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ABSTRACT

The aim of an Ethico-Optimal clinical trial is to randomly allocate the new drug (ND) and the standard
of care (SOC) to patients in the sample, but with a greater fraction being administered ND if doing so is
statistically justified. Such an adaptation is not possible in static trials, in which approximately half the
patients would receive ND and the remaining patients SOC, despite evidence within the trial that ND is
efficacious. We adapt a canonical stochastic multi-armed bandit algorithm named UCB1 to a clinical trials
setting and analyse the resulting type-2 error (β ), as also the minimum sample size required by such a trial
for a certain β level. We also present simulations to establish that the ethical properties of such a trial are
higher, both to verify our analysis and demonstrate an empirical advantage when compared to an existing
method.

1 INTRODUCTION

Consider the stochastic multi-armed bandit (SMAB) problem, with K arms or levers, each producing an
outcome with mean reward {µk}K

k=1, arranged such that µk > µk+1. After pulling each of these K arms
in the first K rounds, the single player is permitted to pull any one of these K arms in each succeeding
round K + 1 ≤ t ≤ N, with each pull yielding a reward Xt ∈ [0,1]. Note here that the random variable
Xt belongs to probabilty distribution function Fat with support [0,1], where at ∈ {1,2, ...,K} is the arm
or action chosen to be pulled at t. Also note that E(Xt) = µat , with Xt being used to update empirical
means {X̄k

t }K
k=1 that the player maintains for each arm ak. If at = ak, then empirical mean X̄k

t is updated

as follows: sk
t := sk

t−1 +1, followed by X̄k
t := sk

t−1X̄k
t−1+Xt

sk
t

, where sk
t is the count of pulls of arm k till (and

including) t. The information {sk
t }K

k=1 is also retained by the player as she goes to round t +1. A common
and efficient algorithm for the SMAB algorithm is UCB1 (Upper Confidence Bound variant 1) (Auer et al.
2002) which infers at+1 as follows:

at+1 = arg max
1≤k≤K

{
X̄k

t +

√
2log(t)

sk
t

}
.

UCB1 is a logarithmic regret SMAB algorithm i.e., it has been established that,

E(sk
N) ≤

8log(N)

∆2 +1+
π2

3
, for k > 1, for all N > 8log(N)

∆2 , (1)

where ∆ = µ1−µ2. Such an assurance indicates that only O(logT ) of T opportunities to pull arms were
lost to the sub-optimal choice ak, k > 1.

In a simple 2−arm binary-response Phase 3 clinical trial, a sample size N of patients with a particular
condition is decided using certain measurements made in the preceding Phase 2 trials. A key input into



Abdulla and Ramprasath

deciding N is the statistical significance required in the Phase 3 trial’s conclusion, most notably the clinical
trial’s Type-1 error α . This error is the probability of recommending ND when said drug’s performance
is not statistically different from current standard of care (SOC) or placebo.

Also key to deciding N is the trial’s Type-2 error β (alternatively, the power of the trial 1−β ) which
is the probability of recommending SOC when ND is better than SOC. In a randomized controlled trial,
which we call a static clincal trial also, roughly N

2 patients are administered ND, while the other half are
administered SOC. This is done in such a way that patients do not know and cannot reliably infer which
of the 2 drugs, a1 or a2, they have received.

It is considered ethical within such a trial to administer more number of patients with the new drug if
there is statistical evidence till that point in the trial of better outcomes. Such ethico-optimal trials have
been investigated in (Biswas and Bhattacharya 2011) and a review of such designs can be found in (Villar
et al. 2015). If we assume K = 2 in the earlier description of UCB1, then being able to observe the outcome
Xt of administering drug at to the t−th patient helps decide at+1. Further, the new drug likely has the
greater mean outcome µ1 > µ2, as observed by the investigators in a Phase 2 trial, and hence from UCB1’s
analysis s2

N = O(log(N)). The size of the trial can be set to have N subjects, such that

N = min
N′∈Z

N′ ≥ 2×
⌈

8log(N′)
∆2

⌉
. (2)

Then, the number of patients administered SOC would be O(log(N)), a quantity with promise of being
lower than the N

2 in a static clinical trial.
Our aim is to employ a variant of UCB1, UCB1-MPA, which is described below, as the basic unit of

generic bandit-based clinical trial algorithms. This is referred to as BBECT throughout this article. From
(Bubeck et al. 2011), the bandit-based recommendation algorithm UCB1-MPA (Most Played Arm):

at+1 = arg max
k∈{1,2}

{
X̄k

t +

√
α log(t)

sk
t

}
.

