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ABSTRACT 

Computational simulation studies utilize data to assist in developing models, including conducting 
verification and validation (V&V). Input modeling and V&V are, historically, difficult topics to teach and 
they are often only offered as a cursory introduction, leaving the practitioner to pick up the skills on the 
job. This problem of teaching is often a result of the inability to introduce realistic datasets into class 
examples because “real world” data tends to come in poorly formed datasets. In this paper, a case is made 
that teaching data analytics can help ease this problem. Data analytics is an approach that includes data 
wrangling, data mining, and exploratory analyses through visualization and machine learning. We provide 
a brief discussion on how data analytics has been be applied to computational modeling and simulation in 
the context of verification and validation, but also for input modeling as that gives a basis for validation. 

1 INTRODUCTION 

Modeling and Simulation (M&S) strives to gain an understanding of a system’s structure and behavior, be 
that system real or imagined. This occurs through the development of models that abstract the system down 
to its critical elements and the implementation of computational simulations that can be executed to explore 
the model of the system. The simulation model then can undergo verification and validation (V&V) to 
determine if the implemented simulation matches the intended model design and if its results match the 
expected behaviors from the real system. This second part requires data to be collected from real-world 
sources, even if this data is speculative and hard to obtain.  

M&S education has classically glossed over much of the difficulties relating to data. Educational 
examples of input modeling use clean sets of data that translate easily into pre-determined data distributions 
for inputs into the simulation. V&V is considered too challenging to be given proper coverage; instead it is 
presented as a required step in the process with appropriate methodologies defined, without the required 
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practices to make a student sufficiently skilled in its application. Applying V&V to academic models and 
simulations, which are used in M&S education, would not be of great benefit to the student due to the 
simplicity of these clean data sets. While model design and simulation development can scale from 
academic exercises to the real world, V&V practices cannot. We propose that a more formal education in 
data analytics helps prepare students to become competent practitioners of V&V. By expanding students’ 
understandings of the importance of cleaning, prepping, describing and sampling, and managing data, the 
student is better equipped to understand and properly interpret and communicate the significance, both 
statistical and practical, of simulation testing outcomes. Understanding data analytics can address 
shortcomings in transitioning from verifying and validating simulations within academic settings to 
applying and interpreting V&V outcomes to practical, realworld scenarios. 

In the 2020 Winter Simulation Conference (WSC), the authors made a case for the importance of data 
analytics in the M&S education process (Leathrum et al. 2020). This paper carries that concept further by 
focusing on the necessity to enable a proper introduction to V&V and input modeling. A primary difficulty 
in presenting more realistic problems in which to address V&V is the required effort of the student to 
become intimate with the data, a step that data analytics allows. The work presented here is the result of the 
development of a series of short courses to enable an organization to move into data analytics and M&S. 
Being that the courses train real-world practitioners, a cursory introduction to V&V and input modeling is 
inappropriate. Taking advantage of the already developed background in data analytics enables the courses 
to delve deeper into the concepts than previously possible. 

2 BACKGROUND 

2.1 Verification and Validation Education in Practice 

The lack of fully integrated V&V training in the M&S curriculum impedes the training of future M&S 
professionals. Sargent and Balci (2017) performed an informal survey at WSC 2016 of vendors, and they 
found that while it was recognized that the Department of Defense and some large companies require V&V, 
outside of that venue there was a surprising lack of the practice. They estimated that 50% of simulation 
models receive adequate V&V, 25% some V&V, but inadequate, and 25% receive no V&V. One cause of 
this could be insufficient education of professionals on the topic. Education of the practical application of 
V&V requires data, but handling data requires an intense effort for discrete event simulation projects 
(Skoogh and Johansson 2007). Thus, it is difficult to dedicate sufficient time, in an M&S course curriculum, 
to present real-world test cases necessary for proper skill development. This gives the impetus for making 
students more comfortable with the data through modern data analytics techniques. 

Data is used throughout the M&S process. Model formation can be heavily data reliant as it assists in 
forming initial hypotheses about the system and its expected behaviors. These behaviors form the 
benchmarks that can later support how well the simulation matches the model (verification) and how well 
the model matches the real system (validation) (Whitner and Balci 1989, Sokolowski and Banks 2010). 
Data helps inform model development, helps conduct V&V, helps explore model outcomes to gain insight, 
and helps effectively communicate findings. Data commonly needs to be cleaned, filtered, formatted, or 
structured into usable formats to fill these needs. Data Analytics (DA) contains numerous methods that 
support these M&S activities. 

