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ABSTRACT

In the quest to better understand the transmission dynamics of COVID-19 and the strategies to control
its impact a wide range of simulation models have been developed. Faced with a novel disease with
little-known characteristics and unprecedented impacts, the need arises to model multiple aspects with very
dissimilar dynamics in a consistent and formal, but also flexible and quick way to study the combined
interaction of these aspects. We present an agent-based model combining kinematic movement of agents,
interaction between them and their surrounding space, and centralized control over the entire population. To
achieve this, we use and extend the retQSS framework to model and simulate particle systems that interact
with geometries. We study different contact tracing strategies and their efficacy in reducing infections in
a population going through an epidemic process driven mainly by indoor airborne contagion.

1 INTRODUCTION

The Coronavirus Disease 2019 (COVID-19) pandemic has brought humanity to a state of global alarm,
reaching a worldwide scale in an unprecedentedly short time. Unlike the viruses that caused previous
pandemics, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a much higher level
of infectivity.

As mass vaccination campaigns are still in progress, several non-pharmaceutical strategies have been
proposed in recent months to address different aspects of the pandemic process. Among them, we can find
quarantine, isolation of cases, social distancing, epidemic surveillance, etc. There are also many important
questions to address to better understand and manage the disease. Some of the most frequently asked
questions are: how and when to start and end confinements, how many tests should be carried out, which
cohorts to vaccinate first, how many medical personnel would be needed, etc.

Virus outbreak models can be traced back to the Susceptible-Infected-Removable (SIR) model presented
in (Kermack and McKendrick 1927). Hundreds of models followed pursuing similar goals, from statistical
modeling to agent-based and population-based simulations. Most are used to predict possible outcomes of
an entire epidemic process, while some also model possible ways to control the disease through different
interventions, evaluating options to make optimal decisions. Fraser et al. (2004) presented a stochastic
model to assess intervention strategies. In this work, the authors assess the application of contact tracing,
concluding that its effectiveness depends on two aspects: the number of secondary infections generated by
each newly infected person (known as the Reproductive Number, R) and the proportion of transmissions
that occur before the onset of symptoms. This laid the foundation for many other tools and methodologies
that allow users to better understand the dynamics of an epidemic and to study multiple scenarios in which
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different intervention strategies can be tested, like contact tracing, isolation, lockdowns, vaccination, etc.
(Kwok et al. 2019).

Since 2020 many studies modeled SARS-CoV-2 infection spanning varied strategies to manage the
epidemic. Hellewell et al. (2020) proposed a stochastic transmission model and used it to quantify the
effectiveness of contact tracing techniques. They analyzed the efficacy of this strategy as a function of
several model parameters such as R, the delay from symptom onset to isolation, the success probability
when tracing contacts, the proportion of transmission that occurred before symptom onset, etc. Kretzschmar
et al. (2020) evaluated intervention strategies using another stochastic model, highlighting the importance of
reducing delays in testing and tracing to effectively control the outbreak. Wallentin et al. (2020) presented
an agent-based simulation model that studied different types of lockdown scenarios. They showed that
while an extreme lockdown could eliminate the virus in a few months, relaxation of isolation could lead
to a second outbreak. Shoukat et al. (2020) used another agent-based model to estimate the reduction of
intensive care units and hospital resources required when a population practices self-isolation and how this
strategy would also delay the peak of infections.

Several intervention strategies have been proposed to reduce the impact of the pandemic. Pharmaceutical
(e.g. vaccination) or non-pharmaceutical (e.g. quarantine) interventions alone are not effective, and it is
accepted that a combination of these is most reasonable. The case of lockdowns is particularly complex,
as the prolonged closure of businesses and schools can have serious social and economic consequences.
However, some other complementary measures can mitigate these side effects while increasing the overall
effectiveness of closures. Perhaps the most widely adopted of these strategies is contact tracing. Contact
Tracing involves tracking, testing, and eventually isolating the close contacts of each confirmed positive
case. Despite its appeal, this strategy is often quite expensive, especially when the number of people to
track is large.