The method to allocate the (t+1)−th arm is similar to UCB1, except for the constant α in place of 2. However,
at the end of N pulls, UCB1-MPA also recommends as the best therapy the arm a∗= argk=1,2 max{sk

N}.
UCB1-MPA modifies UCB1’s regret expression to derive an upper-bound on the probability that a2

would be recommended in place of a1. Such a probability would thus be the Type-2 error β of the
SMAB-based clinical trial: the probability that SOC will be recommended despite a significant difference
between ND and SOC. Related to α , we come up with a further modification to UCB1-MPA such that
inference in favour of a1 is drawn only if it is used for a fraction larger than 1

2 of the total pulls. We report
the appropriate fraction using simulations for α = 5%, such that 95% of the simulations have insufficient
information to reject the null hypothesis.

Note, however, that N in (2) above is typically much larger than the N recommended by Z-statistic
based methods used in static clinical trials. It is clarified here that ∆ = µ1−µ2 is an approximate quantity
known to the clinical trial investigators on account of Phase-2 findings, that precede Phase-3 for which
BBECT is being proposed. An example here is that for ∆ = 0.2, the lowest possible N if using native
UCB1 is 3233. The N calculated from formula in (Sullivan ), as required for static binary response clinical
trials, is s.t. N = 326.

After a literature survey, in Section 2 below we describe BBECT using UCB1-MPA with a proof
that obtains an N much lower than in the proof of UCB1-MPA itself. Further, in Section 3, we run a
series of experiments with BBECT based on UCB1-MPA to compare with both static clinical trials and
ethico-optimal clinical trials.
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1.1 Literature Survey

As the central module in BBECT, there also are other bandit algorithms apart from UCB1 that have various
advantages:

• relaxation of Xt ∈ [0,1] can take place, such algorithms are called ’heavy-tailed bandit’ algorithms,
and

• regret quantity s2
N can be lower due to different scaling constants and offsets, but are still O(log(N)).

We have, however, chosen UCB1’s variant UCB1-MPA as the module for proposed BBECT due to UCB1
being a canonical and easy-to-analyse SMAB algorithm. Indeed, in recent work such as (Williamson and
Villar 2020) forward-looking multi-armed bandit algorithms have been drafted for clinical trials. Such
algorithms calculate indices at each step of the trial, also involving information such as number of enrolled
trial participants left, to decide the allocation of patients. However, the work there deals with continuous
and normally-distributed outcomes, assumes a prior distribution for parameters of both arms in the trial,
and also has a worse tradeoff of trial’s power vis-a-vis ethical outcome.

When using BBECT with UCB1-MPA, the sample size N can be calculated in advance based on β

required (in that sense it is not myopic as defined by (Williamson and Villar 2020)), and does not require
any priors other than an estimate of ∆. Note also the theoretical formulation of regret in the Gittins
Index method (Lattimore 2016, (17)) where regret in N steps is greater than 1600

∆
· logN, an unfavourable

scale coefficient compared to (1) above. The substitution for this is as follows: ∆+ 128
∆

log(2N2)+ 21 ·
∆d 32

∆2 log(4N2)e+10N · c′′(logN+log+(N∆2))
N∆

, where we neglect the last term in our calculation. We thus get
(256+21·64+20c′′) logN

∆
and hence the assumption of 1600

∆
· logN earlier. In (Lattimore 2015), an improved

UCB1 named ‘Optimally-Confident UCB’ is presented whose coefficients of regret are difficult to compare
directly. However, it is observed there empirically that a Gittins-index -based strategy is the winner in
regret terms among a large set of algorithms for small horizons e.g. N ≤ 1000.

