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ABSTRACT 

Application of Model-Based Systems Engineering (MBSE) requires the integration of robust tools to 
provide system description and dynamic model execution. MBSE tools, such as Cameo Systems Modeler 
facilitate robust system descriptions. While these tools often have built-in simulation capabilities, they are 
often limited in scope and lack features for robust modeling of system behavior and performance. We 
present a prototype toolkit which extends SimPy, an open-source Python-based Discrete-Event Simulation 
library. Using custom SysML stereotypes for defining object, environment, and activity properties, our 
prototype extracts information from Cameo model files to build and run a graph-based Python discrete 
event simulation. 

1 INTRODUCTION 

Model-based Systems Engineering (MBSE) is being adopted across the United States Department of 
Defense and Industry. This process uses standardized graphical modelling languages, such as the Systems 
Modeling Language (SysML), to support design and communicate system requirements, structure, and 
behavior (Delligatti 2013). MBSE tools, such as Cameo Systems Modeler (CSM), support the  development 
of large SysML models, tracking objects defined in models, associating objects with system behavior, and 
propagating changes between linked diagrams. 

 The SysML Activity Diagram defines a sequence of actions to be performed. These actions may 
be base-level actions, control actions, such as Forks, Joins, and Decision nodes, or nested activities. Actions 
and edges between actions may have custom-defined properties, and may be allocated to objects, permitting 
representation of a series of tasks performed between different actors. Activities are a natural target for 
simulation. Unlike designing our process directly in the simulation environment, SysML allows us to 
integrate the process into the larger system design, seamlessly modeling interactions between elements. 

Integrating SysML tools and the Arena Discrete Event Simulation (DES) environment has been 
discussed previously (Batarseh and McGinnis 2012). For our application, integration with an open source 
environment permits the extension of the models to robustly consider human constraints, such as the 
human’s available mental capacity, which are not supported by most traditional DES environments. 
Therefore, we chose to attempt integration with SimPy due to its relative simplicity, level of development, 
and utility. SimPy dates to 2002 and it has been re-implemented in several other languages (Julia, C#, R), 
providing community design support and allowing porting to these languages (SimPy 2020). SimPy’s API 
is similar to standard python, making it familiar to Python developers. This allows the simulation section 
to be moderately agnostic of SimPy’s API specifics, making it feasible to re-implement in new frameworks. 

2 ENVIRONMENT DESCRIPTION 

Due to the potential complexity of SysML models, this project uses a standard ‘interface’ for defining 
models to be simulated using the process shown in Figure 1. As shown, the model is defined in a SysML 
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tool, i.e., CSM, a custom data reader converts the resulting SysML to provide a simulation definition, and 
the model is executed in SimPy. 

 

Figure 1. Process flow for DES definition and execution. 
 CSM uses Stereotypes to extend the definitions of core components, allowing user-defined versions of 
any element. The “Actor” block may be placed on any Block Definition Diagram and defines an actor that 
performs actions. This is where environmental parameters are defined, such as weather conditions or worn 
gear. The next stereotype extends default SysML actions allowing action specific parameters, such as 
nonstandard probability distributions, delays, or completion times and their associated parameters. Finally, 
the last stereotype extends the Activity Diagram to point the data reader towards relevant activities. This 
interface is intended to be general and not depend on one specific model structure. To support this, the data 
reader scans the whole model for relevant elements rather than expecting elements in specific locations. 

The data reader extracts model data to Python-native containers which are provided to the graph builder. 
This creates a directed graph of the model with actions and control elements as nodes, and element 
connections as edges. Each of the basic nodes is represented as a Python class which holds associated data, 
outgoing edges, and a run() process representing a node’s execution. In general, when a node’s run() is 
invoked, it accepts an Environment object allowing access to resources shared between nodes, and utilities 
such as the current sim time. The run() process also accepts an execution token, storing trial-specific state 
information and statistics. Action nodes use this information and Actor-specific environmental data to 
calculate their time to complete and determine action pass or failure. If the action fails it may terminate the 
current trial or direct execution to an alternate edge. 

While this is the standard execution of nodes, control elements require special definition. For example, 
Fork nodes allow execution to traverse two different paths before eventually re-joining at a corresponding 
Join. The Fork creates an execution token for each path, storing information necessary for the Join to pair 
tokens later. Paths may vary in time to complete, so the Join must “collect” execution tokens, waiting until 
all routes have re-combined before continuing. Decision nodes also require special attention. To allow for 
probabilistic path modeling, we use the SysML Probability parameter to assign each edge a weight. The 
Decision node scans its outgoing edges at runtime and randomly chooses a path based on the weights 
assigned to the individual paths. 

3 RESULTS AND CONCLUSIONS 

We demonstrate initial methods for connecting MBSE and DES tools the techniques using relatively modest 
profiles to constrain the MBSE model. Therefore, this work may provide templates for future work using 
other tools in the same disciplines.  The authors intend to extend this work to provide robust human 
representations in digital engineering to support advanced user-system modeling. 

4 DISCLAIMER 

The views in this article are those of the authors and do not necessarily reflect the official policy or position 
of the Department of the Air Force, Department of Defense, nor the U.S. Government. 
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