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ABSTRACT

In this paper, we study how interactions between populations impact epidemic spread. We extend the
classical SEIR model to include both integration-based disease transmission simulation and population
flow. Our model differs from existing ones by having a more detailed representation of travel patterns,
without losing tractability. This allows us to study the epidemic consequence of inter-regional travel
with high fidelity. In particular, we define travel cadence as a two-dimensional measure of inter-regional
travel, and show that both dimensions modulate epidemic spread. This technical insight leads to policy
recommendations, pointing to a family of simple policy trajectories that can effectively curb epidemic
spread while maintaining a basic level of mobility.

1 INTRODUCTION

In this paper, we study how interactions between populations impact epidemic spread. This is an important
and classical question that the simulation community can provide insights with for two reasons. First, such
impact should ideally be understood before a disease outbreak. Modern disease outbreaks tend to originate
from novel sources, and it is impractical to study such effects to the fullest extent with minimal clinical
or public health data during early stages of the spread. Therefore, simulation should play an important
role. Second, the complexity and scale of travel dynamics have been continuously evolving in the past few
decades on the global, national, and local levels. Thus, classical disease transmission methods in simulation
should be updated for the new context, to address large scale, high fidelity, and dynamic problems.

To answer the question of how interactions between populations impact epidemic spread, we first design
a computationally efficient tool (Section 2) to capture population dynamics both within a community and
across communities, incorporating a flexible and detailed modeling on travel patterns. This allows us to
take advantage of the computational tractability of integration-based simulation models and the fidelity of
agent-based models. With this tool, we are then able to characterize how travel patterns impact disease
transmission (Section 3).

1.1 Literature Review

Before introducing our method and analysis in detail, it is important to visit the literature on disease
transmission involving travel dynamics. We do not intend to provide an exhaustive review, because there
is a vast literature, and it is impossible to do a fair job if one’s goal is to be thorough. Rather, we rely
on our own understanding of the conceptual difference between different lines of research, point out why
certain gaps exist, and discuss how we take steps to address such gaps.
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In the classical Susceptible-Exposed-Infectious-Recovered (SEIR) model, individuals are assumed to
be in one of four states. When a susceptible person interacts with an exposed or infected person, there
is a chance that the susceptible person transitions into the exposed state. A key assumption that enables
model tractability is that interactions are uniform – the probability distribution over pairwise encounters is
uniform. It is possible to relax this assumption to some extent, but one’s behavior is still dictated by its
state, not by location or travel specific characteristics.

Several streams of research have already looked at adding population mixing or traveling beyond the
simple SEIR setting. Our model differs from existing approaches by having a more detailed modeling of
travel for a longer term. In the remaining part of this subsection, we briefly review these studies.

Two streams of research are closest to our work. The first stream studies the impact of travel behavior on
the (short term) epidemic spread, usually with real world data and employing empirical methods. The effect
of travel on disease transmission has become an intensely studied subject since the spread of COVID-19.
Given the heterogeneity in travel behavior across different countries, and given the availability of data
worldwide, researchers naturally tried to understand the effect of travel on disease transmission by applying
empirical methods. For example, Chinazzi et al. (2020), Costantino et al. (2020), Adekunle et al. (2020),
and Anzai et al. (2020) study the effect of travel ban/restriction on the delaying of disease spread across
countries. Some other projects also study such effects on a regional scale (Mangrum and Niekamp 2020).
However, these studies focus on the effect of travel pattern change at one time point. They do not study
the effect of long term travel behavior change, or the long term effect of a single travel behavior change.
Our model and analysis are aimed at addressing this gap.

The second stream focuses on simulation-based and analytical understanding of the long term impact of
travel on disease transmission, under the name of metapopulation disease transmission models or variants
thereof. Ball et al. (2015) provides an excellent review and critical analysis of this stream of works. Overall,
these metapopulation models focus on why and how subpopulations (compartments) with heterogeneous
characteristics have different disease transmission trajectories over time (Watts et al. 2005; Ni and Weng
2009; Apolloni et al. 2014). Traveling between compartments is also modelled, but usually done in the
ambience: there is usually a set of parameters to model travel likelihood between any two compartments.
Such parameters indirectly control the actual population flow, and usually remain the same over time. In
this current project, our focus is to divide traveling into multiple episodes, each one with a different set of
travel parameters; and each set of the parameters would model the amount of population flow precisely
and directly.