An original investigation using bandit algorithms in binary response trials, that identifies multiple
ethical criteria, was performed in (Press 2009). The work in (Press 2009) rules out Gittins- and Whittle-
index -based methods due to the infinite horizon formulation (since clinical trials necessarily have a finite
horizon). Yet, Gittins-index based methods were established for clinical trials in later investigations such as
(Villar et al. 2015), (Smith and Villar 2018) and (Williamson and Villar 2020). A statistic t for the clinical
trial is then compared with a tcrit as each subject is presented, in the heuristic-based method proposed in
(Press 2009), and an allocation to either SOC or ND is decided. While multiple ethico-optimality critieria
are considered, incl. cost of treatment and number of treatment failures, the power of the designed trial is
not considered, neither is this captured in simulations. The simulations in (Press 2009) capture the results
for minimization of ‘expected successes lost’ criteria, i.e. (1−P(allocation to ND))× (µ1−µ2), which is
as low as 1.75 for N = 100. Note however that the paper does not mention the µ1, µ2 used in the simulation.

Even within Management research literature, a shift from quantitative experiments to bandit-based
adaptive experiments is being proposed in (Kaibel and Biemann 2021). Their work advises that an ethical
outcome in sequential field experiments within organizational behaviour would be allocating more subjects
to the more effective intervention. The authors claim that this would align investigations to the goals of
researcher syndicates such as Academy of Management (AOM) or the American Psychological Association
(APA). Their work, however, does not propose deriving a sample size for any particular bandit approach
(though it employs the Thompson Sampling bandit in its simulations). Note that a bandit approach based
on Thompson Sampling was tested via simulation in (Villar et al. 2015) and was found to have lesser
treatment successes than Gittins- and Whittle- index-based methods. Further, as an illustration, a large N
in the simulated trial in (Kaibel and Biemann 2021) results in an Efficient Allocation Proportion - i.e. the
fraction of subjects randomized to the better therapy - of 83%. Our algorithm BBECT with UCB1-MPA
achieves 80% for even the 1−st percentile of outcomes from 10,000 simulations.
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The work adapting Bayesian principles to the Bernoulli MABP (BB-MABP, (Villar et al. 2015)) assumes
an a-priori distribution for each arm, parametrized by (sk

0, f k
0 ), k ∈ {1,2}, where sk

0 represents successes
in Phase-2 for arm k. The Gittins (infinite horizon) and Whittle (finite horizon) indices are then used to
guide the sampling of the arms during the clinical trial. The authors mention that their proposals, those
based on indices, observe both better p∗ and expected number of successes (ENS), i.e. higher proportion
of patients allocated to ND, and a higher level of favourable outcomes for entire cohort. Both p∗ and ENS
are obtained from simulation for a number of patients N that is fixed beforehand as being appropriate for
a randomized trial. However, all 3 index-based methods that the authors propose have low power 1−β ,
around 3.5 times lower than the designed power for the randomized trial. The hybrid controlled Gittins
index method proposed in that paper is demonstrated via simulations to have a higher statistical power
than the 3 index-based methods proposed earlier. The proposed BBECT may be considered as a method
to both design a trial for assured 1−β values (theoretically), as well as obtain high p∗ and ENS metrics
as demonstrated via simulations.

Note the important difference between BBECT and BB-MABP that inference in the latter is made
using Z-statistic, whilst in the former it is made using Most Played Arm (MPA) or a variation therein.
Such a variation would be relevant to decide the α of the BBECT trial, e.g. an inference using ‘arm played
at least 60% of the time’. The scheme of obtaining a cutoff such as 60% for the inference mirrors the
different Cα obtained via simulation for different methods in (Villar et al. 2015).

The BBECT with UCB1-MPA that we propose also has the advantage of being a compact scheme,
requiring no table look-ups (even different tables at different t) unlike BB-MABP. Also an advantage with
BBECT is that a design with target 1−β may have a larger NBBECT than the NFR in the FR scheme, but
will also have better p∗ and ENS. The latter advantage holds for both NBBECT - which is a theoretical
prediction due to logarithmic regret - but also for the much lower threshold NFR.

