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ABSTRACT

Clinical trial enrollment is expensive, important, and subject to many uncertainties. Simulation captures
these uncertainties, so SAS®) Institute created the Clinical Trial Enrollment Simulator (CTrES) as a tool
specifically for enrollment planning. However, simulation provides no mathematical expression from which
to extract sensitivity measures that are critical for problem diagnosis and management. This paper describes
sensitivity analysis technology created for CTrES requiring only the output data obtained from simulation
of the base scenario, and demonstrates it on a realistic enrollment planning problem for the United States.

1 INTRODUCTION

The design of any clinical trial includes the development of a plan to enroll a target number of patients while
remaining within an available budget. Clinical trial enrollment planning can be a daunting task for clinical
research organizations (CROs) and pharmaceutical companies considering the level of uncertainty under
which the planning is done. Given the tight deadlines for creating the enrollment plan and the difficulty
in capturing the sources of uncertainty, these plans often ignore the variability in the process and create
inaccurate predictions of total cost and total time for enrollment. SAS®) Institute has been partnering
with the healthcare industry for 40 years and has developed an analytical tool known as the SAS Clinical
Trial Enrollment Simulator (CTrES) for CROs and pharmaceutical companies. This tool equips its users
with the power to develop high-reliability plans for enrolling patients in clinical trials. SAS is a founding
member organization of the CEO Roundtable on Cancer, which is committed to the health and well-being
of employees with the belief that cancer can be prevented, and lives can be prolonged (Goodnight 2007).
There are three sequential events that affect the enrollment timeline of a clinical trial: (i) starting clinical
research efforts in a country; (ii) activating the clinical research sites in that country; and (iii) enrolling
and tracking patients who arrive at each site. The timing of these events and their successful execution
determine the performance of the clinical trial enrollment plan. The typical key performance indicators
(KPIs) are the time it takes to enroll a target number of patients in the clinical trial, and the total cost of
starting up the countries, activating the sites, enrolling patients and tracking the enrolled patients. Of these,
the time to enroll patients is the most important. Obtaining accurate predictions of these KPIs is often
challenging because the events of country start-up, site activation, and patient enrollment and tracking are
connected through a sequence of subprocesses, each of which is subject to a high level of uncertainty.
The following are some representative subprocesses corresponding to the events (i)—(iii) enumerated
above that can be the reasons why a clinical trial enrollment plan achieves low patient enrollment or high
cost. After preparing the core regulatory package and completing the regulatory timeline under event (i),
the pharmaceutical company could be unsuccessful in obtaining regulatory approval in a country while still
incurring the country activation cost. After collecting information about a site, waiting for the availability
of personnel, and spending the time needed to start up the site in event (ii), site activation may still fail.
Even if a site is successfully activated, it may fail to enroll patients. Moreover, after the arrival of patients,
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Figure 1: Illustrating time versus patient enrollment in deterministic (LHS) and stochastic (RHS) solutions.

only the successful completion of screening will result in the actual enrollment of patients in the clinical
trial under event (iii).

Thus, there is a high degree of uncertainty at every step of clinical trial enrollment planning, from the
probability that a single site will succeed to enroll patients to the random arrival of patients to a potential
site. In their 2013 impact report, the Tufts Center for the Study of Drug Development noted that as many
as 37% of sites missed their enrollment targets and 11% failed to enroll a single patient. This lack of
certainty turns enrollment planning into a difficult task. In fact, 80% of clinical trials fail to meet enrollment
timelines, and one third of Phase III clinical trial terminations stem from poor patient enrollment planning
(Cognizant 2015). Failure to reach the target patient enrollment in time could lead to delays in getting
medicine to the market and result in significant cost overruns.

The industry practice in clinical trial enrollment design is to make many assumptions about enrollment
rates and various components of cost, motivated by experience and learning from feasibility studies (Box
2018). In a feasibility study, a team contacts potential sites and asks questions about the types of patients
that they typically treat in the therapeutic area of interest. The team also gathers answers to the following
questions: (a) How long would it take to get your site ready to enroll patients? (b) How many patients
would you expect to enroll each month? (c) How much would it cost to get ready for enrollment and how
much would it cost to treat the patients according to the protocol? The answers to these questions are used
to obtain a rough estimate of how long it would take to enroll a target number of patients.