A few other streams of research are also related, including network-type disease transmission models
and control theory perspectives. Network-type models delegate the description of travel behavior to edge-
weights in a network, which usually has limited fidelity in modeling the complex interaction behavior
between different nodes. Control theory type of disease transmission models usually prefer to keep the
model setup pristine and not model travel details, in order to generate clean analytical results. Under the
control theory lens, both descriptive (Arino and van den Driessche 2003) and prescriptive (Birge et al.
2020) models have been proposed.

2 METHODOLOGY

In this section, we describe our epidemic simulation model design in detail. We note that this model is
not just for the analysis of our travel cadence question, but a general purpose model that simulates SEIR
trajectories with partitions and population flows. Therefore, this section pertains to the general design
of our simulation model. For the model customization that supports the analysis on travel cadence and
epidemic spread, we wait until Section 3.

We coded the model in Python in a Jupyter Notebook. All of the details included in the following
sections are already incorporated into the code and are fully functional.



Streitmatter and Zhang

2.1 Dynamic SEIR Model

The SEIR (Susceptible, Exposed, Infected, Recovered) differential equations below are used as the foundation
for this equation-based model. Terms are included to account for the percentage of infected individuals
who quarantine themselves (q) and to account for the delay between exposure and symptom onset (α).

S′(t) =−βS(1−q)I/N−αSE/N (1)

E ′(t) = βS(1−q)I/N +αSE/N−σE (2)

I′(t) = σE− γI (3)

R′(t) = γI (4)

The list of parameters in Figure 1 describes each variable included in the model. At any time throughout
a simulation, it is possible to update one or more of the partitions’ parameter values to reflect the dynamic
nature of disease spread and transmissibility.

Figure 1: Definitions and notations.

2.2 Population Partitioning

This model extends beyond the classic SEIR model described above by allowing a total population of size
Ntot to be split into Num boxes compartments or partitions (we use the word partition here to refer to a
single compartment, different from the set-theoretic definition of partition, which refers to the collection of
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all compartments). Each partition is isolated with its own S, E, I, and R groups that evolve independently
from the other partitions depending on its local parameters. This can be used to represent many real-life
situations and strategies, including geographical separation across different neighborhoods, counties, or
states or designing school class schedules to reduce interaction between “pods”.

To study a classical SEIR model rather than a partitioned model, the number of partitions can be set
to one. However, the partition feature of this model allows populations to be disaggregated into smaller
groups without the drastic increase in computational power from an agent-based rather than equation-based
model. To set up the model, there are two different methods:

1. Initialize population with uniform parameters across partitions.
2. Initialize population with a list of initialized partitions that comprise it.

Method 1 initializes a population of size Ntot with Num boxes partitions, each partition assigned
uniform sub-population sizes and transmission parameters shown in Figure 1, excluding S0, E0, I0, and
R0. This method assumes the specific locations of each individual who is initially exposed or infected is
unknown, so it randomly distributes the total E0 and I0 in whole numbers across the different partitions so that
each partition n has its own S0,n, E0,n, I0,n, and R0,n and ∑n S0,n = S0,∑n E0,n = E0,∑n I0,n = I0,∑n R0,n = R0.

Method 2 initializes the population from a pre-existing list of instantiated partitions. This allows
each partition to have unique transmission parameters and population sizes if desired. This also allows
for non-randomized control over the distribution of E0 and I0 across partitions if it is desirable to model
scenarios where initial conditions are known in detail.

The disease spreads through each partition according to equations 1-4 above, where in partition n,
Sn,En, In,and Rn are used along with the partition-specific parameter values. While it is helpful to see how
the disease evolves when partitions are completely separated from one another throughout the entire period,
this is an ideal case that is often not achievable in reality. Instead, there is typically mixing between pods,
neighborhoods, or states that this model can account for as described in the following section.

2.3 Population Mixing

The time evolution of Sn,En, In, and Rn in partition n are stored in Sn,En, In,and Rn vectors of length T ,
where T is the number of days in the simulation. Sn,En, In,and Rn values for each partition at the current
time t are stored in size Num boxes S,E, I, and R vectors. Thus, population mixing (when people from
different partitions come into contact with each other) is represented with matrix-vector multiplication
using the latter set of vectors. This is depicted graphically in Figure 2 below. We provide a high level
summary of the mixing procedure here, followed by a detailed description for each step.