A valid criticism by (Williamson and Villar 2020) and (Villar et al. 2015) is that most proposed
methods of allocation are ‘myopic’ and do not consider horizon till N. While the Gittins-index based
method, the finite-horizon MDP formulated for the Whittle-index based method does consider the remaining
opportunities to sample till N is hit, neither the allocation rule nor the inference rule in BBECT has explicit
consideration of N. Note that the N is itself designed based on desired type-2 error tolerance 1−β . Contrary
to the authors claim in the abstract of (Villar et al. 2015), no index-based allocation rule improves power
beyond the situation of being 3.5 times lower than FR’s power. The proposed algorithm BBECT may be
criticised for obtaining a NBBECT that is much higher than NFR for certain ∆, thus the resulting trial is
overpowered in comparison. Yet, index-based rules produce trials that are under-powered with NFR when
observed in simulation and have equivalent p∗ and ENS properties.

2 ANALYSIS OF BBECT FOR STATISTICAL POWER

An outline of UCB’s proof of logarithmic regret (Theorem 1 in (Auer et al. 2002)) would serve as a useful
illustration. The proof there requires that at least one of the following 3 events occur at an index t < N:

X̄1
t ≤ µ1− c1

t

X̄2
t ≥ µ2 + c2

t

µ2 +2c2
t ≥ µ1. (3)

The probability of these 3 events forms the upper bound for the probability of the event {X̄1
t +c1

t ≤ X̄2
t + c2

t },
which in turn indicates that at index t +1 the suboptimal arm 2 was pulled. Notice that the event in (3)

does not occur if s2
t >

8log(t)
∆2 due to the form of c2

t =
√

2log(t)
s2
t

. It is thus sufficient if s2
t >

8log(N)
∆2 .

Lemma 1 Consider N plays of 2 arms, subject to the condition that s2
N > L0, where L0

∆
=8log(N)

∆2 . Then, the
number of times arm 2 is pulled, s2

N , is s.t. E(s2
N)≤ L0 +2ζ (4), where ζ is the Reimannian zeta function.
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Proof. Conditioning on s2
N > L0, we have that

s2
N ≤ L0 +

N

∑
t>L0+1

s1
t =t−(L0+1)

∑
s1
t =1,s2

t =t−s1
t

I{X̄1
t + c1

t ≤ X̄2
t + c2

t |s2
N > L0}

E(s2
N) ≤ L0

+
N

∑
t>L0+1

s1
t =t−(L0+1)

∑
s1
t =1,s2

t =t−s1
t

(P{X̄1
t ≤ µ1− c1

t }+P{X̄2
t ≥ µ2 + c2

t |s2
N > L0}) ·P(s1

t ,s
2
t |s2

N > L0)

E(s2
N) ≤ L0 +

N

∑
t>L0+1

s1
t =t−(L0+1)

∑
s1
t =1,s2

t =t−s1
t

2t−4 ·P(s1
t ,s

2
t |s2

N > L0)

E(s2
N) ≤ L0 +

N

∑
t>L0+1

2t−4
s1
t =t−(L0+1)

∑
s1
t =1,s2

t =t−s1
t

·P(s1
t ,s

2
t |s2

N > L0)

≤ L0 +2ζ (4)

Note the application of the Hoeffding concentration inequality, s.t. P(X̄1
t ≤ µ1− c1

t )≤ e−2s1
t (c

1
t )

2
= t−4. The

same holds for P(X̄2
t ≥ µ2 + c2

t |s2
N > L0) above since the conditioning has no effect.

The result on E(s2
N) also holds without conditioning on s2

N > L0, since in that case s2
N < L0 and

therefore s2
N < L0 +2ζ (4). Note in the proof above that the marginal probability has been used, where

P(s1
t ,s

2
t |s2

N > L0) is the probability of the pair (s1
t ,s

2
t ) ∈N 2

+ , s2
t > L0 occurring as counts of the arms 1 and

2. This change makes the proof different from UCB1’s proof (Auer et al. 2002, (6)) where the final bound
is L0 +2ζ (3), and allows us to design a lower L0 in Theorem 1 below. This in turn results in a lower trial
size N ≥ 2L0 such that adverse probability of outcome is bounded by a small β .

Theorem 1 For each β ∈ (0,1), ∃L0 and N such that N ≥ 2L0, L0 = 2(r0+1)2 log(N)
∆2 , where r0 < 1, s.t.

