studied in Gourieroux and Liu (2006), Cao
and Wan (2017) and Glynn et al. (2021). Gourieroux and Liu (2006) studied the gradient estimation of
distortion risk measures with respect to the parameters in the distortion function and established a central
limit theorem for the estimators. Cao and Wan (2017) developed a gradient estimator for distortion risk
measures, but they did not study the asymptotic properties of the proposed estimator. Glynn et al. (2021)
provided a gradient estimator for distortion risk measures with respect to the parameters in the underlying
stochastic models and established a central limit theorem.

This study is also closely related to the literature on CR construction for distortion risk measures or
their gradients. Lei et al. (2020) studied the construction of CRs for the estimated quantiles at different
risk levels 0 < α1 < α2 < · · ·< αd < 1 by generalized likelihood ratio (GLR) methods as well as methods
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based on batching and sectioning methods in finite-horizon simulation. Lei et al. (2022) further extend
the CRs for quantiles to steady-state simulation. Numerical results in Lei et al. (2020) and Lei et al.
(2022) show the validity of GLR methods based on batching and sectioning for CRs construction for
quantiles in both finite-horizon and steady-state simulations. In this regard, this study can be viewed as a
generalization of Lei et al. (2020). Gourieroux and Liu (2006) derived the functional asymptotic properties
of the functional distortion risk measures, but not CR construction for distortion risk measures at different
risk levels αi, i = 1, · · · ,d. In this regard, this study proposes the batching and sectioning methods to
build CRs of DRMs in Gourieroux and Liu (2006). Moreover, this study also considers the estimators of
GDRMs with respect to parameters in the stochastic models and discusses CRs for GDRMs at different risk
levels αi; this extends Gourieroux and Liu (2006). Glynn et al. (2021) developed estimators of gradients
of distortion risk measures with respect to parameters in the underlying stochastic models, i.e., θ in the
function g. They also discussed the construction of CRs for the proposed sensitivities of distortion risk
measures, along with sectioning-based method. However, Glynn et al. (2021) did not implement or provide
any numerical experiments related to the CRs for distortion risk measures. In this regard, our paper fills a
gap by numerically analyzing the performance of the sectioning method discussed in Glynn et al. (2021).

The rest of the paper is organized as follows. Section 2 describes the DRM and GDRM estimation
problem and constructs CRs for DRMs and GDRMs based on batching and sectioning methods. The GLR
method is used in this section towards the estimation of GDRMs. Section 3 evaluates the efficiency of the
proposed methodology using a single example. Finally, Section 4 offers some concluding remarks.

2 ESTIMATORS AND CONFIDENCE REGIONS

Let q(y) = F−1(y;θ)
.
= inf{q : F(q;θ)≥ y} be the quantile at probability level y for the random variable

Z. If one can obtain a quantile estimator q̂n(y), then the distortion risk measure can be estimated via

ζ̃n(α) =−
∫
[0,1]

q̂n(y)dω̃α(y).

In the finite-horizon case where the data Zi are obtained from n independent replications, q(y) can be
estimated by q̂n(y)

.
= Z(dnye,n), where Z(1,n) ≤ ·· · ≤ Z(n,n) are the respective order statistics and d·e denotes

the ceiling function. As a result, Gourieroux and Liu (2006) derived the following estimator of the distortion
risk measure,

ζn(α) =−
n

∑
i=1

Z(i,n) ·
[

ω̃α

( i−1
n

)
− ω̃α

( i
n

)]
,

which is a linear combination of the order statistics Z(i,n).
Based on the expression of distortion risk measure in (2), and assuming the gradient and integral can

be interchanged, Glynn et al. (2021) derived the expression of ∇ϑ(θ), i.e., the gradient of the distortion
risk measure, as:

∇ϑ(α) =−
∫
[0,1]

∇θ F−1(y;θ)ω̃α(dy). (3)

The interchange of gradient and integration is typically justified by the condition for applying the dominated
convergence theorem. If F(q(y);θ) is continuous at each q(y) ∈R, then F(q(y);θ) = y for each y ∈ (0,1).
Denote ∇`F−1(y;θ)