In this work, we develop an agent-based model that extends the SIR-type epidemiological dynamics
with two different but mutually influencing aspects. First, we add the interaction of agents with the physical
spaces through which they circulate, which may remain infected for arbitrary periods of time by hosting
infected agents. In turn, infected spaces can propagate the virus to susceptible agents entering the space.
This is the mechanism underlying airborne contagion via aerosols, considered to be a key factor in the
spread of contagious respiratory diseases (Prather et al. 2020; Morawska and Milton 2020), reaching fatal
levels in certain cases (e.g. in hospitals or choral events (Miller et al. 2021; Fears et al. 2020)). Second,
we model the effects of implementing a contact tracing intervention, whereby each symptomatic agent
represents an index case for its network of direct (or secondary) contacts. The latter can be reached by the
government, being potentially being tested and isolated to decrease the intensity of the viral spread. We
will show how the incorporation of such a feature affects the spread of the disease. Then, we will analyze
the impact of contact tracing in the context of different age groups, each of which has different rates of
symptomatology and mortality.

In order to deal explicitly with spatial dynamics we adopt a kinetic type of model for particles (agents)
moving on a 2D space (Pulvirenti and Simonella 2020; Kuzdeuov et al. 2021).

The rest of the paper is organized as follows: In section 2 we describe a new indoor virus propagation
model with contact tracing dynamics. In subsection 2.1 we show the implementation of the SEIRD(AP) model
(Susceptible, Exposed, Infected -Asymptomatic or Presymptomatic-, Recovered, Dead) and in subsection
2.2 we extend it with contact tracing of different kinds. Then, in section 3 we perform simulation experiments
to assess infection profiles for different combinations of infection probabilities between spaces and agents.
Finally, in section 4 we analyze the reduction of spread by applying contact tracing, deciding on the
convenience of tracking contacts of contacts depending on the final epidemic size.
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2 A PARTICLE-BASED MODEL WITH CELL-DRIVEN DYNAMICS: CONTACT TRACING
AND INFECTIONS

We present an implementation of a SIR-like model using retQSS (Santi et al. 2020), a framework for
the modeling and simulation of particle systems in reticulated geometries. Particle models in retQSS
are described in µ-Modelica (Bergero et al. 2012), a subset of the Modelica language Fritzson (2014),
leveraging its expressive power to define spatially explicit kinetic dynamics in a compact and elegant
manner. We use this platform to model agents as particles participating in an epidemic process. Agents
in a population move within a virtual world represented by a grid of GxG cells, each of which is CxC in
area (arbitrary units). The trajectory of an agent is modeled as a uniform rectilinear motion, with random
initial position and direction, bouncing only at the borders of the grid. Finally, agents do not collide or
bounce off each other. This setup provides a homogeneous mix of free agents with a uniform probability
of visiting all cells in a sufficient time (provided that no external interventions are applied at the population
level, nor specific mobility patterns are assigned to certain individuals).

Yet, different motion properties such as position, velocity, and acceleration of each agent can be changed
at simulation time. For example, we can define a probability Psp to model a “super spreader” agent A and
set its velocity (V sp

A ) faster than normal agents, thus increasing the likelihood of interaction (and therefore,
of contagion) with other agents. Setting an agent’s velocity will also be relevant to model agent isolation.

In our model, agents undergo state changes according to Communicating Finite State Machines (CFSMs)
(Brand and Zafiropulo 1983) as shown in Figure 1. We define two different FSMs for an agent: the
epidemiological dynamics FSM and the contact tracing dynamics FSM. We define discrete states that
evolve separately although they influence each other, so that the global state of an agent is the composition
of the local state of each FSM.

Cells represent delimited environments with local dynamics. Agents interact with different environments
(cells) and with groups of agents within each cell. A cell, in turn, can change its state depending on the
state of agents traversing it. This mechanism produces dynamically changing contact networks at two
levels: local (spontaneous) networks and global (stable) patterns. With this approach, indirect influence
among two agents is allowed via the cell’s state (even when the cell is not shared synchronously).

