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ABSTRACT

This paper considers a well-known ranking and selection (R&S) framework, called optimal computing
budget allocation (OCBA). This framework includes a set of equations that optimally determine the number
of samples allocated to each design in a finite design set. Sample allocations that satisfy these equations
have been shown to be the asymptotic optimizer of the probability of correct selection (PCS) for the
best design and the expected opportunity cost (EOC) if false selection occurs. In this paper, we analyze
two popular OCBA algorithms and study their convergence rates, assuming known variances for samples
of each design. It fills the gap of convergence analysis for algorithms that are developed based on the
OCBA optimality equations. In addition, we propose modifications of the OCBA algorithms for cumulative
regret, an objective commonly studied in machine learning, and derive their convergence rates. Last, the
convergence behaviors of these algorithms are demonstrated using numerical examples.

1 INTRODUCTION

Discrete-event system (DES) simulation plays a prominent role in complex system analysis and decision
making, e.g., for traffic control systems, manufacturing engineering, queueing models, supply chain
management, communication network reliability, etc. In these applications, analytical models are rarely
applicable due to their complex operation logic and dynamics; in contrast, DES can faithfully model the
mechanism of the systems in detail, and thus becomes a powerful tool for evaluating the performance of
these systems. Despite the rapid improvement of computing capacity, deep concern for simulation efficiency
still remains. The reason is that given an insufficient simulation budget, the simulation costs are frequently
higher than expected; in the meantime, an accurate DES performance estimator generally demands a large
number of simulation replications due to the typically slow convergence of the estimator (Lee et al. 2010).

To this end, R&S techniques have been developed as an effective tool for smart budget allocation and
efficient utilization of limited simulation resources. After conducting simulation, the budget allocation
algorithm recommends an estimated best design based on the sample mean of each design, which is expected
to be identical to the true best one, i.e., the design with the maximal (or minimal) mean performance. The
key concern in the R&S problems is called the “exploration and exploitation” trade-off, that is, the budget
allocation algorithm ought to provide more computing resources to designs that are likely to be the true
best one, i.e., to exploit; in the meantime, the algorithms should also focus on the designs that we do not
know much, i.e., to explore. These two goals must be well balanced for the best design to be correctly
selected. For a broad review of the field R&S, see Fu (2014), Hong and Nelson (2009).
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There are three popular streams of approaches in R&S. The indifference-zone (IZ) method aims to
ensure the probability of correct selection (PCS) for the best design exceeding a pre-specified level P∗.
It assumes that the difference of mean performance between the best design and each non-best one is
at least δ∗, where δ∗ denotes the minimum difference deserving discrimination (Kim and Nelson 2001;
Nelson et al. 2001). Furthermore, Frazier (2014), Toscano-Palmerin and Frazier (2015) presented some
IZ procedures whose tight lower bounds on PCS are exactly P∗’s in certain cases. It improves sampling
efficiency and allows IZ to select the best with fewer simulation resources. The second approach is the
expected value of information procedure (VIP). It applies the Bayesian framework to characterize the event
of correct selection. It is intended to allocate the simulation budget in order to maximize the expected value
of information obtained during the simulation process (Chick and Inoue 2001a; Chick and Inoue 2001b).
Last is the optimal computing budget allocation (OCBA) method, which is a famous sequential budget
allocation strategy to efficiently assign a limited simulation budget for the purpose of achieving a maximal
PCS. It was first developed under contexts where simulation outputs of the designs follow independent
normal distributions with known variance (Chen et al. 2000). Diverse simulation tests demonstrate the
high efficiency of OCBA under not only normal underlying distributions but also many other non-normal
circumstances (Branke et al. 2007; Gao and Gao 2016). Furthermore, Glynn and Juneja (2004), Gao et al.
(2017) applied the large deviation technique to study the single best selection problem without the normal
dependence and seek to maximize the convergence rates of the probability of false selection (PFS, equals
1-PCS) and expected opportunity cost (EOC, which is another commonly used performance criterion in
R&S). After that, Chen et al. (2008), Lee et al. (2012), Chen et al. (2014), Gao and Chen (2015), Gao
and Chen (2016), Gao et al. (2017), Xiao and Gao (2018) extended OCBA framework to optimal subset
selection and many other variant problems.