The world is becoming more data-driven. Gantz and Reinsel (2012) describe the measure of data 
created, replicated, and consumed in a single year as a “digital universe.” The growth and emphasis of data 
for decision-making contributed to the popularity of the concept of data analytics early in the 2000s (Tyagi 
2003). DA is the application of computer systems to analyze large data sets to support decisions (Runkler 
2012). Runkler describes DA as an interdisciplinary field with close ties to disciplines such as statistics, 
machine learning, pattern recognition, system theory, operations research, or artificial intelligence. Several 
DA terms are often used interchangeably, including data science, data analysis, and data mining. 

Data science is the use of the scientific method with data analytics; however, it tends to be used as an 
umbrella term for data analysis, analytics, and mining as well as domain-specific research problems where 
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data is thrust to the forefront (Van Der Aalst 2016). Data analysis uses data analytics to study the parts of 
the whole and help form hypotheses (Tukey 1962). Data mining uses computational algorithms to 
illuminate meaning, relationships, and patterns; these findings generate input for the decision-maker and 
support further evaluation of the data. Many DA activities support various activities within the M&S 
process. Figure 1 provides a simplified view of the M&S process and illuminates areas where intersections 
exist between DA and M&S. This paper focuses on the input modeling and data modeling as applied to 
V&V. 

 

Figure 1: Connections between Data Analytics activities and Modeling and Simulation activities. 

2.2 Barriers and Challenges to Verification and Validation 

Numerous techniques exist for verifying and validating simulations with vast differences in requirements 
in mathematical formality (Sargent 2013, Balci 1998). Law (2008) presents techniques for building valid 
and credible simulation models and underlines the role of data and the importance of data analysis. Informal 
methods have been found to be more commonly utilized over formal methods in practice (Padilla et al. 
2018). Informal techniques generally have lower learning curves, do not require rigorous mathematical 
background, and rely on intuitive feedback mechanisms for obtaining results. The type of medium used to 
convey V&V outcomes impacts the associated credibility of the test result (Lynch 2019). Subjective 
techniques rely on subject matter expert review, graphical inspections, or animation to help identify the 
presence of potential errors. However, statistically supported tests may better aid in identifying the cause 
of the problem while covering larger portions of the simulation space. Statistical tests provide mathematical 
indicators, such as correlation and coverage, in support of searching for unexpected simulation occurrences 
(Gore, Lynch, and Kavak 2017). These techniques generally utilize more cumbersome experimental design 
considerations. 

V&V applications are commonly re-engineered based on examining a simulation's outputs with respect 
to its intended use (Balci 1998, Sargent 2013), and the burden falls on the model builder to evaluate 
correctness. As a compounding effect of focusing on intended use and the development of ad hoc V&V 
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solutions, few generic tools exist for facilitating V&V. Subject matter experts or domain experts may be 
barred from using or trusting simulation results as a result of high learning curves associated with 
conducting and interpreting V&V (Sargent 1981), for acquiring the programming and statistical 
backgrounds necessary (Whitner and Balci 1989), or for obtaining the M&S knowledge needed for tracing 
simulation outcomes back to their specifications (Gore, Lynch, and Kavak 2017). 

Challenges exist for facilitating the selection and application of specific V&V techniques (Padilla et al. 
2018, Lynch et al. 2020). Several studies conducted of software testers across industry and academia 
(Andersson and Runeson 2002, Ng et al. 2004, Wojcicki and Strooper 2006, Eek et al. 2015) have 
enumerated many challenges in adopting, applying, and accepting techniques. Some of the main challenges 
to the incorporation of V&V identified from these studies include: tradition of use, resource requirements, 
ease of use, and the practice of applying techniques in an ad hoc manner to their simulations. Table 1 
summarizes the questions and perceptions driving these challenges. 

Table 1: Challenges contributing to perceived barriers for adopting V&V techniques. 

Challenge Questions Perceived Barriers 

Resource 

requirements 

What resources are required to evaluate if 

new techniques are needed? How are any of 

the proposed techniques beneficial? How 

much time may be needed for training and 

application? 