1. Generate an Num boxes × Num boxes mixing matrix M for each group (S,E, I, and R).
2. Calculate the unmixing matrix M′ using M and S, E, I, and R.
3. Mix the partitions by disease category: MSS, MEE, MII, MRR.
4. Integrate the updated S, E, I, and R vectors within each partition over as many time steps as is the

mixing duration in days.
5. Unmix the partitions by disease category: MS′S′,ME ′E ′,MI′I′,MR′R′

6. Distribute the ∆Sn,∆En,∆In,∆Rn from integrating each partition to all partitions m that travelled to
partition n for the mixing event

Step 1: Generating Mixing Matrices
Element Mi, j of each matrix represents the fraction of partition j that travels to partition i for the mixing

event. Each column of matrix M must sum to one (a left stochastic matrix).
Different types of matrices can represent different types of mixing events in real life. Two examples of

matrices developed thus far represent gatherings at large events in a single partition and random intermixing
between all partitions. While there are numerous other mixing matrices that have been and can be developed,
these two are explained in greater detail below.
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Figure 2: A mixing matrix M can be thought of as the weighted, directed edge values of a graph in which
each node represents a partition of the population.

The large gathering matrix is generated using an inputted probability pstay that members of each partition
will stay home rather than travel to the large gathering. The current model uses the same pstay for each
partition, but pstay can vary to model different behavior among partitions. Members of each partition will
either stay in their partition with probability pstay or travel to the large event (hosted in the last partition)
with probability 1-pstay. An example mixing matrix for Num boxes = 3 is: pstay 0 0

0 pstay 0
1− pstay 1− pstay 1


The random mixing matrix is generated by summing an inputted number m of randomly generated

permutation matrices, each multiplied by its own randomly generated decimal between 0 and 1. The
columns of the summed matrix are then normalized to ensure the matrix is left stochastic. The larger
values of m correspond to higher levels of mixing between partitions - the number of zero entries (meaning
nobody from partition j travels to partition i) decreases as more permutation matrixes are summed together.
This is one way of controlling the amount of mixing in the model. (Note if m = 1, this is the equivalent
of no mixing because the partitions are simply switched around, but the groups remain isolated).

There is also a uniform mixing matrix where each partition mixes in each other partition with a uniform
probability equal to a constant, population-wide probability of staying home and not mixing. Another
matrix, a multi-modal travel matrix, has been developed, that is essentially a convex combination of mixing
matrices with different levels of sparsity: If we consider each mixing matrix to represent one type of travel,
e.g., short versus long distance travel, then a combination of mixing matrices can represent a combination
of different modes of travel. A convex combination simply ensures that the resulting matrix is still a mixing
matrix where each column sums up to one.
Step 2: Calculating Unmixing Matrices

We developed an unmixing matrix that uses the original mixing matrix M and the initial S, E, I, and R
vectors (v) to ensure the same number of people who travel to partition j from partition i during a mixing
event leave partition j at the end of the mixing event to return to partition i.The formula to calculate each
element of the unmixing matrix I for mixing matrix M and S, E, I, or R vector v is shown below. The
percentage of people who return to partition i from partition j, Ii j, equals the number of people who went
to partition j from partition i (M jivi) divided by the total number of people who travelled to partition j
(M j · v). If nobody travels to partition j (M j · v = 0) during a mixing period, then nobody returns from
partition j to partition i at the end of the mixing period (Ii j = 0).

Ii j =
M jivi

M j · v
if M jv 6= 0; else Ii j = 0. (5)

Steps 3-6: Attributing Changes in S, E, I and R Groups During Mixing to the Proper Partitions
Whether there is mixing or not, the equations and parameter values that are integrated in each partition

over the course of the simulation remain constant unless otherwise adjusted.
The only difference between running the simulation during a mixing event and running the simulation

in normal, isolated conditions is that the changes in the total S, E, I, and R groups over the duration
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Figure 3: Each box above can be thought of as a vector. The diagram walks through the steps of reallocating
each transition from one disease category to the next to the original partitions. Note that N is used in place
of Num boxes in this figure to represent the total number of partitions more compactly.

of the mixing event must be manually re-distributed to each partition after unmixing. For example, say
the simulation is run for 10 days and over that time, the number of susceptible individuals in partition i
decreased by 25. If those 10 days were not during a mixing event, then that means there are 25 fewer people
in partition i who remain susceptible. If those 10 days were during a mixing event, it is not necessarily
those native to partition i who transitioned from S to E. Instead, each partition j with members who
travelled to partition i during the mixing event (Mi, j 6= 0) may have had members transition from S to E
before returning to partition j at the end of the mixing event.