An example of this rough estimate is provided on the left-hand side (LHS) of Figure 1. This figure
plots the cumulative number of patients enrolled (y-axis) against time (x-axis) and presents the associated
total cost to enroll, say, 800 patients. As implied by the construction of a single path on the LHS, the
rough estimate based on the data from a feasibility study lacks any formal quantification of risk. This is
an example of a deterministic but incomplete solution to the problem of KPI prediction in clinical trial
enrollment planning. However, accounting for the uncertainty in the inputs provides a range of between
10.5 to 18 months for the time it takes to enroll 800 patients on the right-hand side (RHS) of Figure 1, which
is generated by a CTrES simulation. Similar statements can be made for the total cost. The two prediction
intervals for the total cost and the time it takes to enroll 800 patients clearly demonstrate the significant
impact of input risk on KPI variability. The capability to quantify this risk for CROs and pharmaceutical
companies has two noteworthy benefits: First, it informs them about the level of risk in their cost and
enrollment predictions; second, it guides them towards the identification of enrollment plans to reduce
uncertainty.

Stochastic simulation is a natural choice to capture the risk arising in different stages of a clinical trial
enrollment plan. The use of simulation to mimic the clinical trial enrollment process can help overcome the
three primary challenges of clinical trial enrollment planning (Handelsman 2012): 1) The patient enrollment
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process consists of a long sequence of dynamic random events; 2) the hierarchical relationship among
country startups, site activations, and patient screening and enrollment complicates the process of design
and analysis of patient enrollment; and 3) enrollment planning must be driven by country, site, and patient
data sets, and the solution must be robust to data uncertainty and scalable to any number of countries and
sites under consideration.

In addition to the classical problem of KPI prediction, examples of the what-if questions that planners
want to ask are the following: If mean site activation delay increased by 1 week, how would the mean
KPI change? If mean screening failure probability increased by 1%, how would the mean KPI change? If
the standard deviation of site activation delay increased by one week, how would the mean KPI change?
Obtaining answers to these what-if questions helps CROs and pharmaceutical companies diagnose the
current setup sensitivities and decide where to put management effort towards the design of better clinical
trial enrollment plans. Answering these questions is the topic of this paper.

Each of these questions can be answered by creating a new scenario in the SAS CTrES User Interface.
Specifically, the first question can be addressed by creating a second scenario where the mean site activation
delay is increased by one week, and the simulation output data obtained from these two scenarios are
compared. Unfortunately, a typical enrollment planning exercise may involve multiple countries and
hundreds of sites. A study of the SAS CTrES simulation engine for a single-country, 10-site setting
reveals 51 different stochastic inputs to support enrollment planning (Biller et al. 2019). Thus, at least
52 computationally intensive simulations (initial simulation + varying each input) would be needed just to
evaluate the sensitivity to changes in the means for one possible scenario of countries and sites to activate.
Thus, CTrES currently lacks the capability to quickly answer what-if questions in a way that scales with
the number of countries and sites involved in a clinical trial design. Our work reported here enables CTrES
to overcome this limitation and equips CTrES with the power to answer what-if questions for any number
of stochastic inputs using the output data obtained from simulation of the base scenario only.

Answering the types of what-if questions posed above for the stochastic inputs of the simulation is a
type of local sensitivity analysis, which focuses on the influence of the inputs on the output near a nominal
setting. While SAS already has global sensitivity analysis capabilities, it does not support the type of
local sensitivity analysis CTrES requires. The focus of this paper is creation of local sensitivity analysis
technology for CTrES. Although the methods presented here were created for CTrES, they are broadly
applicable to many simulation contexts. In this paper we use the term “local” to refer to small changes in
inputs, “global” to refer to varying an input across its entire range, and “nominal” to refer to the baseline
simulation and its parameters.

2 LITERATURE

Clinical trial enrollment planning has been studied from different perspectives for different purposes.
However, most published research makes significant simplifying assumptions to formulate the problem as
a mathematical model that is tractable.

From the perspective of production planning and supply chain design, the key is to position the right
inventory of drugs at the right time at the right trial site considering both the cost of production, shipping,
inventory carrying, enrollment, and duration of the clinical trial; e.g., see Zhao et al. (2018), Zhao et al.
(2019). The problem is formulated as a multi-stage stochastic program and the only uncertainty considered
is the number of patients, which is modeled as a countable number of scenarios where each scenario
represents a possible realization based on previous trial data. Furthermore, the enrollment cost is either
not considered or assumed to be independent of patient arrivals, which seems unrealistic in the scenarios
modeled by CTrES.