.
= ∂F−1(y;θ)/∂θ`,1≤ `≤ k, as the gradient of the quantile with respect to a specific

θ`, and ∇θ F−1(y;θ)
.
=
(

∂F−1(y;θ)
∂θ1

, . . . , ∂F−1(y;θ)
∂θk

)
as the vector of the gradients of the quantile. The estimation

of the gradient of quantiles has been widely discussed in the literature. For non-batched estimators, Fu
et al. (2009) proposed a Conditional Monte Carlo (CMC) estimator, Liu and Hong (2009) developed a
kernel-based estimator, and Lei et al. (2018) derived an estimator based on GLR method. Peng et al.
(2017) discussed the asymptotic properties of these estimators (CMC, kernel-based, and GLR estimators),
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and presented these three (non-batched) quantile gradient estimators of ∇`F−1(y;θ),1≤ `≤ k, in the form

D̂`
n(y) =

∑
n
j=1 Φ`

1(X j,Z(dyne,n))

∑
n
j=1 Φ2(X j,Z(dyne,n))

,

where Φ`
1 and Φ2 are measurable functions that satisfy different requirements for different quantile sensitivity

estimators outlined in Peng et al. (2017), and the gradient of distortion risk measure can be estimated via

δ
`
n(α) =−

∫
[0,1]

D̂`
n(y)ω̃α(dy).

Let δn(α)
.
=
(
δ 1

n (α), . . . ,δ k
n (α)

)
be the vector of estimators. Denote D̂n(y)

.
=
(
D̂1

n(y), . . . , D̂
k
n(y)

)
as the

vector of quantile sensitivity estimators, D̂`
(i,n)

.
=

∑
n
j=1 Φ`

1(X j,Z(i,n))

∑
n
j=1 Φ2(X j,Z(i,n))

as the gradients of quantiles with respect

to θ` at y for y ∈ ( i−1
n , i

n ], and D̂(i,n)
.
=
(
D̂1
(i,n), . . . , D̂

k
(i,n)

)
. Then the GDRM can be estimated by

δ̂
`
n(α) =−

n

∑
i=1

D̂`
(i,n) ·

[
ω̃α

( i−1
n

)
− ω̃α

( i
n

)]
.

Similar to DRM, the estimator of GDRM is a linear combination of the estimators of quantile sensitivity
at different levels.

In the remainder of this paper, we focus on GLR quantile sensitivity estimators; see Peng et al. 2018
or Glynn et al. 2021. We assume the following technical conditions hold:

• Regularity Condition (A.1) The inverse function g−1(·,x−1;θ) of g with respect to the first
argument exists for all x−1 = (x2, . . . ,xm).
• Regularity Condition (A.2) There exists ε > 0 such that |

(
∂g(x;θ)/∂x1

)−1|> ε for every x ∈Rm

and for every θ ∈ Rk.

• Regularity Condition (A.3) The partial derivatives ∂g(x;θ)
∂θ`

, ∂ 2g(x;θ)
∂x2

1
, and ∂ 2g(x;θ)

∂θ`∂x1
exist for every

x∈Rm; every `∈ {1, . . . ,k}; and for every θ ∈Rk. Moreover, E
[∣∣∣∣ ∂ 2g

∂x2
1
(x;θ)

∣∣∣∣]< ∞ for every θ ∈Rk.

• Regularity Condition (A.4) Let h be the joint density of X , and h1 be the marginal density of the
first coordinate in X . Then

lim
x1→±∞

h1(x1;θ) = 0 and 0 < h(x;θ)< ∞

for every x ∈ Rm and for every θ ∈ Rk.
• Regularity Condition (A.5) The first-order partial derivative ∂h(x;θ)

∂θ`
exist for every x ∈Rm; every

` ∈ {1, . . . ,k}; and for every θ ∈ Rk.