Two different types of events can produce state changes for an agent: discrete event and time event.
A discrete event (or state event) occurs when an agent enters a new cell and triggers a set of potential
contagions as a consequence of being exposed to the new local environment. A time event occurs when
a timer elapses its period, representing typical delays of the infection (e.g. latency time) or healthcare
logistics (e.g. test time). We also model three age groups for the agents (Young, Adult, and Elderly) since
age is a relevant determinant for parameters such as symptomatic rate or mortality rate (Koh et al. 2021).

We will first describe the model regarding epidemiological aspects (SEIRD(AP) FSM) and then describe
its extension to incorporate Contact Tracing aspects (CT FSM) highlighting the smooth process of merging
novel dynamics incrementally. Finally we analyze the effects of tracking different levels (or rings) of
contacts for each index case namely direct contact (Level 1) and indirect contact (Level 2) (also contact
of a contact).

2.1 The SEIRD(AP) model

Different SIR-like models have been proposed as extensions of the basic SIR structure. In this work we
present the SEIRD(AP) model. It includes the Exposed state in addition to the Susceptible, Infected, and
Recovered states. Also, it distinguishes between three types of infected contagious states: Asymptomatic
(A), Presymptomatic (P), and Infected symptomatic (I). Finally, the model also sets a probability for the
agent to die during the symptomatic (I) state. Agents start as Susceptible except for a number I0 which starts
as Infected symptomatic. When Infected agents move, they can infect the cells they pass through and also
other agents in those cells. We define three different contagion probabilities for binomial trials, depending
on the agent’s state: PP

cont for Presymptomatic, PI
cont for Symptomatic and PA

cont for Asymptomatic. If the trial
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succeeds, the infection event is triggered. Otherwise, the agent does not infect at all in this cell. Infection
consists of two steps: i) the agent infects other agents with probability Pa→a

in f , computed individually against
each agent in the cell, ii) the agent infects the cell as it passes through it with probability Pa→c

in f . A cell
remains infected for Tres units of residual time, then restoring to a Clean state. If an agent infects an already
infected cell, Tres starts over.

Figure 1: Finite State Machines defining the main dynamics of the model: SEIRD(AP), Contact Tracing
and Cells. Illustrative example with 4 agents (1 recovered, 3 infected) and 15 cells.

When a Susceptible agent enters an Infected cell it can get infected with a cell-to-agent probability
Pc→a

in f , evolving to the Exposed (E) state. After a latency period (Tlat) it becomes infected (with ability to
infect) in two possible conditions: infected Asymptomatic (A) or infected Presymptomatic (P) depending
on a binomial distribution. We define this probability depending on the age group (PY

sym , PA
sym, PE

sym for
Young, Adult and Elderly agents respectively). Presymptomatic agents evolve into the Infected symptomatic
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state (I) after a period T P
in f = Tinc−Tlat , where Tinc is the incubation time (time since exposure to onset of

symptoms).
When an agent enters state (I), there is a detection probability PI

det that reflects how likely it is that the
agent will come into contact with the health system and be isolated for a period Tisol . An isolated agent
remains static and cannot infect other agents. When its infection period T S

in f elapses, the agent may evolve
to Recovered (R) or Dead (D) according to a probability of death that depends on the age group: PY

d , PA
d

and PE
d . On the other hand, if the infected agent is Asymptomatic, it recovers after a period T A

in f .
In Listing 1 we show an excerpt of the initialization phase in the SEIRD(AP) model (µ-Modelica

language), using the retQSS particle-geometry framework, where position and velocity in the 2D plane are
defined by Newtonian laws of motion. The initial conditions of the algorithm are defined and arrays are
used to store characteristic time periods (time arrays) for the agents and cells, defining when time events
occur, and triggering specific state changes according to Figure 1. All cells are initialized in a Clean state,
and all agents are initialized as Susceptible, except for an amount I0 of Exposed agents for whom we set
their latency time Tlat .

