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ABSTRACT

We introduce DeepABM, a computational framework for agent-based modeling that leverages geometric
message passing for simulating action and interactions over large agent populations. Using DeepABM
allows scaling simulations to large agent populations in real-time and running them efficiently on GPU
architectures. Using the DeepABM framework, we build DeepABM-COVID simulator to provide support
for various non-pharmaceutical interventions (quarantine, exposure notification, vaccination, testing) for the
COVID-19 pandemic, and can scale to populations of representative size in real-time on a GPU. DeepABM-
COVID can model 200 million interactions (over 100,000 agents across 180 time-steps) in 90 seconds,
and is made available online to help researchers with modeling and analysis of various interventions. We
explain various components of the framework and discuss results from one research study to evaluate the
impact of delaying the second dose of the COVID-19 vaccine in collaboration with clinical and public
health experts.

1 INTRODUCTION

The coronavirus has had significant impact on global society and economy. Successfully navigating this
phase involves answering a series of “what-if” questions that can have long lasting implications on our
future. These questions may include: what-if we delay the second dose of the vaccine, what-if we reopen
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schools, what-if we impose a lockdown, etc. Agent-Based Modeling (ABM) has emerged as a central
tool that can help policy makers ground their decisions to tackle these challenging questions. ABMs are
descriptive simulation models that enable one to (i) study the actions and interactions of large heterogeneous
populations, and (ii) analyze the emergent effects of behavioral and clinical interventions on various public
health outcomes such as cumulative mortality, infections and hospitalizations.

While ABMs are powerful descriptive tools, emergent behavior can be highly sensitive to the scale of
the input population and calibration of the input parameters. Conventional ABM frameworks such as Mesa
and NetLogo (Masad and Kazil 2015; Wilensky 2021) follow an object-oriented design that is centered
around agent definition and actions, which are characterized as objects. While conceptually appealing, these
are often inefficient to scale to large agent populations to sufficiently represent the behavior in real-world
contexts. In this work, we introduce DeepABM, a novel framework for agent-based modeling that takes
a network-centric approach that revolves around the interaction networks of the agents in the simulation.
DeepABM builds upon concepts of tensor-calculus and graph neural networks in deep learning to deliver
scale and efficiency to these descriptive simulations.

In DeepABM, individual agents (and their states) are modeled as tensors, while their interactions as
represented as permutation-invariant message-passing operations in graph neural networks. Leveraging the
advantages of and recent advances in in graph deep learning, DeepABM can seamlessly scale to large
populations (of size greater than 100,000 agents) in real-time and efficiently execute on graphic processing
units (GPU). Furthermore, while not used to obtain the results discussed in this paper, DeepABM can also
concurrently calibrate a large number of input parameters using supervised gradient-based optimization
instead of (restrictive) randomized search methods.

DeepABM has been adapted during the COVID-19 pandemic to efficiently simulate transmission
dynamics and study the impact of various non-pharmaceutical interventions (NPIs) on various public health
outcomes. We will, henceforth, refer to this model as DeepABM-COVID. Agent distribution and their
interactions in DeepABM-COVID are parameterized using real-world census data. Parameters related to
disease transmission and progress are calibrated using a plethora of research studies that analyze real-life
clinical data. DeepABM-COVID models agent interaction over multiple networks (household, occupation
and random) and can concurrently support several diverse interventions (quarantine, exposure notification,
testing, vaccination). DeepABM-COVID can model 200 million interactions over 100,000 agents across
180 timesteps in about 90 seconds on a GPU. To contextualize the extend of this gain, we benchmarked
our analysis by implementing the same simulation in Mesa, which takes around five hours to execute.

DeepABM-COVID has already been used in a research study that analyzes the impact of delaying the
second dose of the two-dose COVID-19 vaccines, in favor of administering the vaccine to a broader segment
of the population. This research has been recently published in British Medical Journal and has received
attention from the various research communities considering effective vaccine allocation strategies. The
simulation study, parameters and behavior governing vaccine efficacy, immunity against the vaccine, etc.
have been designed in collaboration with leading clinical and public health experts from the Mayo Clinic
and Arizona State University. Other members of the team includes computational scientists from MIT as
well as biostatisticians from Mayo Clinic and Harvard University. We outline some of the relevant results
from that study in Section 5 below, and refer the reader to Romero-Brufau et al. (2021).