Conditions (A.1) and (A.2) can justify that g−1(·,x−1;θ) is globally Lipchitz continuous with respect to
the first argument. When g is a linear function of x, ∂g(x;θ)/∂x1 is a constant and ∂ 2g(x;θ)/∂x2

1 is zero,
so condition (A.2) and (A.3) hold. Condition (A.4) holds for most distributions supported on the whole
space, i.e., the normal distributions. Condition (A.5) also satisfies for most distributions.

Let Φ(x,q) .
=
(
Φ1

1(x,q), . . . ,Φ
k
1(x,q),Φ2(x,q)

)
. From Glynn et al. (2021), we know that under regularity

conditions (A.1)–(A.4), we can write Φ(x,q)=Ψ(x)·1{g(x;θ)≤ q}, where Ψ(x) .
=
(
Ψ1

1(x), . . . ,Ψ
k
1(x),Ψ2(x)

)
,

Ψ
`
1(x) =

∂ lnh(x;θ)

∂θ`
−
(

∂g(x;θ)

∂x1

)−1

×
[

∂g(x;θ)

∂θ`
× (4)(

∂ lnh(x;θ)

∂x1
− ∂ 2g(x;θ)

∂x2
1
×
(

∂g(x;θ)

∂x1

)−1)
+

∂ 2g(x;θ)

∂θ`∂x1

]
,
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and

Ψ2(x) =
(

∂g(x;θ)

∂x1

)−1

×
[

∂ lnh(x;θ)

∂x1
− ∂ 2g(x;θ)

∂x2
1

(
∂g(x;θ)

∂x1

)−1]
. (5)

Gourieroux and Liu (2006) proved that for i.i.d. random samples from Z with probability density function
(p.d.f.) f ,

√
n[ζ̃n(α)−ϑ(α)]⇒

∫ 1

0

B(y)
f (q(y))

ω̃α(dy), (6)

where ⇒ denotes weak convergence and B(·) is a standard Brownian bridge.
In order to establish the asymptotic properties of δn(α), we let

Φn(·) =
1
n

n

∑
j=1

(
Φ

1
1(X j, ·), . . . ,Φk

1(X j, ·),Φ2(X j, ·)
)
,

and set γn = ϕ(Φn(q̂n)) for some deterministic function ϕ : Rk+1→Rkd . Clearly, δn(α) is a special case of
γn with ϕ = (ϕ1, . . . ,ϕd), where ϕi =

∫
[0,1] φ(Φn(q̂n(y)))ω̃αi(dy), and φ : Rk+1→Rk with φ(x1, . . . ,xk+1) =(

x1/xk+1, . . . ,xk/xk+1
)

is continuously differentiable with k× (k+1) Jacobian matrix Jφ(·). Denote

PΦ(·) .
=
(∫

Φ
1
1(x, ·)P(dx), . . . ,

∫
Φ

k
1(x, ·)P(dx),

∫
Φ2(x, ·)P(dx)

)
,

and assume that PΦ(·) is continuously differentiable on R with derivative (PΦ)′. Theorem 2 in Glynn
et al. (2021) implies the following result.
Theorem 1 Assume there exists an Rk+2-valued continuous-path Gaussian process G′ = (G′1(z),G

′
2(z))

such that
n1/2(

Φn(·)−PΦ(·), q̂n(·)−q(·)
)
⇒ (G̃1(·), G̃2(·)), as n→ ∞,

where ⇒ denotes weak convergence. Then

n1/2
(

γn−ϕ(PΦ(q))
)
⇒ (G1, . . . ,Gk), as n→ ∞, (7)

where Gi =
∫
[0,1](Jφ)((PΦ(q(y))))

[
G̃1(q(y))+(PΦ)′(q(y)) · G̃2(q(y))

]
ωαi(dy), i = 1, . . . ,k are Rd-valued

continuous-path Gaussian processes.
A class F of measurable functions is called P-Donsker if the sequence of processes Gnψ : ψ ∈F

converges in distribution to a tight limit process in the space `∞(F ) where Gnψ
.
=