The OCBA approach attracts considerable attention benefitting from both its simulation efficiency and
nice closed-form of allocation rules. It provides a set of equations for sample allocation that can serve as
the optimality conditions to achieve effective optimization for performance criteria such as PCS and EOC.
Based on the OCBA optimality conditions, efficient budget allocation algorithms can be developed. Wu and
Zhou (2018) did some exploratory research along this direction. In this paper, we focus on two different
OCBA algorithms designed based on the optimality conditions from Chen et al. (2000) and Glynn and
Juneja (2004), under the setting of normal underlying distributions with known variances. While the two
OCBA algorithms are constructed based on the optimality conditions, theoretical analysis for the sample
allocation convergence and convergence rates of the two algorithms is still lacking, which can be significant
concerns when they are applied in practice.

In addition to the commonly studied PCS and EOC, we also consider a third performance criterion
called cumulative regret (CR). CR is the sum of the difference in means between each sampled design
and the true best one over all the iterations of the algorithm. This is a reasonable measure if samples are
directly collected from the real systems, because consequences need to be considered for each time the
real system is operated. Thus, it can act as a criterion to describe the algorithm’s performance with respect
to a different “exploration and exploitation” trade-off. In the literature, CR is frequently investigated in
problem of multi-armed bandits (Bubeck and Cesa-Bianchi 2012) but is rarely considered in R&S. Since
original OCBA algorithms are developed from OCBA optimality conditions for optimizing PCS and EOC,
they should achieve a sub-optimal convergence rate with respect to CR. In this paper, we slightly modify
the OCBA algorithms for the objective of CR, and show that the modified algorithms can achieve the
optimal convergence rate.

The contributions of this paper are summarized as follows:

• We analyze the asymptotic sample allocation and convergence rates of PFS, EOC, and CR for the
OCBA algorithms. It provides strong theoretical support for the efficiency of the OCBA approach.

• We propose two slightly modified OCBA algorithms which can achieve the optimal convergence
rate under CR. It provides insights into potentially broader applications of the OCBA algorithms.
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• Numerical experiments are conducted to further understand the convergence property of these OCBA
algorithms.

The rest of the paper is organized as below. Section 2 introduces the two OCBA algorithms under
consideration and three performance criteria used to evaluate the algorithms. The analysis and modifications
of the OCBA algorithms are provided in Section 3. Section 4 presents the numerical results and Section 5
summarizes the paper.

2 PROBLEM STATEMENT

This section first briefly reviews the development of optimality conditions. After that, we show two OCBA
algorithms based on the optimality conditions. Three performance criteria are subsequently introduced for
algorithm evaluation.

2.1 Optimality Conditions

Throughout the paper, the best design means the design with the largest mean performance (the case with
the smallest mean performance can be similarly analyzed). The goal of R&S is to find the best design
from finite alternative designs. The simulation outputs follow normal distributions. They are independent
from replication to replication, as well as across different designs. The means are unknown and have no
ties among the designs; meanwhile, the variances are known for the normal distributions. For expression
simplicity, we introduce the following notations:

n total number of simulation replications (budget);
k total number of designs;
Li, j simulation output of the jth simulation replication for design i, i ∈ {1,2, . . . ,k}, j ∈ N+;
θi mean of Li, j i.e., θi = E [Li, j];
λ 2

i variance of Li, j i.e., λ 2
i = Var [Li, j];

b the best design, i.e., b = argmaxi∈{1,...,k} θi and θb > θi, ∀i 6= b;
ni number of simulation replications to design i;
αi proportion of simulation replications to design i, i.e., ni = αin;
θ̄i sample mean of Li, j, i.e., θ̄i =

1
ni

∑
ni
j=1 Li, j;

b̄ the estimated best design (the design with the largest sample mean), i.e., b̄ = argmaxi∈{1,...,k} θ̄i.