The following sections provide more detailed information about the framework, with the rest of the
paper structured as follows. Section 2 includes various fundamental aspects of the DeepABM framework,
Section 3 discusses the DeepABM-COVID framework, which was specifically developed to model the
COVID-19 pandemic. Section 4 outlines in more detaul how the various interventions for COVID-19 have
been modeled in this framework. Section 5 includes a detailed case-study presenting the effect of delaying
the second dose of vaccines developed for COVID-19. Finally, we present conclusions and some avenues
for future work in Section 6.
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2 PRELIMINARIES

2.1 DeepABM

DeepABM is a tensor calculus based approach for our simulations. In this approach, agents are not modeled
as objects, but rather agent states are modeled as tensors and tensor algebra is used to model state transitions.
Vectorized implementations of ABM have been explored in literature, primarily for mean-field or similar
approximation based models and also for some agent based models. However, to the best of our knowledge,
this is the first time a network based model that captures individual interactions, is modeled using tensor
calculus. Essentially, we use the message passing abstraction of graph convolutional neural networks
to model the inter-agent interaction and associated infection dynamics (Kipf and Welling 2016). The
message passing network (Zhong, Li, and Pang 2020) provides infrastructure to collect messages (effects
of interactions) from all neighbours of a node for all nodes in a network. This design has been central to
significant progress in geometric deep learning (Kipf and Welling 2017; LeCun et al. 2015; Veličković
et al. 2017). Hence, deep learning frameworks (such as Pytorch Paszke et al. (2019)) provide optimized
differentiable implementations for this with support for GPU execution. We leverage this graph deep
learning infrastructure to design interaction networks and model inter-agent interactions over them (such
as disease spread) in agent-based models. The disease dynamics are modeled using standard parametrized
tensor operations.

2.2 Mathematical framework

The underlying mathematical framework for DeepABM can be considered to be a partially observable
semi-Markov game (POSMG), which is a slight modification of the definition given in (Littman 1994). Our
ABM is modeled as a game as each agent receives different information (partial observations) at each step
and chooses its response in a decentralized manner based on its private information and its own objective.
We further consider this as a semi-Markov game as the decision epochs or state sojourn times are sampled
from a distribution that depends on the current state and next state of the agent, unlike a fixed sojourn time
as in Markov games. Furthermore, the action spaces of the agents are state-dependent.

3 COMPONENTS OF DeepABM-COVID

To design DeepABM-COVID, we adopted the basic disease infection and progression parameters used in
Abueg et al. (2020) and implemented a number of non-trivial extensions. The following sections provide
information on the various components of DeepABM-COVID for the sake of completeness. Further
information on choices of parameters, and other characterizations of realistic behavior can be found in
Romero-Brufau et al. (2021).

Agent State Definition: At any given time step, the state of the agent is composed of static and
dynamic components. The dynamic components include agent attributes that change over time when an
agent interacts with others. The static components are attributes of the agent that do not change over
the course of the simulation. However, these static components influence an agent’s interaction with its
neighborhood and the subsequent evolution of the dynamic attributes. This agent state is represented as a
one-dimensional tensor obtained by concatenating the static and dynamic components.

For the agent representation in DeepABM-COVID, the static component includes the following attributes:
(i) age, (ii) household, (iii) occupation, (iv) (random) number of daily interactions. Each of these attributes
are categorical variables and are initialised for each agent using the real-world census (for age, household,
and occupation) and mobility data (to generate the number of interactions) for King’s County in the State
of Washington. In particular, age corresponds to an identifier from 1 to 8 (non-overlapping) age-groups
and occupation corresponds to an identifier from 1 to 23 possible defined occupations.

The dynamic component of each agent’s state includes the following attributes: (i) (current) disease
stage, (ii) quarantine status, and (iii) vaccination status. At any step, the disease stage of each agent can be
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one of the defined eleven values: susceptible, asymptomatic, presymptomatic mild, presymptomatic severe,
mild symptomatic, severe symptomatic, hospitalized, critical in ICU, recovered, vaccinated or dead. For
vaccination, we assume that the available vaccines follow a two-dose regimen, and the vaccination status
can take one of three distinct values: pre-vaccination (1st dose eligible), partially vaccinated (1st dose
completed), and fully-vaccinated (second dose completed). The quarantine status for an agent is a binary
variable: true or false. These dynamic components change over time and drive various events (such as
transmission instance) in the simulations. To initialize the agent population, we use the census and mobility
statistics for Kings County, WA as in Hinch et al. (2020).