∑
n
i=1

(
ψ(Xi)−Pψ

)
√

n , `∞(F ) is
a collection of bounded real-valued functionals on F , equipped with the uniform (sup) norm ‖·‖F (p. 269 in
Van der Vaart 2000). From Peng et al. (2017), it is known that the function classes {Φ`

1(x,q),Φ2(x,q) : q∈R}
is P-Donsker if

E[(Ψ`
1(X))2]< ∞ , `= 1, . . . ,k, and E[(Ψ2(X))2]< ∞. (8)

Therefore, there exists an Rk+1-valued continuous-path Gaussian process G̃1(z) such that n1/2(Φ̄(·)−
PΦ(·))⇒ G̃1(z) if (8) is satisfied. In addition, if the p.d.f f (·) of Z is differentiable and f (q(y))> 0 for
y ∈ (0,1), then there exists an R-valued continuous-path Gaussian process G̃2(z) such that n1/2

(
q̂n(·)−

q(·)
)
⇒ G̃2(·) (Serfling 1980 §2.3.3, Theorem B).

However, the asymptotic variance and covariance of the estimated DRMs and GDRMs is complicated
to derive and estimate. Instead, we use batching- and sectioning-based methods to build CRs for DRMs
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and GDRMs. For given b≥ 2, one forms b nonoverlapping batches of simulation responses, each of size
m (n = bm). In addition to the estimators ζn or δ `

n , we also compute the batched estimators

ζ j,m(αh) =−
jm

∑
i=( j−1)m+1

Z(i,m) ·
[

ω̃
( i−1

m
,αh
)
− ω̃

( i
m
,αh
)]
,

and

δ
`
j,m(αh) =−

jm

∑
i=( j−1)m+1

D̂`
(i,m) ·

[
ω̃
( i−1

m
,αh
)
− ω̃

( i
m
,αh
)]
,

for j = 1, ...,b, h = 1, ...,d, and `= 1, ...,k.
Denote

ζ j,m(α)
.
=
(
ζ j,m(α1), ...,ζ j,m(αd)

)
, δ

`
j,m(α)

.
=
(
δ
`
j,m(α1), ...,δ

`
j,m(αd)

)
, and δ j,m(α)

.
=
(
δ

1
j,m(α), ...,δ k

j,m(α)
)
.

Note that δ `
j,m(α) is a vector on Rd and δ j,m(α) is a vector on Rkd . Then we compute the sample covariance

matrices for ζ j,m(α) and δ j,m(α), namely,

Sζ (n) =
1

b−1

b

∑
i=1

[
ζ j,m(α)−ζ b,m(α)

]
·
[
ζ j,m(α)−ζ b,m(α)

]T
, (9)

and

Sδ (n) =
1

b−1

b

∑
i=1

[
δ j,m(α)−δ b,m(α)

]
·
[
δ j,m(α)−δ b,m(α)

]T
, (10)

where

ζ b,m(α) =
1
b

b

∑
j=1

ζ j,m(α) and δ b,m(α) =
1
b

b

∑
j=1

δ j,m(α)

are the batched estimators of ϑ(α) and ∇ϑ(α), respectively. The next proposition establishes the asymptotic
validity of the CRs for ϑ(α) and ∇ϑ(α) based on batching.
Proposition 1 Fix b≥ 2,
(i) If b > d and the covariance matrix of

{∫ 1
0

B(y)
f (q(y)) ω̃αi(dy), i = 1, ...,d

}
in (6) is invertible almost surely

(a.s.), then

b
[
ζ b,m(α)−ϑ(α)

]
S−1

ζ
(n)
[
ζ b,m(α)−ϑ(α)

]T⇒ d(b−1)
(b−d)

Fd,b−d as m→ ∞,

where Fv1,v2 is denotes a r.v. from Snedecor’s F distribution with v1 and v2 degrees of freedom.
(ii) If b > kd and the covariance matrix of

(
G1, ...,Gd

)
in (7) is invertible a.s., then

b
[
δ b,m(α)−∇ϑ(α)

]
S−1

δ
(n)
[
δ b,m(α)−∇ϑ(α)

]T⇒ kd(b−1)
(b− kd)

F(kd,b−kd) as m→ ∞.