∑
N
t=L0+1 P{X̄1

t + c1
t ≤ X̄2

t + c2
t }< 1−β

Proof. We rewrite the 3 events indicated in (3) and earlier, as follows:

X̄1
t ≤ µ1 + xtc1

t − c1
t (4)

X̄2
t ≥ µ2 + rtc2

t (5)
µ2 +(rt +1)c2

t ≥ µ1 + xtc1
t . (6)

Just as the event (3) above, event (6) requires to be ruled out for s2
t exceeding a certain threshold. Thus

we require that xt , rt and s2
t be such that the following holds:

µ1−µ2 ≥ −xtc1
t +(rt +1)c2

t where, we solve

∆ = −xt

√
2log t

S1
t

+(rt +1)

√
2log t

S2 as a sufficient condition.

In the above, S2 =
2(r0 +1)2 logN

∆2 where we assume s2
t > S2.

Similarly, S1
t = t− 2(r0 +1)2 logN

∆2 with s1
t < S1

t , next choose a low enough r0 s.t.

2(r0 +1)2 logN
∆2 � 8logN

∆2 .
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Now notice from (4)-(5) that we can apply conditions similar to Lemma 1. Thus, we set the constraint that
1− xt = rt , and obtain the solution:

xt =
−1+ 2

r0+1

√
log(t)
log(N)√

2log(t)
t∆2−2(1+r0)

2 log(N)
+ 1

r0+1

√
log(t)
log(N)

Further L0 =
2(r0+1)2 logN

∆2 . Use xt , rt to obtain N such that ∑
N
t=L0+1 2t−4r2

t < 1−β , where β is the desired
Type-2 error of the statistical test.

To illustrate a calculation, we obtain N = 668 with L0 = 334 (corresponding to r0 = 0.013) when we
input 1−β = 0.9 and ∆ = 0.2. Similarly, we obtain N = 588 (corresponding to r0 =−0.04) when we input
a different power 1−β = 0.8 for same ∆. We have assumed that the process {X̄ i

t } is an empirical mean
of si

t events of type i with Bernoulli parameter pi, where i ∈ {0,1}.
For the static clinical test, there exists a combination p1 = 0.6, p2 = 0.4, for which the N = 326 obtained

is much lesser. Yet, we will demonstrate using simulation that treatment failures in BBECT are lower
(alternatively, efficient allocation proportion for BBECT is superior). A grid search for r0 for each possible
value of ∆ (with β = 0.9 employed) yields value of N suited to BBECT using UCB1-MPA. These values
are compared below in Table 1 for BBECT versus static clinical trials, where the maximum possible value
of N over varied p1, p2 pairs is recorded, s.t. p1− p2 = ∆. We use the formula for hypothesis testing
applicable to settings of dichotomous outcomes and 2 independent samples, as given in (Sullivan ).

Table 1: Minimum sample size required for power β = 0.9

∆ N for BBECT (β = 0.9) N in static trial (β = 0.9, 1−α = 0.99)
0.1 3222 1302
0.15 1290 578
0.2 668 326
0.25 400 208
0.3 262 145
0.35 184 107
0.4 134 82
0.45 102 65
0.5 80 53

In practice, BBECT using UCB1-MPA will also be more ethical due to the larger number of patients
allocated to ND, i.e. the arm with efficacy p1. There will, however, be a marginal increase in the duration
and cost associated with the clinical trial. It is useful to reiterate what Theorem 1 implies: suppose that
the first L0 subjects are allocated to arm 1, followed by which one subject is allocated to arm 2. Then, the
probability of even one more subject from the remaining N− (L0 +1) subjects being allocated to arm 1 is
less than β if BBECT with UCB1-MPA is used.
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A note about calculation of N for static trial, (Sullivan ), is also required here for the sake of completeness.
The minimum sample size N is calculated based on a basic quantity named ‘effect size’ E(p1, p2):

E(p1, p2) =
p2− p1√
p(1− p)

where,

p =
p1 + p2

2

N =

⌈
4
(

z1−α + zβ

E(p1, p2)

)2
⌉

The maximum N over a fine grid of possible (p1, p2), for each ∆, has been calculated and placed in the
third column of Table 1 above. The N calculated in (Rosenberger et al. 2001) for the comparisons below
(e.g. Tables 4, 5) appear to be higher but the authors do not point there to any formula to infer N.