(1) High costs to purchase commercial products; high time 

requirements; and cost-effectiveness. (2) Time to evaluate 

whether new techniques fill a need and to evaluate how 

long it may take to learn and incorporate them existing 

toolkits (Ng et al. 2004) 

Tradition of use What has worked before (individually or 

within the organization)? How familiar are 

the modelers with the techniques? Are tools 

available to assist testing? 

(1) New techniques may look less promising based on 

guidance from senior researchers and in deference to 

successfully applied techniques in the past (Andersson and 

Runeson 2002, Arthur and Nance 1996) 

Ease of use How complicated is the theory underlying 

the technique? How long will this take to 

learn? What are the assumptions and 

requirements to apply the technique? 

(1) Level of understanding required to retrieve the right 

type of data, to post-process or format output data, or to 

understand simulation results. (2) Lack of expertise or high 

difficulty in using a technique can prevent its adoption 

(Shannon 1998) and informal techniques are most often 

utilized in practice (Padilla et al. 2018) 

Ad-hoc solutions How to apply the technique? Does the 

technique contribute something new? Is the 

contribution relevant? 

(1) Solutions are rebuilt on a case-by-case basis. (2) No 

universal solutions exists and a group of techniques may 

often be needed to explore the simulation correctness 

(Glasow and Pace 1999) 

 
Considering these questions from the perspective of Data Analytics can aid understanding of the 

importance and practical significance of V&V for students, teachers, researchers, and professionals, as 
presented in Figure 1. The growing availability of statistical programming languages and platforms for 
handling larger data sets, aiding in the formatting and cleaning of data, and providing more intuitive means 
for representing and conveying information can help to reduce these barriers. The role of Data Analytics 
within this frame should be understood with respect to how it augments, not replaces, the M&S processes 
that it supports. To support model building and V&V practices, education in Data Analytics should reflect 
the specific components of M&S activities that are supported while reinforcing how these processes should 
be further utilized or expanded upon within the life cycle of the M&S process. 

3 MANAGING INPUT AND OUTPUT DATA 

Data, from a curriculum perspective, provides a transparent link between the simulation model and the real 
system. Data collected from the real system can be used to inform the types of distributions utilized within 
the model as well as forming an empirical baseline for conducting V&V comparisons on the correctness of 
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simulation outcomes. Input modeling provides the connections between data and its probabilistic 
mechanisms within the real system and generally manifests in the forms of probability distributions and 
uncertainty (Wagner and Wilson 1995, Leemis 1999, Cheng 2017). Input modeling and V&V can both be 
supported through cleaned and well-structured input and output data. Input data aids in deriving structure 
(such as by applying machine learning), deriving input parameters, and identifying underlying model 
assumptions. Output data allows for more easily applying statistical tests, assessing sample sizes, examining 
simulation adherence to underlying model assumptions (i.e. minimum sample sizes or boundary values). 
Identifying an analysis plan and corresponding sample size requirement a priori can greatly facilitate the 
analysis processes for V&V. Model credibility can be supported through adequate sample sizes in the 
experimentation phase (Hariharan et al. 2017, Lynch and Gore 2021). For instance, statistical debugging 
has been used to delve into complex simulation occurrences and behaviors without requiring formal 
mathematical specifications to help isolate sources contributing to the errors (Gore et al. 2015, Gore, Lynch, 
and Kavak 2017). 

Large amounts of data about human activities, engineered systems, and smart devices can be utilized 
to inform model structure (Kibira et al. 2015, Jain et al. 2017) and the representation of human behaviors 
(Kavak et al. 2018). If a well-defined experimental input space cannot be specified for a set of predictor 
variables, the analyst must resort to gathering available unstructured data as generated by or as available 
from other studies or analyses of the phenomenon of interest. Unstructured messy data can induce bias 
structures and unequal variance estimates in differing regions of the sample space when fitting an assumed 
linear model with the least-squares or maximum likelihood algorithms. Sources of messy data include: (1) 
data with differing linear scales or mixed linear-nonlinear scales; (2) sample discontinuities along a 
continuous dimension or from multiple studies; (3) nonrandom or semi-random missing structures; (4) 
cross-classified data with unequal sampling replication; (5) semi-structured data or completely unstructured 
data containing combinations of the prior problems; (6) any multivariate model of less than or greater than 
full rank given the information contained in the predictors; (7) strong collinearity among predictor 
variables; or (8) a multivariate model of full rank from consistently structured multivariate data in the same 
linear dimensions with leverage points or outliers. 