Kouvelis et al. (2017) study the problem of maximizing the expected net present value of a drug
considering the costs of clinical trial, the drug’s likelihood of approval, and its subsequent expected revenue
if approved given the maximum duration of the study. The problem is modeled as a discrete-time, discounted
dynamic program determining when and how many test sites should be opened and the rate at which patients
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Figure 2: High-level view of clinical trial enrollment process flow.

should be recruited to achieve the optimum. To simplify the analysis, the paper assumes that the sites will
be opened in a given order, which is restrictive unless all sites have identical capacity and zero startup cost.
Moreover, under most cases, the recruitment rate is not controllable but rather a site-specific characteristic
with uncertainty.

There are also many studies focusing on modeling of patient recruitment, e.g., Monte Carlo simulation
models in Abbas et al. (2007) and the Pareto-Poisson statistical model in Mijoule et al. (2012). The most
widely used is the Gamma-Poisson model in the empirical Bayesian framework proposed by Anisimov.
This purely statistical model not only enables the prediction of recruitment with confidence bounds, but
also evaluates various site performance measures and approximates the minimal number of sites needed
with confidence (Anisimov 2008; Anisimov 2009; Anisimov 2016). The model accounts for the natural
variation in recruitment over time, in recruitment rates among different sites, and in site startup delays
(Anisimov 2008). However, the real-life clinical trial enrollment process is far more complex because
of the uncertainty associated with site startup and enrollment success, and the patient screening success.
Mijoule et al. (2012) further study to what extent estimation error of the arrival rate generates an error in
the prediction of the trial duration, which is known as “input uncertainty” in the simulation literature.

3 THE CLINICAL TRIAL ENROLLMENT MODEL

Figure 2 presents a high-level illustration of the CTrES process flow, which is implemented in SAS
Simulation Studio, a Java-based discrete-event simulation tool (Hughes et al. 2018). Thus, SAS Simulation
Studio serves as the engine for SAS CTrES to address clinical trial enrollment planning questions for SAS
customers; it is made available through a web interface as software as a service.

The simulation model is composed of three modules consistent with the three events introduced in
Section 1: (i) country activation, (ii) site activation, and (iii) patient enrollment and tracking. Each module
introduces a specific entity flowing through the corresponding portion of the logic illustrated in Figure 2:
(i) Country entities in the Country Activation module, (ii) Site entities in the Site Activation module, and
(iii) Patient entities in the Patient Enrollment and Tracking module. Each entity has attributes that are
subject to uncertainty characterized by probability distributions based on expert opinion and historical data.
Within each replication, the realized value of each uncertain attribute of each entity is updated after the
corresponding subprocess and recorded right before leaving the corresponding module.
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Table 1: Distributions relevant for local sensitivity analysis.

Level Uncertainty Input Distribution Input Parameters
Country Startup Delay Triangular Distribution Min, Mode, Max
Startup Success Bernoulli Distribution Probability
Screening Failure Bernoulli Distribution Probability
Site Startup Delay Triangular Distribution Min, Mode, Max
Startup Success Bernoulli Distribution Probability
Enrollment Success Bernoulli Distribution Probability
Identification Delay | Triangular Distribution Min, Mode, Max
Patient Arrival Rate | Nonstationary Poisson | High Rate, Low Rate
Duration of High Rate | Triangular Distribution Min, Mode, Max

Box (2018) outlines the following key points for the CTrES process flow: (a) A start time is established
as Day O for the clinical trial study. (b) Countries are selected and may receive approval after a certain
duration of delay. Countries may have different values for the startup delay during country activation. Once
a country successfully starts up, site initiation begins. (c) Sites are initiated in the countries that start up
successfully and can start enrolling patients. (d) Patients start arriving at sites that are activated successfully
and able to enroll for screening. (¢) Some of the patients fail the screening process while those passing the
screening test are enrolled in the study. (f) Patients progress through the study. Some of the patients quit
the study early while others reach the last scheduled visit. (g) As soon as total patient enrollment reaches
the target enrollment, the patient arrival process is terminated. (h) The study remains operational until all
the patients that are still flowing through the system either finish the study or drop out.

The two primary KPIs of interest for a CTrES user are the time it takes to enroll a given target number
of patients, say 800, denoted as “TimeToEnrollTarget,” and the associated total cost of the clinical trial,
denoted as “TotalCost,” which is the sum of country and site activation costs and the costs of screening
and enrolling 800 patients. There are two other timeline KPIs: “FirstTimeEnrolls,” which is the time
the first patient enrolls, and “EnrollmentDuration,” which is the time between “FirstTimeEnrolls” and
“TimeToEnrollTarget.” Figure 2 shows that the enrollment of a patient is recorded after passing the
screening process and before the execution of the follow-up response model. Thus, the two primary KPIs
of interest and the other two timeline KPIs are updated and recorded in the module for patient enrollment
and tracking.