Because this is an equation-based model and does not track individuals, it is impossible to know exactly
which members from which partitions transitioned from S to E or E to I or I to R over the course of a
mixing event. To account for this, the changes in S, E, I, and R in partition i are randomly distributed
across all partitions j in units of 1 (to represent one person), with the change in partition j bounded by
the total number of people that could have transitioned from one state to another from partition j. This
procedure of determining the bounds is shown in Figure 3.

2.4 Parameter Values and Mixing Duration

Over the course of the mixing duration, the parameter values remain constant within each partition i
regardless of whom from partition j has travelled to partition i for the mixing event. However, there is an
option to update each partition’s parameter values during a mixing event to model any changes in behavior
or policies related to the mixing.

It is important to note that in many ways unmixing at the end of the mixing duration can simply be
thought of as a second mixing event. The equation-based nature of this model means there is no difference
between each individual of the same compartment (S, E, I, or R). So even though the population is unmixed
to return everyone to the home partitions, this is essentially another mixing event as the equation-based
model sees no difference between members in their home partitions and members visiting other partitions.
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2.5 Assumptions and Limitations

This model works best to study the effects of sporadic, infrequent mixing events rather than situations with
continuous mixing between partitions. This means it is best used to study what happens when populations
that naturally have separation between groups whether due to geography or pandemic policy come into
occasional contact. Complete separation of partitions at all times other than during the mixing event is an
unrealistic expectation, but the model uses that assumption to balance complexity and robustness. Rather
than focusing on the impact of mild, regular mixing events such as trips to the grocery store, this model
helps to understand the effects of intense, irregular mixing events such as university students travelling
during breaks or large sports events. Results produced by this model may be an underestimate of the disease
outbreak severity as it is not accounting for mild, regular mixing. As such, it is best used to understand
the relative impacts of different variables on outbreak severity rather than as an absolute measure of how
many people will get infected.

The model assumes homogeneous mixing within partitions which may not always be the case. When
partitioning a population to study in this model, it is best to choose partitions that divide people into
group sizes roughly matching the scale at which homogeneous mixing takes place. In other words, treating
countries as partitions in this model (while also computationally very demanding due to the large population
sizes) may be less indicative of real trends than using counties as partitions due to the widely varying
behavior of individuals across entire countries. Just as too large of partitions may affect the model’s
accuracy, if the partition size is too small, the results will likely be unstable as the sample size is too small
to reliably predict average behavior. The model itself will run successfully for any partition size greater
than zero, and the upper bound on partition size is limited by the computational power of the computer.

The equation-based nature of this model means rather than using whole numbers to properly represent
people, the evolution of populations in the S, E, I, and R groups within each population are rational
numbers. These fractions of people in each group which are not possible in reality can enable second
waves of outbreaks that would not have otherwise happened – small decimals of infected people enable
infections to persist longer than in real life. Furthermore, the matrix multiplication for mixing also allows
fractions of people to travel to other partitions. While this model does use whole numbers for redistributing
individuals after mixing events, the other times in which fractional people are allowed may accumulate
and cause results to vary from reality.

3 ANALYSIS

Definition 1 (Trip, Travel, Travel Cadence) A trip is an origin-destination pair. A travel period consists
of multiple trips. Travel cadence is a tuple, (number of trips, total travel duration), that characterizes the
travel period. For example, the two trip, 10 day travel period tuple (2, 10) represents people traveling from
one location to another for 5 days. After 5 days, they travel to another location and stay there for the
remaining 5 days of the travel period. (2,10) is the travel cadence.