The ability to convey understanding of how to effectively conduct data collection and how to properly 
utilize the collected data is critical for input modeling and supports the foundation of V&V activities. Data 
identification, collection, and assessment informs model development and supports evaluation (Leemis 
1999, Onggo and Hill 2014, Lynch and Gore 2021). Input models generate the random numbers used as 
input to the simulation model and lead to the eventual creation of the output data (Schmeiser 2001). Data 
collected on the modeled system provide a comparison point to assess how well the simulation performs at 
recreating the known behaviors of the modeled system. Establishing a measure of credibility for the 
simulation model depends on the quality of the collected data. Issues such as biased and missing data, 
correlated and autocorrelated variables, or the presence of messy data sets can greatly impact the reliability 
of any assessments of simulation correctness and contribute to type I and type II errors. Curriculum should 
teach methods for proper collection and storage of data, techniques for cleaning and preparing data, and 
provide transparent relationships between the collected data and any developed metrics for incorporating 
empirical data (where possible) for verifying or validating the simulation. 

3.1 Regression with Messy Data 

Regression analysis of messy data is usually approached by assuming a feasible linear model and 
conducting appropriate residuals diagnostics on the fitted model. Tackling messy data problem for 
regression analysis is a simple example to highlight the impact of messy data on the model performance. A 
regression model is considered feasible if it accounts for the structural variance components observed in 
the phenomenon under study while remaining small enough to be considered as parsimonious (Wooldridge 
2015). In the balanced data, full rank case, interpretation of the mapping of the assumed linear model to the 
phenomenon’s structure and behavior yields understanding or new knowledge that is most representative 
of the phenomenon. In the messy unbalanced data, less than full rank case, this mapping to the 
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phenomenon’s structure and behavior yields, at best, subjective interpretations and less optimal 
understanding or misunderstanding of the phenomenon. Further, it affects the model validity and prediction 
accuracy. More about regression model validation can be found in Snee et al. (1977). 

Managing messy data is the most critical step in the data analytics modeling process. Before data 
acquisition, the analyst must specify the analysis objective: screening, modeling, prediction, or 
optimization. The objective of screening is to identify the predictor variables whose linear combination in 
a regression model adequately represents the structure or behavior of the phenomenon. The questions to 
address here are: (1) how the combined range of the variables limit the modeling space of the phenomenon’s 
structure or behavior; and (2) how the non-completeness of the available data affects the statistical 
significance in variable selection relative to practical significance in phenomenon structure or behavior. 
Given a candidate set of predictors, the objective of modeling is selection of the set of linear models that 
isolate the types of effects (categorical, main, interactions, polynomial, nonlinear) most predictive of the 
phenomenon’s structure or behavior. The selected model set should not be statistically different in 
information content as indicated by a model selection metric such as R-square, R-square adjusted, Mallow’s 
Cp, Akaike Information Criteria (AIC), or Bayesian information criterion (BIC). The selected model set 
should be arrived at through triangulation comparison of the selection rankings by two or three of the 
metrics in order to mitigate weaknesses in each. The question that must be addressed is how the non-
completeness of the data may induce bias, unequal variances, and instability in the sample space. Induced 
bias manifests as incorrect predicted or optimized structure or behavior when compared to observed 
phenomenon. Unequal variances filter through as incorrect confidence and prediction interval estimates in 
models that assume equal variance. Instability filters through as non-constant coefficient estimates and 
differing model sets across the sample space. 

After identifying the analysis objective, data wrangling (1) sources the data; (2) reduces the set; (3) 
normalizes for consistency; and (4) parses data into required structure. Data must be sampled from the 
phenomenon or from sources, such that: (1) analysis objective can be met; (2) data includes all key predictor 
variables necessary to capture model structure; (3) the time period represents all relevant phenomenon 
behavior; and (4) sufficient observations exist to achieve required confidence and power of fitted models. 
Next, data are transformed into the correct, ordered, and simplified forms necessary for model building. 
The objective is to produce a compact data structure which uses memory that is as close as possible to its 
information-theoretic lower bound and that permits the most efficient modeling computation. Data 
normalization contributes efficient computation by scaling the predictor variables to common ranges. 
Scaling methods include min-max, mean, unit-length, and z-score normalization. Centering the data may 
be necessary for modeling additive bias variance components. Parsing the data structure simply means 
translating the compacted, scaled data into vector, matrix, or array formats required regression software. 
Missing data may introduce bias and compromise predictions with fitted regression models. Potential bias 
from missing data depends on the missingness mechanism and the estimation method applied to estimate 
any missing values, such as: (1) Missing Not at Random (MNAR) - a relationship exists between the 
missing values and their pattern in the data set; (2) Missing at Random (MAR) - a systematic relationship 
exists between the missing and observed values, but not the missingness pattern in the data set; and (3) 
Missing Completely at Random (MCAR) –a relationship does not exist between the missing values and any 
other values in the data set. Widely applied methods for missing values include: 