Define the probability of correct selection as the probability that the estimated best design b̄ equals
the best design b, i.e., PCS = P

(
b̄ = b

)
. Expected opportunity cost is defined as the expectation of the

opportunity cost, where opportunity cost means the difference of means between the true best design b and
the estimated best design b̄. That is, EOC = E [µb−µb̄]. PCS and EOC can be formulated as a function of
ni, i = 1, . . . ,k. Then, the best selection problem in R&S can be formulated as the following optimization
problems:

max
n1,...,nk

PCS s.t.
k

∑
i=1

ni = n and ni ≥ 0, i = 1, . . . ,k. (1)

min
n1,...,nk

EOC s.t.
k

∑
i=1

ni = n and ni ≥ 0, i = 1, . . . ,k. (2)

For simplicity of the analysis, we will treat ni’s as real numbers instead of integers.
Both the PCS in (1) and EOC in (2) do not have analytical expressions and are time-consuming to

evaluate using the Monte-Carlo estimates. Chen et al. (2000) replaced PCS by an analytical approximation
using the Bonferroni inequality which is convenient to compute. They utilized the Karush–Kuhn–Tucker
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(KKT) conditions to find the optimal allocation proportion α∗1 , . . . ,α
∗
k that satisfies the following equations:(

α∗b
λb

)2

−∑
i 6=b

(
α∗i
λi

)2

= 0;
α∗i1
α∗i2

=
λ 2

i1 (θb−θi2)
2

λ 2
i2 (θb−θi1)

2 , i1, i2 6= b, (3)

with the assumption that α∗b � α∗i for ∀i 6= b. On the other hand, Glynn and Juneja (2004) introduced
the large deviation (LD) techniques to characterize the convergence rate of PFS. Specifically, denote
Mi(γ) = E [exp(γLi, j)] as the moment generating function of Li, j, Fi(x) = supγ∈R (γx− log(Mi(γ))) by
the Fenchel-Legendre transform of Mi(γ). Let Ri (αi,αb) = infx (αi log(Mi(γ))+αb log(Mb(γ))), i 6= b.
It can be derived that limn→∞

1
n log(PFS) =−mini 6=b Ri (αi,αb). Then, the optimization problem (1) can

be re-expressed as:

max
α1,...,αk

[
min
i6=b

Ri (αi,αb)

]
s.t.

k

∑
i=1

αi = 1 and αi ≥ 0, i = 1, . . . ,k. (4)

By making use of the KKT conditions, the optimal allocation propotion α∗∗1 , . . . ,α∗∗k satisfies the following
equations: (

α∗∗b
λb

)2

−∑
i 6=b

(
α∗∗i

λi

)2

= 0;
(θb−θi1)

2

λ 2
i1

α∗∗i1
+

λ 2
b

α∗∗b

=
(θb−θi2)

2

λ 2
i2

α∗∗i2
+

λ 2
b

α∗∗b

, i1, i2 6= b, (5)

under the condition of underlying normally distributed simulation outputs. Gao et al. (2017) applied LD
to study optimization problem (2) and showed that the same allocation proportion α∗∗1 , . . . ,α∗∗k can also
asymptotically minimize EOC in normal contexts. According to Glynn and Juneja (2004), the optimality
conditions (3) and (5) are identical when we assume α∗∗b � α∗∗i for ∀i 6= b.

2.2 Algorithm Description

In this section, we present two OCBA algorithms respectively based on optimality conditions (3) and
(5). We call the algorithm based on (3) OCBA-1 algorithm and call the algorithm based on (5) OCBA-2
algorithm.

We first introduce additional notations for the description of the two algorithms.

It the design sampled in the iteration t, t = 1, . . . ,n;
LIt , j simulation output of the jth simulation replication for design It , j ∈ N+;
Ni,t number of simulation replications to design i until iteration t;
αi,t proportion of simulation replications to design i until iteration t, i.e., Ni,t = αi,tt;
θ̄i,t sample mean of Li, j until iteration t, i.e., θ̄i =

1
Ni,t

∑
Ni,t
j=1 Li, j;

b̄t the estimated best design (the design with the largest sample mean) at iteration t.

Chen and Lee (2011) developed the OCBA-1 algorithm based on the optimality conditions (3). Mean-
while, we can follow a similar algorithm structure in Gao et al. (2017) and present the OCBA-2 algorithm
on the basis of optimality conditions (5). The two OCBA algorithms are shown in the next page.