3 BBECT COMPARED TO STATIC AND ETHICO-OPTIMAL CLINICAL TRIALS

We implemented a simulation with 100,000 trials where Bernoulli parameters p1, p2 were sampled uniformly
from (0,1) and p1− p2 = ∆, with ∆ set to 0.2. The percentile values for number of patients in each trial,
from a total of 668, that were allotted to treatment represented by p1 were captured in the simulations.
These are given in Table 2. This indicates that in 99% of the simulated BBECT runs, 73% or more of the
patients were allocated to ND.

Similarly, in 99% of the simulated BBECT runs where the effective ∆ is such that ∆ ∈ [0.2,0.3], 77%
or more of the patients were allocated to ND. This experiment models situations where ∆ is not known
accurately, but for inferring N it is sufficient to know a d such that ∆ > d

Note also how the ethical outcome is achieved: consider the 10−th percentile mark when ∆ = 0.2,
implying 90% of simulations have higher allocations to ND. We choose this level since the power of the
test as designed according to Theorem 1 above is also pegged at 90%. For this particular level, reading
off the table, note that 668− 529 = 139 is less than 0.5× 326 = 163, where N = 326 is the maximum
static trial size N for ∆ = 0.2 from Table 1. It may similarly be useful to compare the difference between
N and the 10−th percentile level for each ∆, with N

2 of a static trial, to verify the efficacy of BBECT
with UCB1-MPA as a technique. This is done in Table 3, where notice the advantage for BBECT using
UCB1-MPA for all ∆ > 0.1.

Table 2: Percentile threshold allotted to ND under BBECT using UCB1-MPA

Percentile p1− p2 = 0.2, p1, p2 ∈ (0,1) p1− p2 = ∆, s.t. ∆ ∈ [0.2,0.3]
1 493 518
5 517 542
10 529 553
50 564 587
90 593 612
95 601 618
99 615 629

We next tried a simulation with 1,000,000 trials to estimate the level of significance α , often called the
p−value threshold of the test, by turning ∆ = 0.0 and modifying the algorithm slightly. We set N = 668
using Table 1, but set the criterion that ND would be declared as the better therapy - i.e. null hypothesis
rejected - only if patients allotted to it exceed 60%. In a strict sense, the sample size N would change for
such a rule (where threshold is 60% and not merely MPA) but we continue use of N recommended by
Table 1. It is important to note here that situations where ∆ = 0 were handled differently. The p2 used in
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Table 3: Allocation to SOC under BBECT using UCB1-MPA

∆ 10−th percentile of allocations to SOC (using BBECT) N
2 from Table 1

0.10 658 651
0.15 267 289
0.20 139 163
0.25 84 104
0.30 55 73
0.35 39 54
0.40 28 41
0.45 22 33
0.50 17 27

the simulation was p1 + 0.05 (with probab. 0.5), or alternatively p1 := p2− 0.05 (with probab. 0.5). In
none of the experiments was the expected response of either SOC or ND required, neither was information
about variability.

However, the BBECT algorithm is distribution-dependent in the sense that information about approximate
∆ is still required. Our simulations compare BBECT using UCB1-MPA within the setting of (Rosenberger
et al. 2001) which proposes an optimal adaptive rule for binary response trials. Taking ∆ = p1− p2, the
situations compared are those where significance of trial (when ∆ = 0) as well as power of trial (∆ > 0) is
observed over 1 million simulations. Notice in Table 4 below that the ’error rate’ when ∆ > 0 is better than
the optimal adaptive rule, signifying more power than the 90% for which the optimal adaptive rule was
designed. It is also the case that significance calculated empirically from BBECT simulations when ∆ = 0
is such that Type-1 error stays below 5%. Note that the N in these experiments - where power observed
is more than 95% - happens to be even lower than N calculated analytically for 90% power in Table 1.

Further, the BBECT algorithm also has lower ’treatment failure’, i.e. a lesser number of subjects who
did not recover irrespective of which arm they were allocated. Table 5 presents the number of treatment
failures with standard deviation (SD). However, the SD metric is observed as being higher in some pairs
when BBECT with UCB1-MPA is employed. In addition, even in cases where the SD metric is lower, an
advantageous disjoint interval of confidence for the treatment failure metric isn’t seen.

