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ABSTRACT

Our broad goal is to derive bounds on the performance of bi-objective simulation optimization algorithms
that seek the global efficient set on a compact feasible set. Toward this end, we bound the expected Hausdorff
distance from the true efficient set to the estimated discretized efficient set by the sum of deterministic
and stochastic error terms. We provide an upper bound on the deterministic error term in the context of
bi-objective convex quadratic optimization with spherical level sets. Our bound implies that if t is the
dispersion of the observed points measured in the decision space, then the Hausdorff distance between the
Pareto set and its discretization is O(

√
t) as t decreases to zero.

1 INTRODUCTION

We consider the context of bi-objective simulation optimization problems,

Problem M: minimize {f(x) = ( f1(x), f2(x)) := (E[F1(x,ξ )],E[F2(x,ξ )])} s.t. x ∈ X

where f : D→R2,D⊆Rq is a vector-valued objective function, the feasible set X⊆D is compact, ξ is a
random variable, and each objective function can only be observed with stochastic error, e.g., as the output
from a Monte Carlo simulation oracle (Hunter et al. 2019). The solution to Problem M is the efficient set
E, that is, the set of all feasible points whose images are non-dominated; its image is the Pareto set P.

Consider the following simple procedure to solve this problem. First, select m distinct points at which
to observe the objective function values, Xm := {x̃1, . . . , x̃m} ⊂ X, where t > 0 is the dispersion of the
discretized feasible set (Yakowitz et al. 2000),

t := d(X,Xm) = supx∈X infx̃∈Xm‖x− x̃‖= supx∈X min1≤i≤m‖x− x̃i‖.

Then, observe n simulation replications at each point and estimate the solution to Problem M using

Problem M̂m(n): minimize
{

F̂FF(x̃,n) =
(
n−1

∑
n
i=1 F1(x̃,ξi),n−1

∑
n
i=1 F2(x̃,ξi)

)}
s.t. x̃ ∈ Xm ⊆ X,

where ξ1, . . . ,ξn are i.i.d. copies of ξ . The solution to Problem M̂m(n) is Êm(n), which estimates E.
Given a set of points Xm and simulation budget n, we wish to measure the quality of the estimated

solution, Êm(n), as a function of t and n. Let Em and Pm be the respective efficient and Pareto sets for
Problem M when solved over the discretized feasible set Xm. Then we consider the following expected
Hausdorff distances, where the bounds on the right hand sides follow from the triangle inequality,

E[H(E, Êm(n))]≤H(E,Em)+E[H(Em, Êm(n))]; E[H(P, f(Êm(n)))]≤H(P,Pm)+E[H(Pm, f(Êm(n)))].

Toward obtaining upper bounds as a function of t and n, we provide a least upper bound on H(E,Em) as
a function of t, calculated across all possible discretizations, under the following simplifying assumption.
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Figure 1: Under Assumption 1, let ` = ‖x∗1− x∗2‖ be the length of E and let Em,t = Em ∩B(E, t) where
|Em,t |= m∗t . The gray circles represent t-radius balls around the m∗t points, and ρ(r)≥ d(Em,E).

Assumption 1 We assume the following about Problem M:

1. The objective functions are convex quadratic f1(x) = b1 +a1‖x−x∗1‖2, f2(x) = b2 +a2‖x−x∗2‖2

for constants a1,a2,b1,b2 ∈R with a1,a2 > 0, where x∗1 6= x∗2.
2. The feasible set X⊆Rq, q≥ 2 is compact, convex, and conv{x∗1,x∗2} ⊂ int(X).
3. The t-expansion of E is feasible, that is, B(E, t) := ∪x∗∈E{x ∈Rq : ‖x−x∗‖ ≤ t} ⊂ X.

2 THE MAIN RESULT

Recall that H(E,Em) = max{d(E,Em),d(Em,E)}, where under more general regularity conditions than ours,
the result that d(E,Em) ≤ t is provided by Pardalos et al. (2017). We know of no corresponding upper
bound on d(Em,E); Theorem 1 results from deriving a least upper bound on d(Em,E) across all possible
configurations of sampled points Xm, which is always larger than t. Figure 1 illustrates the bounding
configuration of points that maximizes the possible distance between Em and E.
Theorem 1 Let Assumption 1 hold. Let ` = ‖x∗1− x∗2‖ be the length of the efficient set. Then the
least upper bound on the Hausdorff distance H(E,Em), calculated across all possible discretizations, is
H(E,Em)≤

√
t`+ t2. Further, this result implies H(P,Pm) = O

(√
t
)

as t→ 0.
While Theorem 1 is interesting from a theoretical perspective, it has limited practical implications since

we do not usually know the length of the efficient set `. The following corollary presents a translation of
these results into a more practical upper bound based on m∗ := |Pm|. This bound arises because `≤ 2tm∗.
Corollary 2 Let Assumption 1 hold. Then H(E,Em)≤ t

√
2m∗+1.

3 CONCLUDING REMARKS

We provide an upper bound on the deterministic error under Assumption 1. Ongoing work includes relaxing
Assumption 1, obtaining the required bound on the stochastic error term E[H(Em, Êm(n))] as a function of
n, and extending the results to a higher number of objectives. Such bounds can provide useful insight in
algorithmic design and performance for bi-objective simulation optimization on a compact set.
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