In the subsequent sections, we will analyze the asymptotic behaviors of the two OCBA algorithms,
including their sample allocation and the convergence rate under different performance criteria.

2.3 Performance Criteria

In this section, we present the three performance criteria that will be used to evaluate the OCBA algorithms.
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The first is the PFS, which is defined as the probability that the estimated best design does not equal
the true best one. Denote the value of PFS at iteration t as

PFSt = P
(
b̄t 6= b

)
.

EOC is the difference of means between the true best design and the estimated best one. Denote the value
of EOC in the iteration t by

EOCt = E
[
θb−θb̄t ,t

]
.

The third one is the cumulative regret (CR), which is the sum of difference in means between the true best
design and each sampled design (Bubeck and Cesa-Bianchi 2012). We can express it at iteration t as

CRt = tθb−
t

∑
s=1

E [θIs ] .

The first two criteria (PFS and EOC) seek to evaluate the mean performance of the final recommendation
b̄; meanwhile, CR is introduced to assess the algorithm’s overall performance during the experiment. We
evaluate the two OCBA algorithms from these two aspects and provide some further modifications based
on the analytical results.

OCBA-1 algorithm

• Initialize k, n, n0.
• t← 0, N1,t = · · ·= Nk,t = n0.
• Conduct n0 simulation replications to

each design i, i = 1, . . . ,k.
• While ∑

k
i=1 Ni,t < n Do

– Update θ̄i,t using the new simulation
outputs, i = 1, . . . ,k.

– b̄t = argmaxi θ̄i,t .
– Compute α̂1,t , . . . , α̂k,t by (3), with

θi,t and b replaced by θ̄i,t and b̄t .
– It+1 = argmaxi

(
α̂i,t
(
1+∑

k
i=1 Ni,t

)
− Ni,t).

– Conduct one simulation replication
to design It+1.

– NIt+1,t+1 = NIt+1,t +1.
Ni,t+1 = Ni,t for i 6= It+1.

– t← t +1.
End While

OCBA-2 algorithm

• Initialize k, n, n0.
• t← 0, N1,t = · · ·= Nk,t = n0.
• Conduct n0 simulation replications to

each design i, i = 1, . . . ,k.
• While ∑

k
i=1 Ni,t < n Do

– Update θ̄i,t using the new simulation
outputs, i = 1, . . . ,k.

– b̄t = argmaxi θ̄i,t .

– If
(

Nb̄t ,t
λb̄t

)2
−∑i6=b̄t

(
Ni,t
λi

)2
< 0

It+1 = b̄t .
– Else

It+1 = argmaxi 6=b̄t

(θ̄b̄t ,t−θ̄i,t)
2

λ2
i

Ni,t
+

λ2
b̄t

Nb̄t ,t

.

End If
– Conduct one simulation replication

to design It+1.
– NIt+1,t+1 = NIt+1,t +1.

Ni,t+1 = Ni,t for i 6= It+1.
– t← t +1.

End While

3 MAIN RESULTS

In this section, we first provide some definitions regarding the asymptotic performance of the OCBA
algorithms. Then, we study the convergence property of the algorithms. All the proofs are omitted due to
the limitation of space. They are provided with details in Li, Y., and S. Gao. (2021).
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Definition 1 defines some asymptotic relationships for sequences of real numbers. Definition 2 offers
two criteria for evaluating the convergence rate of CR.
Definition 1 Denote

{
pt
∣∣t ∈ N+

}
and

{
qt
∣∣t ∈ N+

}
as two positive real-value sequences. The following

statements hold for the two sequences:

• pt is asymptotically equivalent to qt (denoted by pt ∼ qt) ⇔ limt→∞
pt
qt
= 1.

• pt is logrithmically equivalent to qt (denoted as pt
.
= qt) ⇔ limt→∞

1
t log

(
pt
qt

)
= 0.

• pt is asymptotically dominated by qt (symbolized by pt = o(qt)) ⇔ limt→∞
pt
qt
= 0.

In Definition 1, asymptotic equivalence is a sufficient condition of logarithmatic equivalence, but not a
necessary condition, i.e., pt ∼ qt ⇒ pt

.
= qt but pt

.
= qt ;pt ∼ qt . Besides, if pt ∼ qt , then pt−qt = o(pt)

and pt −qt = o(qt); if pt
.
= qt , then pt

qt
= o(et).