Note the extensive simulation in (Smith and Villar 2018) where ‘Type-1 error inflation’ for bandit-based
methods occurs, incl. UCB1. This inflation is similar to the outcome we would obtain if we employed
the original MPA rule of declaring arm as winner if more than 50% of pulls correspond to it. Notice also
that Cα there has been tuned with simulations to suit the bandit algorithm, just as our mark of 60% is
obtained here using simulations. For example, the standard Cα would be 1.645, but is adjusted to 2.068,
1.867, 1.701 for the algorithms UCB1, KL-UCB1 and Thompson Sampling, respectively, cf. (Smith and
Villar 2018, Table 1). Notice also the power values of our algorithm in the lower half of Table 4 (all above
95%) whilst power values in (Smith and Villar 2018, Table 1), even for the bandit methods, are less than
90%. Of these methods, KL-UCB has the best balance of statistical test’s power and efficient allocation
proportion (77% and 82%, respectively) both of which are unfavourable compared to our figures.

We also present the comparison with work in (Villar et al. 2015) where Bayesian bandit clinical trial
algorithms are introduced for the Bernoulli case, like ours. There are 3 algorithms introduced there, using
Gittins Index (GI), Whittle Index (WI), and a Randomized Gittins index (RGI), all having the advantage
of being ‘non-myopic’, i.e. sensitive to the horizon left for the trial. The work compares p2 of 0.3 and p1
of 0.5 after deriving N = 148 for the static fixed allocation clinical trial. The BBECT figure for expected
number of successes (ENS) was 65.95 at this N, compared to the approximately 70 (ratio 70

148 = 0.473)
that GI and WI were able to achieve. However, note that statistical power of the GI, WI methods was
very low, at 0.3−0.4 compared to values greater than 90% for BBECT. The work in (Villar et al. 2015)
has however demonstrated higher statistical power empirically for a variant of one these methods, viz.
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Controlled Gittins index. If using N = 588 in this setting for BBECT, where N is calculated from Theorem
1 for power setting 1−β = 0.8, we have an ENS of 274.21 which at 0.491 exceeds the ratio that GI and
WI achieve. Type-1 error evaluated using our method of perturbing p1 or p2 by 0.05 yields 0.056 for
N = 148, whilst it is a low 0.01 for N = 558 (well within limit for design criterion of 5%).

Table 4: Error-rate and power in BBECT vs Optimal Adaptive rule

p2 p1 N BBECT Optimal Adaptive rule
0.10 0.10 200 0.00 0.04
0.30 0.30 200 0.04 0.05
0.50 0.50 200 0.05 0.04
0.70 0.70 200 0.04 0.04
0.90 0.90 200 0.00 0.04
0.10 0.20 526 0.96 0.89
0.10 0.30 162 0.98 0.89
0.10 0.40 82 0.99 0.89
0.40 0.60 254 0.99 0.89
0.60 0.90 82 0.98 0.90
0.70 0.90 162 0.98 0.91
0.80 0.90 526 0.96 0.90

Table 5: Treatment failures in BBECT vs. Optimal Adaptive rule

p2 p1 N BBECT Optimal Adaptive rule
0.10 0.20 526 436.4 (9.6) 443 (8.5)
0.10 0.30 162 122.0 (6.2) 126.2 (5.4)
0.10 0.40 82 55.2 (4.8) 58.5 (4.2)
0.40 0.60 254 113.3 (8.6) 124.4 (7.8)
0.60 0.90 82 14.1 (3.0) 19.3 (3.7)
0.70 0.90 162 24.7 (4.2) 31.5 (4.8)
0.80 0.90 526 68.1 (7.4) 78.3 (8.1)

4 FUTURE DIRECTIONS

The N proposed by Theorem 1 is higher when compared to a static clinical trial, and this requires registering
more volunteers which is a challenge if the condition is rare. However, the Hoeffding bound used above
produces an upper limit and alternative bounds exist whereby if p2− p1≥ ∆ and p2− p1≤ d are both known,
then the bound is tighter. A closed form expression for the Type-1 error, even under the assumption of
‘region of indifference’ viz. a minor difference between p1 and p2, would also be welcome for practitioners.
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