Interaction Networks: At any step of the simulation, each agent interacts with neighboring agents
concurrently across three independent networks. In the DeepABM-COVID simulator, these networks are
used to represent (i) household network, which defines cross-age interactions within family members, (ii)
occupation network, which defines interactions due to the individuals’ employment at their workplaces at
different industries, and (iii) a random interaction network, which defines other random interactions agents
may have over the course of a day.

There are multiple household networks in the simulation, one for every household, each of which
is modeled as a fully-connected network. Each agent is assigned to a single household network at the
initialization and this remains fixed throughout the simulation. We assume that each (non-quarantined)
agent is connected to and will interact with every other agent in his household at every step.

There are 23 occupation networks (as in Hinch et al. (2020)) defined in the current version of
DeepABM-COVID. Every agent is assigned to a single occupation network once at initialization, and this
assignment does not change throughout the simulation. Each occupation network is modeled as a small-
world Watts-Strogatz network (Watts and Strogatz 1998), which is initialized once but re-parameterized at
every step. What this means is that the specific agents in an occupation network (i.e., those that share the
same occupation) don’t change over time but each agent may interact with a different subset of agents on
any given day. The re-parameterization of each occupation network is done independently in accordance
with the value of the parameter that defines the mean number of daily interactions for that occupation.

There is a single global random network in the simulation. This is modeled as a small-world Watts-
Strogatz network that is re-initialized at every time step. The network is used to simulate infections that
result from random interactions that agents may have with unknown individuals. These interactions, for
instance, may occur during visits to the grocery store, doctor’s office, at the train station, etc. We observe
that these random interactions play a significant role in viral spread in the simulation, in consistence
with real-world estimates. At any given time step, we use each agent’s (age-stratified) number of random
interactions to parameterize this global random network. We define the networks using the interaction
parameters given by Hinch et al. (2020).

We next explain the transition dynamics that govern the agent state transitions over simulation steps
in DeepABM-COVID. This involves studying the infection transmission that regulates per-step inter-agent
interactions and the consequent inter-step per-agent disease progression.

Infection Transmission: Infection is spread through interactions between infected and susceptible
individuals. The rate of transmission primarily depends upon: (i) infectiousness of the pathogen, (ii)
age-dependent susceptibility of infectee to transmission, and (iii) type of interaction (i.e., in which network
it occurred).The infectiousness varies over time, starting at zero when the agent is infected, peaks at an
intermediate time and eventually tends to zero. Duration of infectiousness is modeled with a gamma
distribution and we use the values referenced by Abueg et al. (2020) for the mean and standard deviation
as clinically studied in Ferretti et al. (2020), Ganyani et al. (2020), and Ma et al. (2020). The infection
susceptibility of an agent is modeled as age-stratified following the studies in Luo et al. (2020), Zhang
et al. (2020), and Bi et al. (2020). In particular, we stratify age into nine age-groups: 0-10, 11-20, 21-30,
31-40, 41-50, 51-60, 61-70, 71-80, and 80+, and follow the susceptibility parameters as used in (Abueg
et al. (2020)). The type of interaction is defined by the specific network in which it originates. To account
for the duration of interaction, which is not directly observable, we use a multiplicative scalar to amplify
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effect of interaction in household networks. Finally, viral transmission in each interaction is represented
by the following equations:

λ (t,si,as,n) =
RSasAsiBn

Ī

∫ t

t−1
fΓ(u; µi,σ

2
i )du, (1)

P(t,si,as,n) = 1− e−λ (t,si,as,n), (2)

where t denotes the amount of time since infection; si indicates the infector’s symptom status (asymptomatic,
mild, moderate/severe); as is the age of the susceptible; n is the type of network where the interaction
occurred; I is the mean number of daily interactions; fΓ(u; µi,σ

2
i ) is the probability density function

of a gamma distribution; µi and σi are the mean and width of the infectiousness curve; R scales the
overall infection rate (under some simplifying assumptions it is mean number of people infected by each
moderately/severely symptomatic individual); Sas is the scale-factor for the age of the susceptible; Asi is
the scale-factor for the infector being asymptomatic; Bn is the scale-factor for the network on which the
interaction occurred.

Disease Progression: When an agent is infected, it enters a hierarchy of disease progression, as
summarized in Romero-Brufau et al. (2021). This corresponds to the evolution of disease stage (which
is part of the dynamic component of an agent state) of an agent during the course of the simulation.
The progression time delay and probability between two disease stages primarily depends upon age of
agent. These parameters are obtained from established clinical literature for COVID-19 disease progression.
Essentially, the duration of various disease stages of an agent is randomly generated using continuous time
distributions with disease stage and age-dependent parameters.