Definition 2 (Burnetas and Katehakis 1997) A selection procedure P is uniformly maximum convergent

(UM) ⇔ CRt = ∑i 6=b
θb−θi
Ki,b

log t +o(log t), where Ki,b =
(θb−θi)

2+λ 2
i

2λ 2
b

+ log
(

λb
λi

)
− 1

2 , i 6= b.

In Theorems 1 and 2 below, we show that the estimated best designs from the OCBA-1 and OCBA-2
algorithms converge to the true best one and the sample allocations from the two algorithms converge to
the allocations that satisfy optimality conditions (3) and (5). We also show the convergence rates of PFS,
EOC and CR from the two algorithms.
Theorem 1 For the OCBA-1 algorithm, the following statements hold (“a.s.” means “almost surely”):

• limt→∞ b̄t = b a.s.
• limt→∞ αi,t = α∗i a.s., where α∗i satisfies (3), i = 1, . . . ,k.

• PFSt
.
= exp

{
−β ∗

2 t
}

a.s., where β ∗ = mini6=b

 (θb−θi)
2

λ2
i

α∗i
+

λ2
b

α∗b

.

• EOCt
.
= exp

{
−β ∗

2 t
}

a.s.
• CRt ∼ ∑i 6=b (θb−θi)α∗i t a.s.

Theorem 2 For the OCBA-2 algorithm, the following statements hold:

• limt→∞ b̄t = b a.s.
• limt→∞ αi,t = α∗∗i a.s., where α∗∗i satisfies (5), i = 1, . . . ,k.

• PFSt
.
= exp

{
−β ∗∗

2 t
}

a.s., where β ∗∗ = mini 6=b

 (θb−θi)
2

λ2
i

α∗∗i
+

λ2
b

α∗∗b

.

• EOCt
.
= exp

{
−β ∗∗

2 t
}

a.s.
• CRt ∼ ∑i 6=b (θb−θi)α∗∗i t a.s.

Theorems 1 and 2 show that the sample allocations of OCBA-1 and OCBA-2 asymptotically satisfy the
optimality conditions, and the PFS and EOC decrease exponentially with rate β ∗

2 for OCBA-1 and rate β ∗∗

2
for OCBA-2. According to Section 2.1, optimality conditions (3) and (5) are the asymptotic minimizer of
PFS and EOC. It indicates that the two OCBA algorithms can recover this optimal allocation asymptotically.

Meanwhile, Theorems 1 and 2 show that CR increases polynomially with respect to t for OCBA-1
and OCBA-2. This result aligns with the conclusion in Bubeck et al. (2011) that for any algorithm with
CR increasing linearly with iteration number t, its EOC can achieve an exponential convergence rate at
best. According to Definition 2, the two OCBA algorithms do not perform well with respect to CR. This
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result coincides with the previous discussion about two different types of “exploration and exploitation”
trade-offs in Section 1.

Next, we conduct minor modifications for the OCBA-1 and OCBA-2 algorithms such that their CR
can achieve the convergence rates in Definition 2. We modify the two algorithms to possess UM property.
We call them OCBA-1-UM and OCBA-2-UM.

The OCBA-1-UM and OCBA-2-UM algorithms follow a simple mechanism. We first introduce

ht =
∑i 6=b̄t

θ̄b̄t ,t
−θ̄i,t

¯Ki,b̄t

∑i 6=b̄t (θ̄b̄t ,t−θ̄i,t)α̃i,t
, where ¯Ki,b̄t

=
(θ̄b̄t ,t−θ̄i,t)

2
+λ 2

i

λ 2
b̄t

+ log
(

λb̄t
λi

)
− 1

2 , α̃i,t =
Ñi,t

∑
k
j=1 Ñ j,t

for i 6= b̄t . Then, in the

iteration t, we determine the next sampled design by the guidance of optimality conditions with probability
min

{
ht
t ,1
}

; otherwise, we directly sample the estimated best design b̄t . In this way, the average number
of sampling non-best designs would logarithmically increase with respect to t. This modification on the
OCBA algorithms can effectively reduce the number of samples allocated to the non-best designs.