Proof. For j = 1, . . . ,b, let Q j
.
= m1/2

[
ζ j,m−ϑ

]
so that the {Q j} are i.i.d. For each j, (6) ensures

that Q j⇒Yj ∼ Nd(0,Σ) as m→ ∞. Let Qb = b−1
∑

b
j=1 Q j and SQ = (b−1)−1

∑
b
j=1
(
Q j−Qb

)T(Q j−Qb
)
,

respectively, denote the sample mean and sample covariance matrix of the {Q j}. Similarly, we define
Y b = b−1

∑
b
j=1Yj, and SY = (b−1)−1

∑
b
j=1
(
Yj−Y b

)T(Yj−Y b
)
. We note that the mapping Q 7→ bQbS−1

Q QT
b

is continuous at each point Q ∈ Rb such that det(SQ) > 0. Since Σ is invertible a.s., i.e., det(Σ) > 0,
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det(SQ) > 0 with probability 1 (Dykstra 1970). Because Q⇒ Y as m→ ∞, the continuous-mapping
theorem (Whitt 2002, Theorem 3.4.3) implies

b
[
ζ b,m(α)−ϑ(α)

]
S−1

ζ
(n)
[
ζ b,m(α)−ϑ(α)

]T⇒ bY bS−1
Y Y T

b as m→ ∞.

Finally by Corollary 5.2.1 in Anderson (2003), we have

bY bS−1
Y Y T

b ∼
d(b−1)
(b−d)

Fd,b−d .

Similarly, we can prove that

b
[
δ b,m(α)−∇ϑ(α)

]
S−1

δ
(n)
[
δ b,m(α)−∇ϑ(α)

]T⇒ kd(b−1)
(b− kd)

Fkd,b−kd as m→ ∞.

Therefore, as m→ ∞, an asymptotically valid 100(1−β )% CR for ζn and δn based on the batching
method is given by

R1(n,β ) =
{

ϑ(α) ∈ Rd : b
[
ζ b,m(α)−ϑ(α)

]
S−1

ζ
(n)
[
ζ b,m(α)−ϑ(α)

]T ≤ d(b−1)
(b−d)

Fd,b−d,β

}
, (11)

and

R2(n,β ) =
{

∇ϑ(α) ∈ Rkd : b
[
δ b,m(α)−∇ϑ(α)

]
S−1

δ
(n)
[
δ b,m(α)−∇ϑ(α)

]T ≤ kd(b−1)
(b− kd)

Fkd,b−kd,β

}
,

(12)
where Fv1,v2,γ is the γ-quantile of Fv1,v2 distribution. For the sectioning method, the samples are also split
into b batches with b > d for DRM and b > kd for GDRM, respectively, but the estimators ζn(α) and δn(α)
of ϑ(α) and ∇ϑ(α), respectively are obtained from the full sample. The sample covariance matrices are
the same as those used in the batching method; see equations (9) and (10).
Proposition 2 Fix b≥ 2.
(i) If b > d and the covariance matrix of

{∫ 1
0

B(y)
f (q(y)) ω̃αi(dy), i = 1, ...,d

}
in (6) is invertible a.s., then

b
(
ζn(α)−ϑ(α)

)
S−1

ζ
(n)
(
ζn(α)−ϑ(α)

)T⇒ d(b−1)
(b−d)

Fd,b−d as m→ ∞.

(ii) If b > kd and the covariance matrix of
(
G1, ...,Gd

)
in (7) is invertible a.s., then

b
[
δn(α)−∇ϑ(α)

]
S−1

δ
(n)
[
δn(α)−∇ϑ(α)

]T⇒ kd(b−1)
(b− kd)

F(kd,b−kd) as m→ ∞.