For these KPIs, only the stochastic inputs associated with countries and sites are relevant for the
development of the local sensitivity analyzer for SAS CTrES. Table 1 lists those uncertain inputs and their
corresponding probability distributions, which are the sources of uncertainty in the process flow illustrated
in Figure 2. The use of the three-parameter triangular distribution to capture the uncertainty associated
with the length of subprocesses is common practice so that expert users can provide the corresponding
input parameters, i.e., minimum, most likely, and maximum values. The Bernoulli distributions are used to
capture the uncertainty associated with a subprocess happening or not. Notice that although the enrollment
of each patient is subject to the probability of passing screening, the screening failure distribution is specified
at the country level.

The input that is quite different and worth more explanation is the patient arrival process, specified
at the site level. The arrival process of patients is characterized by a piecewise-constant non-stationary
Poisson process (NSPP) with two pieces because sites tend to have patients arriving at a higher rate at
the beginning of the clinical trial. This is followed by a lower arrival rate after a certain duration of high
enrollment. Moreover, there is uncertainty about this length of time that the arrival rate is high; a triangular
distribution is used to capture this uncertainty.
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4 SENSITIVITY MEASURES AND NEW CHALLENGES

The what-if questions described in the Introduction can be summarized as the quantification of the expected
change in the mean KPI per unit change in the mean or standard deviation of each uncertain subprocess, as
characterized by probability distributions specified in Table 1. Since the KPI is the simulation output and
we are interested in its mean, where no confusion will arise, we will redefine KPI as the expectation of the
simulation output from now on, i.e., KPI = E(output). Therefore, the goal is to measure the sensitivity of
each KPI to the mean or standard deviation of each input distribution, near a nominal setting. This goal
fits in the framework of output-property-with-respect-to-input-property sensitivity measures proposed in
Jiang et al. (2019) and Jiang et al. (2021). The sensitivity measures of interest in the context of CTrES are
two special cases of the general family: mean sensitivity to mean (MSM) and mean sensitivity to standard
deviation (MSSD). The MSSD measure is built upon the mean sensitivity to variance (MSV) measure
described in Jiang et al. (2021) through replacing the variance with the standard deviation.

For ease of explanation, we focus on a single output and a single input distribution. Let Y be the
simulation output, E(Y) be one of the KPIs, and X ~ F(-|@) be one of the uncertain inputs that are listed
in Table 1 with distribution parameter 8. Without loss of generality, let @ € R? where p > 1. Further, let
uw=pu(0) and 6 = 5(0) be the mean and standard deviation of input X, both of which are differentiable
with respect to @ around the nominal setting 8 = 6°.

Recapping the definition introduced in Jiang et al. (2021), the MSM measure is defined as the directional
derivative of E(Y) with respect to u along a normed direction d from the nominal parameter setting 0°:

37

v

MSM; = JEWY) _ 4 VoY)
I d’"Vgout

A practically meaningful direction is the steepest-ascent direction of the mean, d = Vot /||Vgopt||, which
is a defensive (aggressive) choice assuming the goal is to identify the maximal sensitivity. Similarly, MSSD
is defined as

JE(Y) dTVgE(Y)

Jo; d’Vgo
For sensitivity with respect to the standard deviation, meaningful directions are the steepest ascent direction
along which & increases the fastest: d = VoG /|| Vo0 ||; and the minimum-mean-change direction, which
minimizes the rate of change in the mean of the input while increasing its standard deviation. The minimum-
mean-change direction can be determined through solving an optimization problem similar to the one in
Section 2.1 of Jiang et al. (2021) after replacing 6> with o.

In the context of CTrES, the gradient of the mean or standard deviation of the inputs with respect to the
input parameter, Vgot or Vgo0, are known and the key is estimating VgoE(Y), the stochastic gradient. For
stochastic gradient estimation in CTrES, we used the regression-based method of Wieland and Schmeiser
(2006) as extended by Lin et al. (2015).

However, the framework in Jiang et al. (2019) and Jiang et al. (2021) is not sufficient for conducting
local sensitivity analysis for all of the CTrES inputs. In Table 1, only sensitivity to Screening Failure
fits perfectly within the previous work. The technical contribution of this paper is to derive sensitivity
measures for the others. For instance, the sensitivity to inputs following a triangular distribution needs a
problem-specific direction. The sensitivities to the remaining inputs require new methods. We describe
these new challenges and our solutions to them in four subsections below, and then demonstrate their use
in an illustrative case study.