4 MODELING OF INTERVENTIONS IN DeepABM-COVID

The DeepABM-COVID simulator currently supports the following interventions: isolation and self-
quarantine, digital exposure notification (DEN), testing, and vaccination.

4.1 Self-quarantine

Upon experiencing symptoms, agents undertake a diagnostic test. If the test returns positive, then the agent
is self-quarantined for 14 time steps (days). There is a daily dropout probability from the quarantine to model
non-compliance in the real-world. When an individual starts quarantine, the quarantine status attribute in
agent state is set to true (=1). Once an agent breaks quarantine, after 14 days or due to non-compliance,
the quarantine status is reset to false. This cannot be updated until a new test is administered (following
re-emergence of symptoms) which turns positive and initializes a new quarantine instance. Agent quarantine
status influences the infection transmission from interactions on the given day. While agent is successfully
quarantine, we scale the infectiousness of the agent to 0 when modeling interactions.

4.2 Digital Exposure Notification (DEN)

When an agent tests positive, he starts to self-quarantine for a period of 14 days. If DEN is enabled to do
so, a test notification is sent to other (non-quarantined) agents that this positive agent interacted with over
the past 7 steps (days). We note that this notification is only sent to agents that also have access to the
exposure notification app (kept as part of agent state variable) to mimic real-world constraints on digital
contact tracing. Agents are assigned DEN app access randomly at initialization with a probability governed
by an app-adoption parameter in society. The notified agents may undergo a test (based on compliance
probability) on the next step of simulation and undergoes self-quarantine if the test returns positive.
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Figure 1: Mean and standard deviation for cumulative incidence of mortality and infections when simulation
with different combinations of interventions. POC Test refers to the Rapid Point-of-care Testing intervention.

4.3 Testing

DeepABM-COVID simulations have support for various kinds of testing types: RT-PCR test (which is the
most accurate type of testing available), an antigen test, and a much less accurate, rapid point-of-care test.
During a specific simulation run, we assume that only one of the three tests is present in the community,
although this assumption can be relaxed. Each test is parameterized by two variables: (i) specificity, and (ii)
turnaround time. To model real-world constraints of sample collection, analysis and delivery, we assume
the following parameters for each of the three tests: i) rapid antigen test (specificity=0.65, time=2 steps), ii)
RT-PCR test (specificity=0.95, time=3 to 5 steps uniformly sampled), iii) rapid point-of-care test (specificity
= 0.85, time=1 step). For all simulations, we use RT-PCR test by default, unless specified otherwise.

4.4 Vaccination

DeepABM-COVID simulates the two-dose vaccination regimen as followed in the mRNA vaccines such
as Pfizer and Moderna. In the simulation, it is possible to make different assumptions on the timing of the
doses, the efficacy of each dose, and the prioritization scheme to be followed in the vaccination campaign.
Further details on vaccination modeling capabilities of DeepABM-COVID can be found in Section 5.

4.5 Sample Simulation Results with Interventions

We study the effect of simulating with the different interventions presented above and present few sample
results in Figure 1. The results correspond to mean and standard deviation of 10 independent runs over
120 steps. We compare four configurations: a) no-intervention b) self-quarantine c) self-quarantine + DEN
d) self-quarantine + DEN + Rapid Point-of-Care Testing. To ensure consistence with real-world scenarios,
we assume DEN app-adoption of 0.3 and an app compliance probability of 0.8. The point of care test
has turnaround time of 1 step (i.e. same day) and we assume specificity of 0.85 to account for real-world
variability in sample collection and analysis. The results show that all interventions help reduce cumulative
incidence of deaths and infections and incremental addition of new interventions further helps in controlling
spread. We study the effect of the vaccination intervention with detailed sensitivity analysis in Section 5.