The OCBA-1-UM and OCBA-2-UM algorithms are described as follows.

OCBA-1-UM algorithm

• Initialize k, n, n0.
• t← 0, N1,t = · · ·= Nk,t = n0.
• Conduct n0 simulation replications to

each design i, i = 1, . . . ,k.
• Ñ1,t = · · ·= Ñk,t = n0.
• While ∑

k
i=1 Ni,t < n Do

– Update θ̄i,t using the new simulation
outputs, i = 1, . . . ,k.

– b̄t = argmaxi θ̄i,t .
– Uniformly choose u ∈ [0,1].
– If u≤ ht

t

Compute α̂1,t , . . . , α̂k,t by (3).
It+1 = argmaxi

(
α̂i,t
(
1+∑

k
i=1 Ñi,t

)
− Ñi,t

)
.

ÑIt+1,t+1 = ÑIt+1,t +1.
Ñi,t+1 = Ñi,t for i 6= It+1.

– Else
It+1 = b̄t ;
Ñi,t+1 = Ñi,t for i = 1, . . . ,k.
End If

– Conduct one simulation replication
to design It+1.

– NIt+1,t+1 = NIt+1,t +1.
Ni,t+1 = Ni,t for i 6= It+1. t← t +1.

End While

OCBA-2-UM algorithm

• Initialize k, n, n0.
• t← 0, N1,t = · · ·= Nk,t = n0.
• Conduct n0 simulation replications to

each design i, i = 1, . . . ,k.
• Ñ1,t = · · ·= Ñk,t = n0.
• While ∑

k
i=1 Ni,t < n Do

– Update θ̄i,t using the new simulation
outputs, i = 1, . . . ,k.

– b̄t = argmaxi θ̄i,t .
– Uniformly choose u ∈ [0,1].
– If u≤ ht

t

If
(

Ñb̄t ,t
λb̄t

)2
−∑i 6=b̄t

(
Ñi,t
λi

)2
< 0

It+1 = b̄t .
Else

It+1 = argmaxi6=b̄t

(θ̄b̄t ,t−θ̄i,t)
2

λ2
i

Ñi,t
+

λ2
b̄t

Ñb̄t ,t

.

End If
ÑIt+1,t+1 = ÑIt+1,t +1.
Ñi,t+1 = Ñi,t for i 6= It+1.

– Else
It+1 = b̄t ;
Ñi,t+1 = Ñi,t for i = 1, . . . ,k.
End If

– Conduct one simulation replication
to design It+1.

– NIt+1,t+1 = NIt+1,t +1.
Ni,t+1 = Ni,t for i 6= It+1. t← t +1.

End While
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In Theorems 3 and 4 below, we show the convergence rates of the OCBA-1-UM and OCBA-2-UM
algorithms with respect to PFS, EOC and CR.
Theorem 3 For the OCBA-1-UM algorithm, the following statements hold:

• PFSt
.
= t−

h∗
2τ∗ a.s., where h∗ =

∑i 6=b
θb−θi
Ki,b

∑i 6=b(θb−θi)α∗i
, Ki,b =

(θb−θi)
2+λ 2

i
2λ 2

b
+ log

(
λb
λi

)
− 1

2 , i 6= b.

• EOCt
.
= t−

h∗
2τ∗ a.s.

• CRt ∼ ∑i 6=b
θb−θi
Ki,b

log t a.s.

Theorem 4 For the OCBA-2-UM algorithm, the following statements hold:

• PFSt
.
= t−

h∗∗
2τ∗∗ a.s., where h∗∗ =

∑i 6=b
θb−θi
Ki,b

∑i6=b(θb−θi)α∗∗i
.

• EOCt
.
= t−

h∗∗
2τ∗∗ a.s.

• CRt ∼ ∑i 6=b
θb−θi
Ki,b

log t a.s.