MSSD; =

4.1 Direction d for Triangular Distribution

The challenge presented by the triangular distribution is that its support depends on the distribution parameters
and that makes the gradient of the mean or standard deviation with respect to the input parameters hard to
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interpret. In this case, the meaningful directions described above are not appropriate. This is an example
of a problem-specific direction that we need to determine in the context of CTrES.

Denoting the parameters of a triangular distribution as (a,b,c), where a is the minimum, b is the mode,
and c is the maximum, the mean and standard deviation of the distribution are given by

_a+b+c _\/a2+b2+cz—ab—ac—bc
3 °= 8 ‘

For sensitivity with respect to the mean (i.e., MSM), the unit-norm steepest ascent direction of the mean,
where the probability density function shifts to the right by v/3/3 units (i.e., d = (v/3/3,v/3/3,v/3/3)7),
still makes sense for CTrES. Along this direction, the mean increases at the fastest rate while the standard
deviation is kept constant. Thus, the effect of input-distribution location is isolated with minimal change
to its spread. For this reason that we propose parameterizing the triangular distribution by the mean u
directly when estimating MSM. It can be shown that this reparameterization leads to a stochastic gradient
estimator that is the same as the original parameterization using the method of Wieland and Schmeiser
(2006), at least approximately.

For sensitivity with respect to the standard deviation (i.e., MSSD), we chose a meaningful direction to
be the direction where the end points of the probability density function move in opposite directions by the
same amount, i.e, d = (—v/2/2,0,v/2/2)7. The triangular distribution has no unique min-mean-change
direction because of having more than two parameters. However, this particular min-mean-change direction
is practically meaningful for CTrES because the expert users who provide the parameters are often confident
about the mode but not the support of the distribution. Thus, the sensitivity measure that tells users the
impact of adjusting the minimum and the maximum of a triangular distribution without affecting the mean
or mode is the most useful. It is for this reason that we propose parameterizing the triangular distribution
by the minimum and maximum parameters when estimating MSSD.

4.2 Sensitivity with Respect to Piecewise-constant NSPP

The piecewise-constant NSPP in CTrES consists of two distinct arrival rates, lhigh and Ajgw, Over two
intervals [O,Lhigh) and [Lhigha T), where Lhigh is the duration of the time when the arrival rate is high. The
duration L has a triangular distribution, and 7' is the time necessary to enroll the required number of
patients. Because this piecewise-constant NSPP has two intervals with uncertain length, it is particularly
challenging to directly measure the sensitivity with respect to its mean or standard deviation.

As suggested in Morgan et al. (2016), each interval in a piecewise-constant NSPP can be regarded as
a single input distribution to the simulation with the observation interval matching the simulation interval.
Therefore, the sensitivity with respect to this NSPP can be decomposed into sensitivities with respect to two
independent Poisson processes. We describe the Poisson process as interarrival times following exponential
distribution so that the corresponding stochastic gradient can be estimated using the method of Wieland
and Schmeiser (2006). Since pt = o for exponential distribution, we only measure sensitivity to the mean
of the interarrival time. With this formulation, the sensitivity falls within the framework of Jiang et al.
(2021).

The stochastic input Ly;g is problematic because it affects the number of arrivals under the high and
low rates. Therefore, we reformulated the sensitivity question to be “How sensitive are the KPIs to the
actual duration of the time when the arrival rate is high?” To obtain this, we simply do a regression of
the simulation output on the observed value of Ly;gn of all sites and the sensitivities are the corresponding
coefficients.

4.3 Sensitivity with respect to Bernoulli Inputs

For the inputs following a Bernoulli distribution, only sensitivity with respect to the mean of the input,
ie., u =E(X) = p, makes sense. Thus, MSM requires estimating the stochastic gradient JE(Y)/dp. For
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Screening Failure, the screening test results of at least 800 patients are recorded within each replication, so
the stochastic gradient we need can be estimated by using the method of Wieland and Schmeiser (2006).
For Startup Success and Enrollment Success, on the other hand, only a single outcome (0 or 1) is observed
in each replication. Therefore, the method of Wieland and Schmeiser (2006) applies only through batching
the observed input variates across replications. However, the method of batching sacrifices samples size for
the subsequent linear regression to estimate VgoE(Y). This could be a serious problem for CTrES which
often involves tens or hundreds of stochastic inputs.