The proof of Proposition 2 will be presented in a forthcoming full paper. Briefly, in order to prove
part (i), we plan to show that QBM−QSBM ⇒ 0, as m→ ∞, where

QBM
.
= b
[
ζ b,m(α)−ϑ(α)

]
S−1

ζ
(n)
[
ζ b,m(α)−ϑ(α)

]T and QSBM = b
[
ζn(α)−ϑ(α)

]
S−1

ζ
(n)
[
ζn(α)−ϑ(α)

]T
,

and then proceed based on Proposition 1. The concepts apply to the proof of part (ii). The remainder of the
proof of Proposition 2 will exploit the delta method (Theorem 3.1 in Van der Vaart (2000)) and Proposition
2 in Lei et al. (2022).
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Therefore, as m→ ∞, an asymptotically valid 100(1−β )% CR for ζn and δn based on the sectioning
method is given by

R3(n,β ) =
{

ϑ(α) ∈ Rd : b
[
ζn(α)−ϑ(α)

]
S−1

ζ
(n)
[
ζn(α)−ϑ(α)

]T ≤ d(b−1)
(b−d)

Fd,b−d,β

}
, (13)

and

R4(n,β ) =
{

∇ϑ(α) ∈ Rkd : b
[
δn(α)−∇ϑ(α)

]
S−1

δ
(n)
[
δn(α)−∇ϑ(α)

]T ≤ kd(b−1)
(b− kd)

Fkd,b−kd,β

}
. (14)

Propositions 1 and 2 justify the asymptotic validity of CRs for DRMs and GDRMs with respect to different
parameters i.e., θ`, `= 1, ...,k at different risk levels α1, ...αd via batching and sectioning based methods,
respectively. If one is concerned about the gradients of distortion risk measures with respect to a specific
θ`, 1≤ `≤ k at different risk levels α1, ...,αd , then one can set k = 1 in R2(n,β ) or R4(n,β ) to obtain the
CRs of GDRMs, whilst if one wishes to estimate the gradients of distortion risk measures with respect to
different θ`, `= 1, ...,k at a fixed risk level αh, 1≤ h≤ d, then one can set d = 1 in R2(n,β ) or R4(n,β )
to obtain the CRs for the GDRMs.

3 NUMERICAL RESULTS

In this section, we use three examples to test the performance of the batching method (BM) and sectioning
method (SM) with regard to the CR construction for DRMs and GDRMs at different risk levels (Example
1 and Example 2) and with respect to different parameters (Examples 3). We estimate the coverage rate
of 100(1−β )% CRs by the proportion of the constructed CRs that contain the true vector of DRMs or
GDRMs from 104 independent trials. In each example we divide the 104 trials into 100 replications with
100 trials in each replication and report the point estimates and standard errors of the coverage rates.
Example 1 Consider the case where Xi ∼ N(0,σ2

i ), i = 1, ...,9 are independent, and Y = ∑
9
i=1 θiXi. We

are interested in estimating CVaR at different risk level α , and constructing CRs for CVaRs via BM
and SM. We know that Y ∼ N(0,∑9

i=1 θ 2
i σ2

i ), so the true value of the CVaR at risk level α is CVaRα =
σ2

Y ·φ(q(α);0,σY )/(1− p)where σY is the standard deviation ofY , φ(x;a,b) is the p.d.f of normal distribution
with mean a and variance b, and q(α) is the quantile of Y at level α; i.e., q(α) = σY zα , where zα is the
quantile of standard normal distribution at level α . The results are obtained at θθθ = [1,2,4,1,2,1,2,2,4]
and σ = (σ1, ...,σ9) = [1,2,4,8,8,9,10,11,12].