5 CASE STUDY: IMPACT OF DELAYING SECOND DOSE OF COVID-19 VACCINES

One of the most significant accomplishments of the COVID-19 pandemic response has been the development,
manufacture and deployment of vaccines against the disease. Massive investment and innovative science have
yielded multiple effective SARS-CoV-2 vaccines in record time. Two of the most effective vaccines, namely
those produced by Pfizer and Moderna, consist of two-dose regimens with the second dose administered
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21 or 28 days following the initial dose, while the approved viral vector vaccine received approval with a
second dose 4-12 weeks after the first. As with most clinical trials of new therapeutics, dosing regimens
were decided a priori, based on a combination of preliminary data and intuition. Emerging data, however,
have suggested that most of the protective benefit conferred by SARS-CoV-2 vaccines may result from a
single dose alone. If true, this may have significant implications regarding the optimal allocation of limited
vaccines. In particular, multiple public health authorities have speculated that deviating from the standard
two-dose regimen in favor of a broader one-dose regimen may save lives and reduce infectious spread.

Despite the increasing pace of vaccinations in the US, the vaccine supply, relative to the worldwide
populations in need remains constrained. We therefore sought to understand the population health impli-
cations of delaying the administration of second dose vaccines in favor of vaccinating a broader number of
people with a first dose. In particular, our goal in this study was to compare the effectiveness of the standard
dosing strategy to that of a delayed second dose strategy, which prioritizes the vaccination of a first-dose
eligible individual using an agent-based simulation model. In alignment with the age-based prioritization,
both strategies we considered observe prioritization by age. Despite the fact that our agent based simulation
model involves representations of social and employment networks, we did not consider any prioritization
with respect to employment sector; i.e., healthcare workers, for example, were not prioritized over other
employment networks. In addition to the standard dosing and delayed second dose strategies, we consider
a third alternative strategy, which we refer to as delayed second dose except for 65+ to test if the increased
mortality risk among the elderly implies a differential vaccine dosing regimen for this segment of the
population.

It is useful to provide the following example to demonstrate the three vaccination strategies clearly,
we offer the following example of six hypothetical individuals: Adam - first dose eligible 78 yr old; Betty
- second dose eligible 78 yr old; Charlie - first dose eligible 68 year old; David - second dose eligible 68
year old; Eleanor - first dose eligible 40 year old; Frank - second dose eligible 40 year old. Table 1 below
shows the order in which these individuals are prioritized for vaccine administration under each strategy.

Table 1: Description of the three strategies to be compared

Name of Strategy Description
Priority list under
the strategy will be

Standard dosing
(two doses on schedule)

Age prioritized vaccination with second dose
at 21 days

Betty, David, Frank,
Adam, Charlie, Eleanor

Delayed second dose
Age prioritized vaccination prioritizing
vaccination of first-dose eligible individuals

Adam, Charlie, Eleanor,
Betty, David, Frank

Delayed second dose
except for 65+

Age prioritized vaccination with first dose
prioritization, except for the elderly (above 65),
who received a second dose on schedule

Adam, Betty, Charlie,
David, Eleanor, Frank

To analyze the effectiveness of these three strategies, we use the DeepABM-COVID simulator ex-
plained above. The modular design of the DeepABM toolkit enabled seamless implementation of various
prioritization logic with minimal edits. Further, we also augment several extensions to accurately reflect
the immunity that first dose and second dose vaccines confer on individuals, as we explain below. Various
further details on the statistical analysis of clinical data to justify our choices of these parameters are
provided in Romero-Brufau et al. (2021).

We assume that a dose of the vaccine provides a certain probability of becoming immune to infections.
This probability is dependent on whether the vaccine is administered as a first dose or a second dose.
In accordance with trial data, we assume that twelve days after receiving the first dose of the vaccine,
agents have a 60%, 70%, 80% or 90% probability of becoming immune (depending on the scenario). After
receiving the second dose, agents reach a 95% probability of becoming immune.

We consider two versions of the immunity offered by the vaccine. In the first version, we assume that
the vaccine provides sterilizing immunity, meaning that agents, even when they are exposed to the virus,
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do not get infected. Under the other version of the immunity effect we tested, agents still get infected at
the same rate as non-vaccinated agents, but they experience asymptomatic infections with the associated
probabilities. In this case, they can still transmit the disease with the same probability as a non-vaccinated
asymptomatic patient.

Under each vaccination strategy, we run 15 replications of the agent based simulation for 180 days,
and observe the number of infections, hospitalizations and deaths over time for each simulation replication.
We initialize the simulations with 10 infected agents and start vaccinations when the number of infected
agents reach 1% of the population, which happens around simulated day 20. We plot the median as well as
25th and 75th percentiles of those 15 runs for each outcome of interest under the vaccination strategies to
compare and contrast them with respect to their effectiveness in reducing the number of cumulative deaths
as well as cumulative infections and the number of hospitalizations over time. We evaluate the performance
of the three strategies under a number of different carefully constructed cases to support decisions by
public health officials tasked to design and deploy vaccination campaigns. More details can be found in
Romero-Brufau et al. (2021) but we include below two important observations on the impact of (i) efficacy
of the first dose of vaccine and (ii) daily vaccine administration rate.