To facilitate analysis, we assume that trips are synchronized for all partitions. But asynchronous trips
can be implemented with our model as well (albeit with more coding effort - numerous mixing matrices
and mixing events are needed to allow specific partitions to mix with other partitions at distinct times).
Definition 2 (Epidemic Spread) We define the epidemic spread (for a fixed period and a particular population)
as the number of infections occurred during that period.

The main technical question we want to answer is: What is the impact of travel cadence on epidemic
spread? In other words, we would like to know the mapping between cadence and spread. To this end, we
design a sequence of numerical experiments to examine how the two dimensions of travel cadence impact
the epidemic spread.



Streitmatter and Zhang

3.1 Experiment Setup

In the first set of numerical experiments, we focus on simulating population mixing in the origin and
destination partitions. That allows us to single out the effect of interactions between travelers and residents
in every partition. For the second set of numerical experiments, we add an additional step in the simulation
to also include the potential interactions among travelers themselves, who may have different origin-
destinations. This second type of mixing can be attributed to, for example, interactions at airports, train
stations, and bus terminals.

The experiments are conducted by running a unique simulation of our epidemic model for each travel
cadence tuple under test. This corresponds to 36 data points per experimental trial (combinations of zero to
three trips and 2, 4, 8, 10, 14, 20, 40, 60, or 80-day travel periods). Each simulation begins with a 30-day
pre-mixing period to allow time for the infection to spread. The next 80 days of the simulation vary in
amount of time spent mixing or in home partitions based on the travel period and number of trips. There
are a final 14 days of the simulation without any mixing to allow infections from the end of the mixing
period to develop and recover fully before measuring the total spread. Note that all tuples with zero trips
are identical because there is no travel in this case so individuals remain in their home partitions for the
entire trip. The zero trip trials serve as the “constants” or reference cases in the experiment.

At the end of each simulation, we calculate the epidemic spread as the total percent of the population
in the “Recovered” group on day 124 less the total percent of the population in the “Recovered” group
on day 30, immediately before mixing begins. This allows for a comparison of the effects of each travel
cadence on the number of people who become infected during the travel period. The zero trip case serves
as the control of this experiment to show how the epidemic evolves without any mixing between partitions.

For parameter calibration, we tried different numerical setups, and the results do not differ qualitatively
from the current ones. We therefore only report the results obtained from a particular set of parameter
values, as described below. We chose a basic reproduction number (R0) of roughly 2.4 to match the
observed R0 value during early stages of COVID-19 (You et al. 2020). More specifically, we have σ = 4
days, γ = 10 days, p = 0.02, p2 = 0.01, λ = 10 people per day. In other words, we assume that on each
day, every individual in state E would transition to state I with probability 1/4, and every individual in
state I would transition into state R with probability 1/10. The probability of infection when a state S
individual comes in contact with a state E individual is 0.01, and the probability of infection when a state
S individual comes in contact with a state I individual is 0.02. Everyone meets 10 people daily.

We set up other parameters as follows. We assume 100,000 people are distributed equally among 200
partitions. The total numbers of state E and state I people are 5 and 50 respectively at day 0. We calculate
the mixing matrix as the sum of several matrices, each one representing a specific travel distance and
percentage of population. More specifically, we let M =M1+M2+M3, where M1 takes 1% of the population
in each partition and distribute them equally in all other partitions, M2 takes 5% of the population in each
partition and distributes them equally to 10% of other partitions, and M3 takes 10% of the population in
each partition and distributes them equally to 1% of other partitions (we round up the number of receiving
partitions to an integer in each case). We vary overall quarantine rate (assumed to be the same across all
partitions) and travel cadence in our numerical analysis: quarantine rate q ∈ {0,0.1,0.2,0.3,0.4,0.5}, and
travel cadence ∈ {0,1,2,3} trips ×{1,2,4,8,10,14,20,40,60,80} days.