According to Theorems 3 and 4, the OCBA-1-UM and OCBA-2-UM algorithms possess the UM
property. It can also be observed that the convergence rates of PFS and EOC of the OCBA-1-UM and
OCBA-2-UM algorithms become slower compared to those of the OCBA-1 and OCBA-2 algorithms, from
exponential rates to polynomial rates. It is not surprising. CR is associated with comparison result in each
iteration of the algorithm, while PFS and EOC focus only on the comparison result in the last iteration. An
algorithm that works well for CR typically works badly for PFS and EOC, and vice versa. This observation
is in line with the analysis conducted for the best arm identification problem in Audibert et al. (2010),
Bubeck et al. (2011).

4 NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments for the four algorithms studied in this paper, i.e., the
OCBA-1, OCBA-2, OCBA-1-UM and OCBA-2-UM algorithms. In addition, we compare the performance
of the OCBA-1-UM and OCBA-2-UM algorithms with that of Thompson Sampling (Thompson 1933) under
noninformative priors and the condition of normally distributed simulation outputs with known variances.

We consider a frequently used numerical example called slippage configuration. There are five designs
whose observations are i.i.d. normal with unknown means and known variances. We want to select the best
(the one with the largest mean) from the alternative five designs. For design 1, we set the mean θ1 = 2;
for designs i = 2, . . . ,5, we set the mean θi = 1. The variances λ 2

i = 1 for designs i = 1, . . . ,5. We can see
that the true best design b = 1.

We set n0 = 2. To reduce the influence of randomness in algorithm evaluation, each algorithm is repeated
for one thousand times to obtain its estimates of PFS, EOC and CR. Figure 1 shows the performance of the

OCBA-1 and OCBA-2 algorithms. Specifically, 1
n log

(
PFSn

exp
(
− β∗

2 n
)
)

in Figure 1(a) and 1
n log

(
PFSn

exp
(
− β∗∗

2 n
)
)

in Figure 1(d) tend to zero as the simulation budget n increases. It suggests that PFSn
.
= exp

(
−β ∗

2 n
)

for

the OCBA-1 algorithm and PFSn
.
= exp

(
−β ∗∗

2 n
)

for the OCBA-2 algorithm. In other words, the PFS of

the OCBA-1 and OCBA-2 algorithms converges exponentially fast with rates β ∗

2 and β ∗∗

2 respectively. We

can also find that 1
n log

(
EOCn

exp
(
− β∗

2 n
)
)

in Figure 1(b) and 1
n log

(
EOCn

exp
(
− β∗∗

2 n
)
)

in Figure 1(e) tend to zero

as n increases. It indicates that the EOC of the two OCBA algorithms converges exponentially fast with
rates β ∗

2 and β ∗∗

2 . Comparing the performance of the algorithms under PFS (Figure 1(a), Figure 1(d)) and
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EOC (Figure 1(b), Figure 1(e)), we can see that the convergence patterns are basically the same. It implies
the asymptotic similarity between PFS and EOC, which was also discussed in Gao et al. (2017). Last,
for CR, CRn

∑i6=b(θb−θi)α∗i n in Figure 1(c) and CRn
∑i 6=b(θb−θi)α∗∗i n in Figure 1(f) tend to one as the simulation budget

n increases. It implies that the CR of the OCBA-1 and OCBA-2 algorithms converges polynomially fast
with rates ∑i 6=b (θb−θi)α∗i and ∑i 6=b (θb−θi)α∗∗i .

(a) (b) (c)

(d) (e) (f)

Figure 1: Asymptotic performance of the OCBA-1 and OCBA-2 algorithms with respect to PFS, EOC and

CR. In Figure 1(a)-Figure 1(c), PFS ratio, EOC ratio and CR ratio respectively denote 1
n log

(
PFSn

exp
(
− β∗

2 n
)
)

,

1
n log

(
EOCn

exp
(
− β∗

2 n
)
)

and CRn
∑i 6=b(θb−θi)α∗i logn . In Figure 1(d)-Figure 1(f), PFS ratio, EOC ratio and CR ratio

respectively denote 1
n log

(
PFSn

exp
(
− β∗∗

2 n
)
)

, 1
n log

(
EOCn

exp
(
− β∗∗

2 n
)
)

and CRn
∑i6=b(θb−θi)α∗∗i logn .