1.  Completely Recorded Units – complete case analysis removing all cases with missing data, This 
approach is simple to apply and is satisfactory with small quantities of missing data. It can induce 
significant bias and is not statistically efficient with estimating missing values for subpopulations. 

2.  Weighting – randomized inferences from sample data with missing values weighted by sampling 
design weights inversely proportional to their probabilities of selection. 

3.  Imputation – (a) mean estimation –estimate the mean from observed values; (b) substitution – 
impute missing values from samples not included in the data-wrangled set; (c) hot-deck imputation 
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– randomly select values from samples included in the data-wrangled set; (c) cold-deck imputation 
– systematically select values from other samples with similar values for other predictors; or (d) 
local least squares regression imputation. To achieve unbiased estimates, standard analyses must 
be modified to account for differences between observed and imputed values. Regression models 
with imputed values may understate model variance, confidence, and prediction intervals. 

4.  Model-Based – (a) multiple imputation; and (b) the expectation-maximization algorithm. Mixture 
weights are constrained to nonnegative and sum to one. Convergence requires the gradient of the 
objective function and possibly the Hessian depending on the method. Convergence may be slow 
and attain local optima. Forward and backward probabilities are required. Advantages include: 
flexibility; avoiding more ad hoc imputation methods; ability to evaluate model assumptions 
underlying the imputations; and estimates of variance that account for the missing data structure. 

Input modeling, verification, and validation depend on the quality of data utilized to generate a model’s 
components, such as input distributions, as well as for establishing empirical comparison points to aid in 
V&V, such as data utilized for statistical hypothesis testing. Therefore, understanding how messy data was 
addressed, when applicable, aids in how to properly interpret and communicate model results and the 
assumptions under which the results are valid. This knowledge supports the application of V&V by 
strengthening the evidence for how testing was performed and how the assumptions of the data and the 
assumptions of the applied tests relate to each other. 

3.2 Data Management 

Given the volume of data required and the analytic objects generated to support development of just a single 
model let alone an organization’s modeling information needs, it is essential to follow a data management 
protocol and the organization implement a formal data management program to preserve and secure original 
data sets, intermediate structured and cleaned data sets, and final experimental or regression designs, 
models, and graphical objects. The individual data management protocol must address: (1) acceptable data 
set formats for the selected experimental design and regression analysis software; (2) raw and structured 
data set file structures and metadata definitions; (3) experimental design and regression definition objects 
file structures and metadata; and (4) model specification and related graphical objects outputs file structures 
and metadata. The Data Management Association DMBOK2 provides a framework to plan and coordinate 
the use, archive, retrieval, control, and purge of data sets and model objects. 

Metadata provides information about data sets, experimental and regression definition objects, model 
objects, and graphical objects to facilitate storage, access, and retrieval as a structured data set. There are 
three general types of metadata: descriptive, structural, and administrative 
Existing open source and proprietary data management software facilitates organizational data 
management. The R statistical computing software provides functions such as attr() to add metadata to 
variables, contents() to generate metadata about data frames, and metadata() to attach metadata to raster 
objects. R package metadata can be used to initialize, install, and read metadata packages about collections 
of R objects. Python provides library metadata for recording and retrieving metadata about python objects. 