Listing 1: Initialization of the SEIRD(AP) model (code excerpt)

1 model SEIRD(AP)
2 equation // Agent kinetic dynamics
3 for i in 1:N loop // Derivatives of position and velocity in the x-y plane
4 der(x[i]) = vx[i]; der(y[i]) = vy[i];
5 der(vx[i]) = 0; der(vy[i]) = 0; // No acceleration
6 end for;
7 initial algorithm // system initial conditions
8 geometry_gridSetUp(G,C) // Size of the grid and cells
9 for i in 1:CELLS loop // Initialize the grid of cells
10 cellInfectionFinishTime[i] = 0
11 cellStatus[i] = CLEAN
12 end for;
13 for i in 1:N loop // Set random initial positions and velocities
14 (x[i],y[i]) = randomXYPoint(G);
15 (vx[i],vy[i]) = randomXYVelocity(V,PSS,VSS);
16 end for;
17 for i in 1:N loop // Set time arrays for SEIRD(AP) state change
18 if i <= I0 then // Initialize as Infected the first I0 agents
19 latencyStartTime[i] := 0;
20 else
21 latencyStartTime[i] := ∞;
22 end if;
23 infectionStartTime[i] := ∞;
24 symptomsStartTime[i] := ∞;
25 infectionFinishTime[i] := ∞;
26 agentStatus[i] = SUSCEPTIBLE;

27 setAgeGroupProperties(i,Pyoung,Padult,PY
sym,PA

sym,PE
sym,PY

d ,PA
d ,PE

d );

28 end for;

The main SEIRD(AP) dynamics are shown in Listing 2. The when clause in Modelica declares
event-driven behavior checking for a logical condition involving both discrete and continuous variables.
If combined with the time variable we can define time-driven events (i.e. time events) to check for time
conditions that trigger state changes in the FSMs. The particle nextCrossingTime function provided by
retQSS evaluates the next time an agent crosses from one cell to another. The onNextCross function
triggers the infection dynamics when the traveling agent enters the cell: i) if infected (states A, P, or I) it
could infect the cell, ii) if infected, it could infect other agents (in state S), and iii) if susceptible, it could
get infected by an infected cell.

This function could also return values that change the agent’s time array or direction (if it needs to
bounce on a border). Newly infected agents start their latency time (in their time arrays) and change state
from Susceptible to Exposed.

Other functions like onLatencyStart, onInfectionStart, onSymptomsStart and onInfectionEnd define
the state changes of an agent during its infection process and return updated values for future events.

For instance, when an agent reaches its infectionStartTime, onInfectionStart function is called, changing
the agent state from Exposed to Presymptomatic or Asymptomatic, depending on its symptomatic probability
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(which depends on age: PY
sym, PA

sym, PE
sym for Young, Adult, and Elderly). The Modelica code resembles

closely the formal FSM definition in Figure 1.

Listing 2: SEIRD(AP) epidemiological dynamics. Main algorithm (code excerpt)

1 algorithm
2 for i in 1:N loop // Iterate over each agent
3 when time > particle_nextCrossingTime(i,x[i],y[i],vx[i],vy[i]) then // Agent enters a new cell -> Update

properties

4 (latencyStartTime,cellInfectionFinishTime,updateVx,updateVy) = onNextCross(time,i,PP
cont,PI

cont,PA
cont,Pa→a

in f ,Pa→c
in f ,Pc→a

in f ,Tres

);
5 if updateVx then // If the agent reached a border, make it bounce
6 reinit(vx[i],-vx[i]);
7 elseif updateVy then
8 reinit(vy[i],-vy[i]);
9 end if;
10 end when;
11 when time > latencyStartTime[i] then // Agent exposed -> Change to Exposed state
12 infectionStartTime[i] = onLatencyStart(time,i,Tlat);
13 end when;
14 when time > infectionStartTime[i] then // Change to Asymptomatic or Presymptomatic

15 (infectionFinishTime[i],symptomsStartTime[i]) = onInfectionStart(time,i,T A
in f ,T P

in f );

16 end when;
17 when time > symptomsStartTime[i] then // Change to Symptomatic (only from Presymptomatic)

18 infectionFinishTime[i] = onSymptomsStart(time,i,T S
in f ,PS

det);