We overcome this challenge as follows. Notice that when there is a single Bernoulli random variable,
X ~ Bernoulli(p), the JE(Y)/dp can be derived by conditioning, i.e.,

JE(Y)

EY)=EYX=1)p+EY|X=0)(1—p) = “op =E{Y|X=1)—E(Y|X=0). (1)

Expression (1) can be estimated directly from the output data by

JE(Y) _ Xi,Yi-1{X;=1} XL Y X =0}
dp YLHX=1} XL H{X=0}

ﬁ:

4.4 Interacting Inputs

In the context of CTrES, there are inputs that interact with each other. For example, as shown in Figure 2,
the impact of a site’s startup delay and interarrival time only matter if that site starts up successfully and
is able to enroll patients. Similarly, the site-specific inputs of a country have impact on the KPIs only
when that country starts up successfully. With such interacting inputs, it is tricky to find an appropriate
sensitivity measure.

Specifically, if the result of the country startup is failure, then no variates will be observed from
uncertain inputs at the site level for all sites in the country. Similarly, if the startup or enrollment of a site
fails, no variates will be observed from the inputs Patient Arrival Rate or Duration of High Rate for that
site. One solution is measuring the sensitivities conditional on the successful startup of the country and
all sites, and successful enrollment at all sites. However, this is a situation that rarely happens, so such a
conditional sensitivity does not answer the what-if questions that help with plan management. What CTrES
users want is an unconditional sensitivity measure.

Therefore, we propose a new random variable that considers the interaction among inputs. We
demonstrate it for the case when X ~ F(:|6), B ~ Bernoulli(p), and 6 = E(X). Because X is observable
on each replication, the realized value of the parameter, ) , can be obtained as a function of the observed
X’s. Define a new variable 8 = B which has E(@ )= 6" = pb and B is the input that interacts with X.
We can apply the method of Wieland and Schmeiser (2006) to estimate the stochastic gradient of E(Y)

with respect to 6’ using OLS by regressing ¥; on the observed new random variate 0, j =1,2,...,n, i.e.,

Y =Bo+ B0 +e. )

However, if we use the model in (2) we have VgE(Y) = pf; where f; can be estimated via OLS. Thus,
for unconditional sensitivity we use pfi oLs as the estimator of the gradient of E(Y) with respect to 6.

4.5 Dependence Because Total Enrolled Patients is Fixed

A CTrES simulation stops when a fixed number of patients, say 800, is enrolled. This forces a constraint
on the number of patients recruited at each open site because they have to total to 800. Therefore, there
is functional dependence among the observed arrival processes of open sites. The goal here is to decide
how to parameterize the interarrival time such that the dependence works in our favor for local sensitivity
analysis. For the purpose of explaining our solution, suppose each site has only as single arrival rate,
instead of both high and low.



Jiang, Biller, Box, and Nelson

Table 2: Mean values of selected site-specific stochastic inputs.

Site | Startup Success | Startup Delay | Interarrival Time | High Duration
1 100% 15 weeks 2.03 days 17 weeks
2 95% 6 weeks 3.04 days 9 weeks
3 95% 15 weeks 2.34 days 13 weeks
4 100% 19 weeks 2.03 days 17 weeks
5 99% 25 weeks 1.52 days 22 weeks
6 95% 17 weeks 3.04 days 13 weeks
7 99% 17 weeks 1.52 days 13 weeks
8 99% 13 weeks 2.03 days 17 weeks
9 99% 26 weeks 1.22 days 26 weeks
10 99% 13 weeks 1.52 days 13 weeks

Let 8@ be the observed parameter of the exponential distribution of the interarrival time for site
i. Suppose there are S sites where each is affected by its Startup Success B ~ Bernoulli(p(i)). The
regression model for estimating the gradient of E(Y) with respect to 6 at the nominal setting is given by
Y=PB+ Zf: 1 BiB(i) 00) +¢. Analysis of the model is straightforward if B is independent of BY) and B()
is independent of 0\ for i # J, Vi, j. However, the latter assumption does not hold because the simulation
terminates when 800 patients are enrolled.