Figure 2: Comparison of cumulative mortality for delayed second dose versus standard dosing under four
different first dose vaccine efficacy assumptions. Adopted from Santiago Romero-Brufau et al. BMJ
2021;373:bmj.n1087, copyright 2021 British Medical Journal Publishing Group.

Impact of Vaccine Efficacy on the Effectiveness of Delayed Second Dose Strategy: To evaluate the
effectiveness of delaying the second dose, we first set the daily vaccination rate to 0.3% of the population size
(100K in our simulation study) and observe the differences in the cumulative deaths under each vaccination
strategy. The vaccine administration rate of 0.3% per day is obtained from the reported vaccination numbers
in the U.S. (early in the vaccination campaign) and other countries around the world. At the time of writing
of this article, the US vaccination rates have increased dramatically, and consequently, we analyzed the
effectiveness of these strategies under higher daily vaccination rate capability, as we describe below.

Figure 2 is adopted from Romero-Brufau et al. (2021), and provides the quartiles of observed
cumulative deaths in the replications under the standard dosing and delayed second dose strategies for
a daily vaccination rate of 0.3%. The results demonstrate the important finding that the comparative
effectiveness of the delayed second dose strategy depends strongly on the efficacy of the first dose vaccine.
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In particular,the total cumulative mortality on day 180 is lower for the delayed second dose scenario under
the assumption that the first dose effectiveness is higher than 80%, which is typically justified by the data
from the clinical trials as well as vaccine deployment programs all over the world for the two-dose Pfizer
and Moderna vaccines.

Impact of Vaccine Administration Rate on Effectiveness of Delayed Second Dose Strategy: The
above presented results are also dependent on the speed at which the vaccination campaign can be run. To
test this, we adopt a first dose vaccine efficacy of 80% (which is well supported by the studies on clinical
and trial data) and evaluate the effectiveness of the delayed second dose strategy under daily administration
rates of 0.1% (very slow rate), 0.3% (nominal rate) and 1% (relatively fast rate reflective of more recent
US vaccination rates).

Figure 3 is again adopted from Romero-Brufau et al. (2021), and demonstrates the above cited effect
clearly. Essentially, the standard dosing becomes the preferable strategy as the daily administration rates
improve. However, given that most countries are lagging behind in vaccination efforts, this study points
to the important advantage that delaying second doses offers by providing a broader, albeit less protective,
first-dose administration across the population.

Figure 3: Comparison of cumulative mortality for delayed second dose versus standard vaccination strategy
under three different vaccination rate assumptions. Adopted from Santiago Romero-Brufau et al. BMJ
2021;373:bmj.n1087, copyright 2021 British Medical Journal Publishing Group.
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The case study clearly demonstrates the impact of a computationally efficient simulation framework like
DeepABM-COVID. At each stage of the pandemic, there are interesting public health policy questions that
our team of experts plan to explore using the modeling and simulation capabilities offered by DeepABM-
COVID. The DeepABM-COVID simulator is also made available online, to help researchers with modeling
various interventions for COVID as well as adapting the same for studying other interesting emergent
phenomenon in public health and beyond.

6 CONCLUSIONS

In this paper, we introduce DeepABM, a toolkit for agent-based modeling that leverages graph neural network
frameworks from deep learning to bring scale and efficiency to agent-based simulations. DeepABM can
seamlessly scale to large populations (with more than 100,00 agents) in real-time and also execute efficiently
on a GPU. We extend the toolkit to introduce DeepABM-COVID for simulating spread of COVID-19 with
(concurrent) support for several interventions. We use DeepABM-COVID to specifically study the public
health impact In particular, we present a sample of our results on delaying second dose of the mRNA
vaccine and present recommendations on when this strategy could be usefully adopted.

As future research, we seek to utilize the differentiable forward simulation infrastructure of DeepABM
to calibrate simulation parameters with supervised learning. This can be a significant shift from existing
grid search techniques. Furthermore, DeepABM separates modeling of agent transition and agent behavior,
enabling learning of adaptive behavior of agents by searching over a space of rules instead of using fixed
rule-based behavior. We are optimistic that the current work can have interesting implications for bringing
ABM and AI communities closer.
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