19 if not shouldMove(i) then
20 reinit(vx[i],0); reinit(vy[i],0);
21 end if;
22 end when;
23 when time > infectionFinishTime[i] then // Change to Recovered (from Symptomatic or Asymptomatic)
24 onInfectionEnd(time,i);
25 if shouldMove(i) then
26 (ux,uy) := randomXYVector(DEFAULT_VELOCITY);
27 reinit(vx[i],ux); reinit(vy[i],uy);
28 end if;
29 end when;
30 end for;
31 for i in 1:CELLS loop // Iterate over cells to clean if infection time expired
32 when time > cellInfectionFinishTime[i] then
33 cellStatus[i] = CLEAN;
34 end when;
35 end for;

2.2 Including Contact Tracing Dynamics

Each pair of agents that share a cell become mutual contacts and are included in each other’s contact list
which lasts for a limited amount of time. As shown in Figure 1, according to the Contact Tracing FSM,
agents start in Unknown state which means that nothing is known about the conditions of the agents. When
an Unknown agent becomes Symptomatic there is a probability (PI

det) of detection. Now, according to the
contact tracing intervention strategy, when it is detected, it changes its state to Suspected in the Contact
Tracing FSM. Immediately, a maximum number of contacts CL1 (Level 1 contacts) are queued up to be
contacted and, after a tracing time TL1, they are successfully contacted with a probability PL1. This reflects
the chances to contact them by calling or messaging. Each contacted agent changes its state to Contact
Level 1 and the process is repeated for a maximum number of contacts CL2 (Level 2 contacts) after a time
TL2 and with probability PL2. In addition, when agents are in L1 and L2 states, also have another probability
of detection (PL1

det) and (PL2
det), modeling the effect of taking medical care and self isolate.

Note that these probabilities are defined independently of the PI
det . Agents can also change from

Unknown to Suspected with a random detection probability Prnd (this only happens if they are not in an
Infected state). Once agents in Suspected state are tested (after a test delay time Ttest), they can change to
Tested Positive state or again to Unknown depending on the state in the SEIRD(AP) state machine. If the
agent changes to Tested Positive it is automatically isolated during a time Tisol . If an agent gets Infected
and then gets Recovered or Dead in the SEIRD(AP) FSM, it is set to the Removed (V) state in the Contact
Tracing FSM. The implementation of Contact Tracing intervention strategy is shown in Listings 3 and 4.
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Listing 3: Adding Contact Tracing dynamics. Extension of the initialization model in Listing 2.
Newly added code highlighted in red. Previous code not shown (placeholders in blue)

1 equation
2 (same code as before) // Define derivatives of the position and velocity
3 initial algorithm
4 (same code as before) // Initialize the grid of cells
5 (same code as before) // Set random positions and velocities
6 (same code as before) // Set time arrays for SEIRD(AP) state change
7 for i in 1:N loop // Set time arrays for Contact Tracing state change
8 testResultTime[i] := ∞;
9 level1ContactTime[i] := ∞;
10 level2ContactTime[i] := ∞;
11 isolationFinishTime[i] := ∞;
12 agentTrackingStatus[i] = UNKNOWN;
13 end for;

Listing 4: Adding Contact Tracing dynamics. Extension of the main algorithm in Listing 3.
Newly added code highlighted in red. Previous code not shown (placeholders in blue)

1 algorithm
2 for i in 1:N loop
3 (same code as before) // Update properties when an agent enters a new cell
4 (same code as before) // Change to Exposed state
5 (same code as before) // Change to Asymptomatic or Presymptomatic
6 (same code as before) // Change to Recovered (from Symptomatic or Asymptomatic)
7 when time > symptomsStartTime[i] then // Change to Symptomatic (only from Presymptomatic)

8 (infectionFinishTime[i], testResultTime[i], level1ContactTime) := onSymptomsStart(time,i,T S
in f ,PS

det,PL1
det,PL2

det,Ttest);