The probabilities αi are spaced uniformly: αi = i/(d +1), i = 1, . . . ,d. Asmussen and Glynn (2007)
suggest choosing b ≤ 30 for both BM and SM in CI construction, and we have to choose b such that
b > d for CR construction. The results in Table 1 show cases where d = 4 and d = 9. For large n, the
estimated coverages of all the CRs are close to the target coverage rate for both BM and SM, demonstrating
their asymptotic validity. Clearly, for fixed relatively small sample sizes, the gap between the estimated
coverage rates and nominal rates for BM- and SM-based CRs widens as d increases. The experimental
results displayed in Table 1 also indicate significant advantages for the SM-based method with regard to
CR construction for CVaR compared to BM, especially when the sample size is small and the dimension
of the probability vector is relatively large.
Example 2 This example has the same setting as Example 1, but we are interested in the experimental
evaluation of the CRs for the vector of GLR estimators of the gradients of quantiles with respect to θ1
obtained by the two methods (BM and SM). Therefore, this example corresponds to the case where k = 1
in CR construction of GDRMs. The derivatives in the estimators (4) and (5) are given by ∂g(x)

∂x1
= θ1,

∂ 2g(x)
∂x2

1
= 0, ∂ lnh(X ;θ)

∂x1
=− x1

σ2
1

, ∂ lnh(X ;θ)
∂θ1

= 0, and ∂ 2g(X ;θ)
∂θ1∂x1

= 1. The probabilities αi are spaced uniformly as

in Example 1 and the true values of the gradients of quantiles at level αi, i = 1, ...,d are ∂σY
∂θ
· zαi =

θ1σ1
σY
· zαi .
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Table 1: Coverage rates for confidence regions (means ± standard errors) based on 100 independent runs
with 100 independent experiments in each run for the BM and SM based on Example 1.

b = 16 b = 32 b = 64
n BM SM BM SM BM SM

d = 4, 1−β = 0.9

212 0.829
± 0.036

0.891
±0.028

0.842
± 0.033

0.902
± 0.028

0.524
± 0.051

0.888
± 0.031

214 0.899
± 0.029

0.904
± 0.027

0.854
± 0.035

0.898
± 0.028

0.527
± 0.049

0.869
± 0.034

216 0.896
± 0.029

0.900
± 0.028

0.900
± 0.026

0.903
± 0.026

0.878
± 0.029

0.902
± 0.026

218 0.897
± 0.034

0.898
± 0.034

0.897
± 0.032

0.898
± 0.031

0.878
± 0.031

0.897
± 0.029

d = 9, 1−β = 0.9

212 0.204
± 0.038

0.859
± 0.035

0.581
± 0.050

0.92
± 0.027

0
± 0

0.656
± 0.046

214 0.665
± 0.042

0.886
± 0.031

0.590
± 0.047

0.891
± 0.030

0
± 0

0.745
± 0.044

216 0.855
± 0.036

0.894
± 0.032

0.884
± 0.034

0.897
± 0.030

0.006
± 0.033

0.817
± 0.037

218 0.889
± 0.035

0.901
± 0.031

0.880
± 0.032

0.897
± 0.029

0.514
± 0.049

0.871
± 0.031

The experimental results are displayed in Table 2. For large n, the estimated coverages of all CRs are
close to the true value, demonstrating their asymptotic validity. However, the experimental results displayed
in Table 2 do not show significant advantages for the SM method compared to BM as in Example 1.

Table 2: Coverage rates for confidence regions (means ± standard errors) based on 100 independent runs
with 100 independent experiments in each run for the BM and SM based on Example 2.