4 UNDERSTANDING DATA 

Within the perview of V&V, the importance of understanding data is the relationship between how well the 
simulation matches its intended design and how well it matches the referent system. The aim is to increase 
confidence in the implemented simulation by trying to identify errors and to show their absence. Such as 
establishing the truth of a simulation against its requirements (Fishwick 2007) by accepting or rejecting the 
presence of errors based on the provided evidence. Additionally, the need to understand data is present 
during the exploration of simulation outcomes when evaluating results, analyzing interactions, tracing 
behaviors, and gaining numerous other forms of insight. Simulation data can be one-dimensional, multi-
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dimensional, and specialized (Feldkamp, Bergmann, and Strassburger 2020). Statistical methods can help 
deal with difficulties in experimental error and the complexities of the effects studied (Box, Hunter, and 
Hunter 1978). To reinforce understanding of the importance of properly structured data and to support 
verification and validation, we suggest that data analytics education focus on topics of data wrangling, 
descriptive and sampling statistics, and machine learning. These analytic activities strengthen the M&S 
activities provided in Figure 1 by explicitly communicating data properties alongside model development 
decisions as well as model outcomes. 

4.1 Data Wrangling 

Data cleaning is an important problem, but it is an uncommon subject of study in M&S. This is somewhat 
unexpected as a nontrivial amount of time is spent on the process of cleaning and preparing data during the 
process of constructing a model and the ensuing simulation (Dasu and Johnson 2003). Data preparation is 
not just a first step but must be repeated many times over the course of analysis as new problems come to 
light or new data is collected (Duggan 2018). Despite the amount of time it takes, there has been surprisingly 
little research on how to clean data well. Part of the challenge is the breadth of activities it encompasses 
from outlier checking, to date parsing, to missing values. Structuring datasets helps to facilitate analysis. 

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if qualitative). A 
data set is clean if the values are organized so that every value belongs to a variable (i.e., a column) and an 
observation (a row). A variable (i.e., a column) contains all values that measure the same underlying 
attribute (like height, temperature, duration) across units. An observation (i.e., a row) contains all values 
measured on the same unit (like a person, or a day, or a race) across attributes. Real datasets almost always 
do not adhere to these definitions. For example, some combination of the following frequently occur: (1) 
column headers are values, not variable names, (2) multiple variables are stored in one column, (3) variables 
are stored in both rows and columns, (4) multiple types of observational units are stored in the same dataset 
and (5) a single observational unit is stored in multiple tables (Wickham 2014). 

Clean datasets simplify many M&S activities, such as: (1) simulation calibration; (2) combining outputs 
from multiple sources; (3) visualization; (4) computing descriptive statistics; and (5) computing deviations 
from trusted dataset. This also simplifies data manipulation within simulations. Clean data sets’ structure 
enables straightforward variable filtering and transformation, aggregating multiple values, and changing 
the order of observations. Ultimately, these capabilities result in more explainable models with more 
effective insights. Research and domain experience show that structured input data reduces the need for 
complexity and reduces the errors made during the model development process (Dasu and Johnson 2003, 
Kavak et al. 2018). Likewise, structured output data allows for the consistent and replicatable (versus ad 
hoc) application of V&V tests (Gore et al. 2015, Diallo et al. 2016, Duggan 2018). 

4.2 Descriptive and Sampling Statistics 

Descriptive statistics convey expected values for sets of observed outcomes with the data being treated as 
though it constitutes the whole (Navidi 2008). Sampling statistics investigate data based on samples from 
the full population to infer conclusions about the population. Statistical significance is evaluated for these 
statistics to determine the likelihood that the observed occurrence could have occurred by random chance. 
To this end, statistical indicators are common indicators into simulation behaviors (Chen et al. 2008, Lynch 
et al. 2020). Most simulation platforms provide the ability to visually display at least one value pertaining 
to their visual constructs during runtime, such as queue size, stock value, or transition probabilities (Sargent 
and Balci 2017). Numerical indicators aid in easily comparing and communicating structural issues, such 
as finding bottlenecks or comparing transition probabilities against specifications (Lynch 2019) and 
standard error measures are commonly applied to assess sampling error (Schmeiser 2001). 

Understanding the role of descriptive and sampling statistics can yield greater evidence in support of 
the characteristics of the simulated data with respect the the real system’s data. Additionally, this knowledge 
helps to communicate a test’s coverage over the simulation space and can aid the interpretation of testing 
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outcomes with respect to the generalizability of findings across populations. For input modeling and 
verification and validation, increased understanding of descriptive and sampling statistics can support the 
validity of model behaviors and outcomes as well as the veracity of the utilized input destributions and 
probabilistic mechanisms. 