3.2 Numerical Results and Policy Implications

Figure 4 shows the epidemic spread (number in each cell) as a function of travel cadence (horizontal
and vertical axes). In the figure, each row is for a different quarantine level ∈ {0,10,20,30,40,50}%.
First column shows the average spread over 10 runs. Second column shows the standard deviation of
spread over 10 runs. We observe that both the number of trips in a multi-stop travel journey and the total
duration of travel impact the overall disease transmission. Worst (most prevalent) transmission happens
when people travel multiple stops, with a per-trip duration being equal to or slightly below the mean
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time to go through exposed and infected states. Figure 5 shows the epidemic spread (number in each
cell) as a function of travel cadence (horizontal and vertical axes) when we set different quarantine rates
for traveling (qtravel) and non-traveling (q) periods. In this figure, six rows of subplots correspond to
(q,qtravel) = (0,0),(0,40%),(0,80%),(40%,0),(40%,40%), (40%,80%). Averages and standard deviations
are summarized from 10 runs. Results from this second set of experiments do not differ qualitatively from
the first set - the heat maps in Figure 4 are similar to the corresponding heat maps with equivalent travel
cadence tuples in Figure 5. This is slightly surprising, because it shows that population mixing among
travelers while they are on the move does not significantly increase disease spread when compared with
the importance of quarantine rate for normal, non-travel interactions.

Overall, our simulation results would be most informative for countries or regions that do not have
complete control over how travelers interact with “locals” during and after their trips. A key takeaway is
that, two levers can lead to significant suppression of disease spread: high quarantine rate and reduced
travel frequency. Reducing the travel frequency includes both reducing the number of trips overall, and
increasing the wait time between two trips. Our simulation results support the rationale, and provide a
quantification of the travel restriction strategies adopted by, for example, the Government of Canada (2021):
traveling into Canada is limited to those with immediate ties to the country, and travelers must stay within
Canada for 15 days or more before moving onto their next destination.

In contrast to confirming the effectiveness of existing strategies for existing disease (with known
transmission characteristics), the arguably more important question is: How should we apply this model
to recommend travel guidelines in the face of an unavoidable, novel disease in the future? To answer
this question, we note that two types of uncertainties complicate the identification of best policy. First,
it is difficult and sometimes impossible for everyone to diagnose their infection status when the disease
is novel. Therefore it is difficult to precisely apply quarantine on those who are infected. To this end, it
is then important for policymakers to encourage reduced interaction among everyone, which essentially
is a less precise but still effective way of implementing quarantine (we have simulated other cases with
reduced social interaction rate, and the results are consistent). Second, a novel disease would have unknown
exposed and infected duration. Thus, it is not robust to rely on the “many trips but slow travel” regime to
control spread. The initial focus of governments should be reducing or shutting down travel. When disease
transmission characteristics are understood more, local and national governments can then relax the travel
guidelines to allow single- or multi-stop travelers that stay in each region for extended periods of time.
This also highlights why we need to understand the clinical and public health characteristics of a novel
disease rapidly, in order to safely support social, humanitarian, and economic activities during a pandemic.

4 Conclusion

In this work, we design and test a simulation model to answer the question: how does travel cadence
impact epidemic spread? We find that travel impacts epidemic spread significantly. Our analysis adds
to the literature by modeling travel behavior more precisely, and also by examining the long term effect.
Previously, works studying travel ban mostly focus on the effect of delaying disease transimission in the
early stage, and also mostly relying on empirical analysis. Compared with other simulation models such
as metapopulation disease transmission models, we provide a higher resolution into the modeling of travel
(rather than indirectly influencing the contact rate by defining weights or connectivity parameters as a
proxy to represent the contact rate between populations, we directly specify the number of people travelling
from one partition to another along with the specific interaction parameters local to that region). Overall,
we found that reducing travel frequency (reducing the number of trips and increasing the duration of stay
for each trip during the travel duration) is important. Quarantine rate in general population has a strong
impact on the spread. When facing a novel disease with unknown characteristics, it is then important for
policymakers to reduce the number of trips, encourage social distancing, and understand the the disease
exposed-infected-recovered duration before allowing slow multi-stop travel.
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Figure 4: Epidemic spread (number in each cell) as a function of travel cadence (horizontal and vertical
axes). Each row is for a different quarantine level ∈ {0,10,20,30,40,50}%. First column shows the average
spread over 10 runs. Second column shows the standard deviation of spread over 10 runs.
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Figure 5: Epidemic spread (number in each cell) as a function of travel cadence (horizontal and vertical
axes) when we set different quarantine rates for traveling and non-traveling periods. Six rows correspond to
(q,qtravel) = (0,0),(0,40%),(0,80%),(40%,0),(40%,40%),(40%,80%). Averages and standard deviations
are summarized from 10 runs.
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