b = 16 b = 32 b = 64
n BM SM BM SM BM SM

d = 4, 1−β = 0.9

212 0.959
± 0.019

0.480
± 0.050

0.955
± 0.021

0.474
± 0.054

0.957
± 0.017

0.478
± 0.052

214 0.958
± 0.018

0.603
± 0.046

0.959
± 0.018

0.601
± 0.051

0.955
± 0.021

0.598
± 0.045

216 0.958
± 0.020

0.839
± 0.042

0.955
± 0.021

0.830
± 0.037

0.952
± 0.020

0.833
± 0.037

218 0.956
± 0.019

0.978
± 0.014

0.959
± 0.017

0.983
± 0.012

0.952
± 0.020

0.984
± 0.012

d = 9, 1−β = 0.9

212 0.960
± 0.019

0.307
± 0.046

0.968
± 0.018

0.317
± 0.048

0.962
± 0.021

0.332
± 0.047

214 0.964
± 0.018

0.438
± 0.047

0.962
± 0.019

0.452
± 0.052

0.963
± 0.020

0.467
± 0.049

216 0.964
± 0.019

0.691
± 0.044

0.964
± 0.016

0.716
± 0.044

0.962
± 0.018

0.724
± 0.045

218 0.955
± 0.021

0.901
± 0.031

0.969
± 0.014

0.921
± 0.026

0.964
± 0.018

0.925
± 0.030
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Example 3 This example has the same setting as Example 1, but we are interested in the experimental
evaluation of the CRs for the vector of GLR estimators of the gradients of quantiles with respect to
θ`, ` = 1, ...,9 at a fixed risk level obtained by the two methods (BM and SM). Therefore, this example
corresponds to the case where k = 9 and d = 1 in CR construction of GDRMs. The derivatives in the
estimators (4) and (5) are given by ∂g(x)

∂x1
= θ1, ∂ 2g(x)

∂x2
1

= 0, ∂ lnh(X ;θ)
∂x1

=− x1
σ2

1
, ∂ lnh(X ;θ)

∂θ`
= 0 for `= 1, . . . ,9,

∂ 2g(X ;θ)
∂θ1∂x1

= 1 and ∂ 2g(X ;θ)
∂θ`∂x1

= 0 for `= 2, ...,9. The true values of the gradients of quantiles with respect to

θi, i = 1, ...,k are ∂σY
∂θi
· zα = θiσi

σY
· zα .

The experimental results are listed in Table 3. For large n, the estimated coverages of all CRs are
close to the true value, demonstrating their asymptotic validity. When n is large enough, (e.g., n = 218),
SM performs better when b is smaller. However, if k is large, b has to be significantly larger to achieve a
high accuracy for the target coverage rates of CRs.

Table 3: Coverage rates for confidence regions (means ± standard errors) based on 100 independent runs
with 100 independent experiments in each run for the BM and SM based on Example 3.

b = 16 b = 32 b = 64
n BM SM BM SM BM SM

α = 0.85, 1−β = 0.9

212 0.869
± 0.033

0.931
± 0.026

0.842
± 0.037

0.911
± 0.025

0.831
± 0.032

0.921
± 0.025

214 0.867
± 0.033

0.919
± 0.027

0.840
± 0.035

0.914
± 0.032

0.831
± 0.037

0.843
± 0.036

216 0.867
± 0.032

0.913
± 0.031

0.843
± 0.041

0.894
± 0.030

0.836
± 0.038

0.823
± 0.034

218 0.869
± 0.038

0.904
± 0.028

0.847
± 0.039

0.899
± 0.032

0.836
± 0.041

0.857
± 0.036

α = 0.95, 1−β = 0.9

212 0.923
± 0.029

0.923
± 0.028

0.912
± 0.029

0.914
± 0.029

0.883
± 0.029

0.884
± 0.032

214 0.925
± 0.026

0.922
± 0.028

0.921
± 0.024

0.920
± 0.027

0.919
± 0.026

0.921
± 0.029

216 0.920
± 0.027

0.922
± 0.025

0.914
± 0.028

0.911
± 0.028

0.853
± 0.034

0.836
± 0.037

218 0.905
± 0.026

0.905
± 0.029

0.888
± 0.030

0.887
± 0.032

0.829
± 0.033

0.831
± 0.034

4 CONCLUSION

In this article, we have proposed methods based on batching and sectioning for constructing CRs of distortion
risk measures and gradients of risk measures at different risk levels, as well as for gradients of risk measures
with respect to different parameters based on independent samples from finite-horizon simulations. The
validity of the CRs based on batching method has been established under a set of sufficient conditions.
Numerical experiments buttress the effectiveness of the proposed methods. Future work will focus on more
complex settings and extensions to stationary output processes.
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