4.3 Machine Learning 

Examining whether an output of a black-box machine learning model "makes sense" gives a user confidence 
that the model is trustworthy (i.e., valid). Using machine learning, explanations can be created for a given 
single prediction from a black-box model. A prediction’s explanation is based on a local surrogate model. 
The surrogate model is an interpretable model (i.e. a decision tree) that is learned on the predictions of the 
original black-box model (Guidotti et al. 2018, Hu et al. 2018). However, portions of a machine learning 
model are not designed to be transparent in terms of how the model makes its prediction. With this design 
decision, machine learning models can achieve a greater power of expressivity by adding more parameters 
and nonlinearity computation. However, many users will ask: "Can I trust this model?” (Castelvecchi 2016). 

As an example, consider a neural network text classifier for differentiating the subject of bills from the 
United States Congress. The model achieves 94% on a held-out testing set, but the explanation provided by 
surrogate models show that the decisions result from arbitrary reasons, such as counting the words “read” 
and “host” which have no direct connection with a bill’s subject areas (Collingwood et al. 2013). Even 
though this model achieves nice accuracy, it cannot be trusted without refinement. Furthermore, the 
surrogate model provides insight on how to refine neural network, such as better preprocessing on the text.  

A tradeoff of complexity and nonlinearity at the expense of explain-ability is found in agent-based 
models (ABMs) which explore systems of spatially situated agents interacting over time. While agents’ 
rules are transparent, the complex patterns that emerge from those rules are not (Epstein and Axtell 1996). 
A similar machine learning strategy can be applied to an ABM’s outputs as in the development of surrogate 
models (e.g., linear/logistic models, decision trees). ABMs can be instrumented with predicates to highlight 
dynamics during a model run and which can serve as features within the surrogate models. Previous 
research has developed meta-models of ABMs in the form of logistic regression models for validation (Gore 
et al. 2017) and derived agent behaviors through machine learning (Kavak et al. 2018). Future research 
pursues developments in machine learning as a means of explaining emergent ABM behaviors. 

Machine learning models are often developed as black boxes, utilized for predictions, and that utilize 
diverse ranges of validity measures (Guidotti et al. 2018). Understanding the properties behind each of these 
machine learning characteristics is required to inform input modeling and V&V activities for models 
derived from machine learning. This will aid the proper conveyance of machine learning model results as 
well as the proper conveyance of the assumptions surrounding their development and validation. 

5 CONCLUSIONS 

The expanding field of data analytics provides the opportunity to educate future M&S professionals such 
that they can efficiently become comfortable with the data and data models necessary in an M&S project. 
This further allows for the introduction of real-world V&V test cases in the educational process; these test 
cases allow students to explore systems complex enough to highlight the difficulties of V&V. 
Understanding the role of data analytics in support of M&S activities can:  

 
 facilitate understanding of the many strengths provided to the M&S process, 
 assist in conveying proper interpretations of a simulation’s input and output data by properly 

connecting with the assumptions and cleaning methods applied to the real data, 
 mitigate the perceived barriers for performing V&V, and  
 aid in the establishment of trust and credibility in a developed simulation.  

Effective application of DA techniques can provide empirical support for data-driven development 
decisions for model design while simultaneously serving as sources of requirements or specifications that 



Lynch, Gore, Collins, Cotter, Grigoryan, and Leathrum 
 

 

can be used for comparison during the cyclical V&V testing phases of the modeling process. Understanding 
how the data used to create the model design was collected, cleaned, and transformed (i.e. converted into 
input distributions) provides numerous benefits for properly interpreting outcomes, evaluating validity, and 
assessing generalizability. Focusing on how to deal with messy data, managing data, and understanding 
data through the lens of data analytics helps to build a solid foundation for properly interpreting and 
conveying simulation results. This provides the advantage of being able to clearly connect model 
components, such as input distributions, with the real data from which the distributions are derived. In cases 
where real world data exists on expected system behaviors, knowledge of these topics aids in 
communicating simulation outcomes alongside the assumptions of the data to build additional confidence 
in the validity of the model and the correct implementation of the simulation. 

To exemplify this benefit, the authors developed a curriculum consisting of a series of short courses 
exploring data analytics, predictive analytics, and data modeling. This has allowed the authors to be more 
aggressive in the development of the M&S portion of the curriculum to allow students to consider everyday 
problems they encounter dealing with real data. This would not have been possible if students could not get 
the data into an appropriate form and develop the data models in support of a simulation, in particular the 
V&V process. Students can carry this work forward through the courses, building an understanding of the 
data to enable V&V without a large overhead. 
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