9 if not shouldMove(i) then
10 reinit(vx[i],0); reinit(vy[i],0);
11 end if;
12 end when;
13 when time > testResultTime[i] then // Test delay ends, change to Tested Positive or Unknown depending on test

result
14 isolationFinishTime[i] := onTestResult(time,i,TESTED_POSITIVE_ISOLATION_TIME);
15 if shouldMove(i) then // If test result is positive, start moving again
16 (ux,uy) := randomXYVector(DEFAULT_VELOCITY);
17 reinit(vx[i],ux); reinit(vy[i],uy);
18 end if;
19 end when;
20 when time > level1ContactTime[i] then // Contact level 1 is isolated
21 (isolationFinishTime[i],level2ContactTime) := onLevel1Contact(time,i,Tisol);
22 reinit(vx[i],0); reinit(vy[i],0);
23 end when;
24 when time > level2ContactTime[i] then // Contact level 2 is isolated
25 isolationFinishTime[i] := onLevel2Contact(time,i,Tisol);
26 reinit(vx[i],0); reinit(vy[i],0);
27 end when;
28 when time > isolationFinishTime[i] then // When isolation ends, start moving again
29 release := onIsolationFinish(time,i);
30 if shouldMove(i) then
31 (ux,uy) := randomXYVector(V);
32 reinit(vx[i],ux); reinit(vy[i],uy);
33 end if;
34 end when;
35 end for;

Time delays and probabilities mentioned above are parameters of the model and their values are
presented in Table 1 (Appendix A). We fixed some parameters and swept others to analyze scenarios.

3 SIMULATION OF A SHARED ROOM-DRIVEN CONTAGION PROCESS

We analyze the emergence of contagion patterns as a disease spreads due to sharing closed (or semi-open)
spaces, leveraging the cell-mediated contagion dynamics described in the previous section. This scenario is
consistent with the latest evidence suggesting the strong influence of airborne contagions in SARS-CoV-2
(Prather et al. 2020; Morawska and Milton 2020).

We study the effect of varying the infection probabilities Pa→a
in f (agent-to-agent), Pa→c

in f (agent-to-cell)
and Pc→a

in f (cell-to-agent) described before. Collisions between particles are not considered in our model,
as agent-to-agent interactions are triggered in a 1-to-many scheme each time a new agent enters a cell.
Higher values of Pa→a

in f depict situations when individuals are less likely to wear face masks or obey social
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distancing rules. Higher values of Pa→c
in f or Pc→a

in f depict cases of poorly ventilated rooms. In Figure 2, we
show the results a parameter sweeping experiments of these three probabilities, presented as heatmaps for
the reproduction number R in each scenario (panels a, b, c, and d).

Figure 2: Average Reproductive Number R for scenarios with different probabilities of infection (panels a
to d), and temporal evolution of selected compartments for specific scenarios (panels e and f).

In each simulation we calculate the overall average R as follows: first, we calculate the number of
secondary infections produced by each agent during its infective period. Then we take the average of these
values over all agents for the full simulation time. In turn, each point in the heatmap is calculated as the
average of 10 repetitions of the stochastic simulation with the same model parameters.

The asymptomatic infection rate is still under debate. Many studies have attempted to estimate it and
the variability is very high. Studies on contact tracing estimate an average asymptomatic rate of 20%
(Syangtan et al. 2021), while others reported results of more than 50% (Byambasuren et al. 2020) and up
to 80% (Hu et al. 2020). For this reason, we decided to simulate both low and high asymptomatic rates.

We show on each row two scenarios with different proportions of symptomatic agents: 15% (low) and
72.5% (high). These percentages are the result of the proportion of Young, Adult, and Elderly agents in the
population and their respective symptomatic probabilities. For this experiment, we do not sweep the age
group probabilities, and set them as Pyoung = 0.25 and Padult = 0.5. As agents not showing any symptoms
do not self-isolate, it is expected that a high proportion of asymptomatic agents would cause the infection
to spread faster. In the bottom row, we tested a high proportion of symptomatic agents (72.5%) where the
infection consistently spreads at lower rates (smaller R values for the same parameters, as compared to the
top row). In general, when these two parameters increase, the average R also increases.