Specifically, when 6 is the rate parameter A, the arrival counting process of site i, N) (1), is Poisson(2 ),
and the time it takes to enroll 800 patients can be represented as:

S S
T = inf{t >0: ) BONU(r) = 800} = Y. BONO(T) = 800. (3)
i=1 i=1

Therefore, the observed arrival rate of site i is A0 = BiN O(T)/T and Equation (3) is equivalent to

S

):;-9:1 A0 =800 /T, which shows that A5 are not independent. If A1) is larger than expected, the observed
rates of other sites must be smaller to compensate. Such dependence among predictors of the regression
makes sense from a local sensitivity/\point of view. Thus, we propose parameterizing the interarrival time
by the rate parameter and using p()B; as the change in E(Y) per unit increase in the observed rate at site i.

If, on the other hand, we let 0 be the mean interarrival time /,L(i), then the observed mean interarrival
time at site i is given by ) =T/ (B(i)N(i)(T)) when BY) = 1, and is undefined otherwise. In this case,
we no longer have the sum of BYi()) to be some constant and the relationship among the [i()’s depends
on the observed B()’s. Therefore, the resulting regression coefficients are hard to interpret.

5 AN ILLUSTRATIVE CASE: ONE COUNTRY WITH TEN SITES

In this section, we illustrate the results discovered via local sensitivity analysis on a CTrES simulation
with one country and ten sites. This is a realistic case for a clinical trial in the U.S.; however, specific
parameter values are chosen only for demonstration purposes. The country and all sites are subject to the
uncertainties specified in Table 1 and there are 52 stochastic inputs with 104 parameters in total.

The country startup delay is assumed to last for an average of 14 days without any possibility of failure
and without any identification delay for any of its sites. The country startup cost is assumed to be zero and
there is at least one person that is available to initiate each site as soon as country activation is completed.
The enrollment probability is 95% for each of the sites except Site 5 where the enrollment probability is
90%. Table 2 provides mean values of selected site-specific stochastic inputs to present insights into what
may be expected prior to running CTrES and performing local sensitivity analysis. For each site, the mean
interarrival time is provided in days for the duration of high enrollment that is given in weeks. We also
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Table 3: Cost assumptions.

Site | Startup Cost | Screening Cost | Enrollment Cost
1 $5,000 $2,000 $8,000
2 $5,000 $2,000 $8,000
3 $5,000 $2,000 $8,000
4 $6,000 $2,500 $8,500
5 $10,000 $2,000 $10,000
6 $5,000 $2,500 $7,500
7 $10,000 $3,000 $9,000
8 $3,000 $2,000 $7,000
9 $10,000 $2,500 $7,500
10 $5,000 $1,000 $6,500

present the site-specific cost assumptions in Table 3. It can be inferred from Table 2 that Site 9 is the
fastest enrolling site, followed by Site 5, Site 7, and Site 10. It can also be inferred from Table 3 that Site
8 and Site 10 are the least costly sites while Site 5 and Site 7 have the largest costs. Finally, the mean
screening failure is assumed to be 15% for each of the ten sites.

The two primary KPIs are the mean time it takes to enroll 800 patients (denoted as “TimeToEnrollTarget”)
and the mean of the implied total cost (denoted as “TotalCost”). The simulation is run for 6000 replications
and mean TimeToEnrollTarget and mean TotalCost are estimated as 61 weeks and 8 million dollars. Using
the 6000 replications, we measure the sensitivity of each KPI to the mean and standard deviation of each
stochastic input and screen out the inputs without statistically significant effects on the means of the KPIs.
We find that the changes in the standard deviations of stochastic inputs have negligible impact on the mean
KPIs in this particular illustration. Therefore, we only report the MSM measures. When we interpret the
sensitivity measure, the change in the mean of an input is in its actual units, i.e., in weeks for Startup
Delay and Duration of High Enrollment, in days for Patient Interarrival Time and in percentages for Startup
Success, Enrollment Success, and Screening Failure. For ease of representation, we express the unit of
cost in thousands of dollars (K).

First, we examine sensitivity with respect to the mean patient screening failure probability. We find that
the mean TotalCost would increase by $23K if the mean failure probability increased by 1%. A protocol
design causing an average of 1% increase in the mean of this stochastic input would also take an average
of six days longer to reach the 800-patient enrollment target. This sensitivity applied existing concepts
from Jiang et al. (2019) and Jiang et al. (2021); the remainder require the new developments in this paper.