In the first column we assigned Pa→a
in f = 0 (i.e. contagion is purely airborne, driven by infected cells)

and we still found scenarios with R > 1. This suggests that even if agents do not infect each other directly,
we can still find an epidemic process purely mediated by the concentration of aerosols in shared spaces.
In the second column an agent-to-agent infection probability Pa→a

in f = 0.05 is considered. As expected, this
increased the average R consistently. Surprisingly, we could not assign values above Pa→a

in f = 0.1 without
reaching unrealistically high R values (not shown in the figure).
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Finally, in order to find suitable values for these parameters, we looked for configurations with average
values of R between 2.5 and 3.0. As this range can be met by several combinations of parameter values,
we decided to choose the lowest possible values. From now on we will assume Pa→a

in f = 0.05, Pc→a
in f = 0.2,

Pa→c
in f = 0.2. As an example, panels e and f in Figure 2 show the time evolution of Susceptible, Exposed,

Infected (all types) and Removed (Recovered and Dead) states of the SEIRD(AP) model for the chosen
set of default parameters (highlighted in panels b and d).

4 SIMULATION OF CONTACT TRACING STRATEGIES AND DIFFERENT AGE GROUPS

We analyze contact tracing and isolation strategies on top of the SEIRD(AP) dynamics studied in the
previous section. We analyze two different aspects of these interventions: i) the maximum number of
contacts to trace for each suspected index case, both at Level 1 (CL1, direct contact) and Level 2 (CL2,
contact of a contact) and ii) the delay it takes for an agent to isolate since it is contacted, also both at
Level 1 (TL1) and Level 2 (TL2). We performed parameter sweeping experiments to estimate the resources
needed for this intervention strategy, such as the number of calls per day required to effectively decrease
the reproductive number R, or the number of laboratory tests needed to process the samples fast enough.

As shown in Figure 3, we evaluated the simulation outcomes in terms of how many agents were infected
at the end of the experiment when the outbreak ends. This is often referred to as the Final Epidemic
Size (FES) and is presented as a percentage of the total population. We simulated three scenarios, setting
different proportions of Young, Adult, and Elderly agents, and studied how this structure impacts in the
efficiency of the contact tracing strategy. The scenarios are defined as young: (Pyoung,Padult) = (0.5,0.25),
adult: (Pyoung,Padult) = (0.25,0.5) and elderly: (Pyoung,Padult) = (0.25,0.25). Only two parameters differ
between age groups: symptomatic probability and probability of death. As expected, FES is consistently
higher for a younger population structure because of their lower symptomatic probability. The larger the
proportion of asymptomatic agents, the lower the number of isolations, which results in higher FES values.

The results do not differ greatly between Adult and Elderly populations, since their asymptomatic
probabilities are similar. According to the scenarios analyzed, we can conclude that L2 contacts (contacts
of contacts) should not be reached because investing resources in this mechanism is not efficient, leading to
consistently higher values of FES (implying more hospitalized and deceased agents). Even when trying to
reach only one L2 contact for each L1 contact (panels d, e, and f) the process ends with a higher proportion
of infections as compared to the strategy where no L2 contacts are considered (panels a, b, and c).

5 DISCUSSION

Lockdowns as the only type of control strategy are a very traumatic type of intervention from the economic
point of view (Ahir et al. 2020; Bai et al. 2020). Therefore, it becomes necessary to develop complementary
strategies to slow the spread of the virus. Even when agents are committed to abiding by preventive measures
(e.g. using facemasks and maintaining social distancing) the effects of aerosols in poorly ventilated rooms
can still lead to strong contagion processes. We verified this effect in our model, supporting the increasing
evidence that points to the transmission of COVID-19 occurring mostly in indoor environments via aerosols.
Contact tracing is also considered a key type of intervention strategy, though its efficiency decreases noticeably
when contact delays increase (Hellewell et al. 2020; Kretzschmar et al. 2020).

We show this inverse relation happens when FES is less than 40%. But for FES higher than 50%, the
contact tracing delay plays a lesser role. We think this could be caused by the effect of cell-to-particle
contagions, as the viral load of an agent that infected a cell (via aerosols) can last beyond the moment
where the agent is detected and isolated. Further analysis is needed about the relation between contact
tracing and cell-mediated contagion.

On the other hand, we conclude that the number of contacts traced per index case is a key parameter to
optimize the strategy. Consistently with other studies (He et al. 2020; Moghadas et al. 2020) we verified
that asymptomatic and presymptomatic transmission are key factors fueling the spread of the virus.
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Figure 3: Final Epidemic Size (FES) for varied contact tracing strategies and different age groups.

6 CONCLUSIONS

In this work, we extended the retQSS particle-geometry modeling and simulation framework to analyze
varied types of dynamics relevant to the transmission of the SARS-CoV-2 virus. We were able to build
compact, easy-to-interpret specifications of hybrid dynamics combining a continuous subsystem (the kinetic
motion of particles), very frequent discrete events (the cell boundary crossings), and a complex set of timed
events linked to mutually influencing Finite State Machines. By adopting a Modelica-based specification,
the intricacies of solving numerically all possible interactions between continuous, discrete event, and
time event dynamics are hidden from the modeler, which greatly simplifies his or her tasks, facilitating
interdisciplinary work on complex models. We combined diverse domains of concern, such as an epidemic
process (the SEIRD(AP) model), a public policy (Contact Tracing), and the interaction of particle-like
agents simulating contagion through a cell-mediated mesoscopic process. Our experimental results are
consistent with other works in the literature, suggesting that the analysis performed is useful to understand
effects of contact tracing strategies in epidemics driven by airborne infections.

We plan to extend this work by conducting more comprehensive parameter sweep experiments to assess
the sensitivity of the model, use more specific probability distributions for intervals characteristic of the
stages of infection (incubation, pre-syntomatic, etc.), and include other non-pharmaceutical interventions
such as intermittent lockdowns.
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A APPENDIX

Table 1: Parameters of the model.
U(a,b): Uniform distribution on the interval. [a-b]: Interval of values. [a,b,...]: Enumeration of values.
T: Type of usage (F=Fixed, S=Sweep).

Parameter Symbol Value Units T Parameter Symbol Value Units T
Environment Contact remaining prob. decay Drem 0.95 Factor F
Total number of agents N 2000 Agents F Test delay time Ttest U(0.5,2) Days F
Initial infected agents I0 5 Agents F SEIRD(AP)
Grid size (GxG) G 10 Cells F Infection prob. (agent to agent) Pa→a

in f [0,0.05] Prob. S
Cell size (CxC) C 4 Distance F Infection prob. (agent to cell) Pa→c

in f [0-0.5] Prob. S
Default velocity V 1 Speed F Infection prob. (cell to agent) Pc→a

in f [0-0.5] Prob. S
Population Cell residual time Tres U(0.5,1) Days F
Super spreader prob. PSS 0.05 Prob. F Symp. prob. (young) PY

sym [0.0,0.5] Prob. S
Super spreader velocity VSS 4 Speed F Symp. prob. (adult) PA

sym [0.2,0.8] Prob. S
Young prob. Pyoung [0.25,0.5] Prob. S Symp. prob. (elderly) PE

sym [0.2,0.8] Prob. S
Adult prob. Padult [0.25,0.5] Prob. S Contagion prob. (presymp.) PP

cont 0.5 Prob. F
Contact Tracing Contagion prob. (symp.) PI

cont 1.0 Prob. F
Random detection prob. Prnd 0.01 Prob. F Contagion prob. (asymp.) PA

cont 0.5 Prob. F
Symp. detection prob. (L1) PL1

det 0.9 Prob. F Latency time Tlat U(1,3) Days F
Symp. detection prob. (L2) PL2

det 0.9 Prob. F Symp. detection prob. PI
det 0.9 Prob. F

Contacts traced (L1) CL1 [0-16] Indiv. S Isolation time Tisol 20 Days F
Contacts traced (L1) CL2 [0-16] Indiv. S Infection time (presymp.) T P

in f U(4,7) Days F
Contact success prob. (L1) PL1 0.95 Prob. F Infection time (symp.) T I

in f U(8,11) Days F
Contact success prob. (L2) PL2 0.95 Prob. F Infection time (asymp.) T A

in f U(12,18) Days F
Contact delay time (L1) TL1 [0-9] Days S Death prob. (young) PY

d 0.0 Prob. F
Contact delay time (L2) TL2 [0-9] Days S Death prob. (adult) PA

d 0.005 Prob. F
Contact remaining prob. base Prem 0.95 Prob. F Death prob. (elderly) PE

d 0.03 Prob. F
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