Consider increasing the mean duration of high enrollment by one week. We identified the mean
TotalCost to increase by $5K and $4K, respectively, when the mean duration of high enrollment increased
by one week at Site 5 and Site 7. We also identified a reduction of 1.19 days and 1.15 days in the mean
TimeToEnrollTarget. When the mean duration of high enrollment increased by one week at Site 10, the
mean TotalCost decreased by $6K while the mean TimeToEnrollTarget decreased by 1.28 days. Notice
that the pattern of effect on mean TotalCost is driven by the sites’ attributes. Site 10 is one of the fastest
enrolling sites as shown in Table 2. Site 10 also incurs the lowest patient screening and enrollment costs
(Table 3). Furthermore, the mean startup delay at Site 10 is significantly shorter than those at Site 5 and
Site 7. Therefore, if Site 10 were enrolling a larger number of patients for a longer duration, then the
contribution of the two most costly Sites 5 and 7 to the overall patient enrollment target could be reduced.
Consequently, the total cost would decrease. For this reason if there would be any investment into increasing
the duration of high enrollment, the local sensitivity analysis recommends consideration of Site 10.

Next, we investigate the sensitivity of mean KPIs to an increase of one day in the mean patient
interarrival time and report our findings in Table 4. Notice that Site 2 is not included in the table: Increasing
the mean interarrival time of patients to Site 2 by one day has no statistically significant impact on mean
TimeToEnrollTarget and mean TotalCost. Similarly, we identify such a change at Sites 1, 3, 6 and 9 to
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Table 4: Impact of one-day increase in mean interarrival time on mean KPIs.

Site 1 3 4 5 6 7 8 9 10
TimeToEnrollTarget (week) | 3.15 | 1.22 | 2.58 | 4.66 | 1.28 | 3.46 | 1.92 | 10.07 | 2.97
TotalCost ($) -29K | -97K -75K | 38K 103K

Table 5: Impact of 1% increase in mean startup success and in mean enrollment success.

Site 5 7 8 10
Startup Success $19K | $2.1K | —$1.0K | —$3.3K
Enrollment Success | $1.8K | $2.4K $1.0K | —$3.6K

have no significant impact on mean TotalCost. However, an increase of one day in mean patient interarrival
time at the fastest enrolling site (Site 9) is expected to increase the mean TimeToEnrolllTarget by 10
weeks. The sensitivity of mean TimeToEnrollTarget to an increase of one day in patient interarrival time
is smaller but still significant at each of the remaining sites. In particular, it would be advisable to avoid
any protocol design that would reduce the patient arrival rate to Site 10 because an increase of one day
in mean interarrival time at this site would increase the mean TotalCost by $103K. This would be due
to the higher enrollment contribution from Sites 5 and 7 to reach the 800-patient target. We also observe
the one-day increase in mean interarrival time at Sites 4, 5 and 7 increases mean TimeToEnrollTarget by
approximately three weeks, five weeks and four weeks, respectively, while decreasing mean TotalCost by
$29K, $97K, and $75K. Therefore, the results of the local sensitivity analysis allow the user to decide
whether any protocol design at these sites, despite reducing the mean TotalCost, would be worthwhile due
to an increase of at least three weeks in mean TimeToEnrollTarget.

Next, we switch our focus to the stochastic inputs Site Startup Success and Site Enrollment Success.
Table 5 shows that each of Sites 5, 7 and 10 continues to have a significant effect on mean TotalCost. For
example, if startup success probability increased by 1% at Site 10, the mean TotalCost would decrease
by $3K. If enrollment success probability increased by 1% at the same site, the mean TotalCost would
decrease by $4K. Therefore, protocol redesign and incentives at Site 10 to increase startup and enrollment
probabilities may be beneficial. This takeaway leads to a broader decision as to whether application of
incentives to accelerate country activation may have any benefit. We find that an increase of one week in
mean country startup time has no significant effect on mean TimeToEnrollTarget but on FirstTimeEnrolls
only; it increases the mean time to first enrollment by almost a week (6.47 days).

6 CONCLUSION

SAS CTrES is a powerful tool for CROs and pharmaceutical companies for clinical trial enrollment planning
because it is capable of capturing all the uncertainties throughout the process and quantifying the risk in
the cost and enrollment prediction beyond traditional deterministic solutions. However, CTrES lacks the
capability to quickly answer the what-if questions that are important for problem diagnosis and management
of a clinical trial. We extend the framework in Jiang et al. (2019) and Jiang et al. (2021) to enable CTrES
to conduct local sensitivity analysis to answer the what-if questions for any number of stochastic inputs
without running addition simulations beyond the basic scenario. Instead of directly opening more sites to
improve only the most important KPI—the time it takes to enroll a given target number of patients—the
sensitivity measures suggest smart resource management and effort allocation strategies that are both time
efficient and cost efficient.
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