Figure 2 presents the performance of the OCBA-1-UM and OCBA-2-UM algorithms. As n increases,
1
n log

(
PFSn

n−
h∗

2τ∗

)
→ 0 in Figure 2(a), 1

n log
(

EOCn

n−
h∗

2τ∗

)
→ 0 in Figure 2(b), CRn

∑i 6=b
θb−θi
Ki,b

logn
→ 1 in Figure 2(c).

It means that the PFS and EOC of the OCBA-1-UM algorithm converges polynomially fast, and the
OCBA-1-UM algorithm possesses UM property. Similar convergence patterns for OCBA-2-UM can be

observed in Figure 2(d)-Figure 2(f), i.e., 1
n log

(
PFSn

n−
h∗∗

2τ∗∗

)
→ 0, 1

n log
(

EOCn

n−
h∗∗

2τ∗∗

)
→ 0, and CRn

∑i6=b
θb−θi
Ki,b

logn
→ 1

as n increases. It means that the PFS and EOC of the OCBA-2-UM algorithm converge polynomially fast,
and the OCBA-2-UM algorithm possesses UM property.

Figure 2 also shows the performance comparison of the OCBA-1-UM and OCBA-2-UM algorithms and

Thompson Sampling. From Figure 2(a) and Figure 2(b), 1
n log

(
PFSn

n−
h∗

2τ∗

)
and 1

n log
(

EOCn

n−
h∗

2τ∗

)
of Thompson
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Sampling is slightly larger than those of the OCBA-1-UM algorithm, then the gap vanishes as n increases.
It indicates that the PFS and EOC of Thompson Sampling converge polynomially fast, and the PFS and
EOC of the OCBA-1-UM algorithm converges to zero slightly faster than those of Thompson Sampling
converging to zero. For CR in Figure 2(c), CRn

∑i 6=b
θb−θi
Ki,b

logn
of Thompson Sampling is smaller than that of

the OCBA-1-UM algorithm. It indicates that the CR of Thompson Sampling is smaller than that of the
OCBA-1-UM algorithm but the CR of the OCBA-1-UM algorithm converges to ∑i 6=b

θb−θi
Ki,b

logn faster than

that of Thompson Sampling converging to ∑i6=b
θb−θi
Ki,b

logn if Thompson Sampling possesses UM property
under the condition of normally distributed simulation outputs instead of Bernoulli sampling (Kaufmann
et al. 2012). The comparison results of the OCBA-2-UM algorithm and Thompson Sampling in Figure
2(d)-Figure 2(f) are similar to those of the OCBA-1-UM algorithm and Thompson Sampling in Figure
2(a)-Figure 2(c). It indicates that the sample allocations from (3) and (5) are nearly identical in this numerical
experiment, which leads to similar performance of the OCBA-1-UM and OCBA-2-UM algorithms and
similar results as shown in Figure 2(a)-Figure 2(c) and Figure 2(d)-Figure 2(f).

(a) (b) (c)

(d) (e) (f)

Figure 2: Asymptotic performance of the OCBA-1-UM and OCBA-2-UM algorithms and Thompson
Sampling with respect to PFS, EOC and CR. In Figure 2(a)-Figure 2(c), PFS ratio, EOC ratio and CR ratio

respectively denote 1
n log

(
PFSn

n−
h∗

2τ∗

)
, 1

n log
(

EOCn

n−
h∗

2τ∗

)
and CRn

∑i 6=b
θb−θi
Ki,b

logn
. In Figure 2(d)-Figure 2(f), PFS ratio,

EOC ratio and CR ratio respectively denote 1
n log

(
PFSn

n−
h∗∗

2τ∗∗

)
, 1

n log
(

EOCn

n−
h∗∗

2τ∗∗

)
and CRn

∑i6=b
θb−θi
Ki,b

logn
.

5 CONCLUSIONS

This paper focuses on a popular R&S approach called OCBA and analyzes the convergence rates of two
OCBA algorithms with respect to three performance criteria: PFS, EOC, and CR. We first show that the
OCBA procedures possess optimal convergence rates with respect to PFS and EOC. Then, we conduct
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minor modifications on the OCBA algorithms to achieve the optimal convergence rate with respect to CR.
Numerical tests are conducted to demonstrate the performance of the algorithms.

The OCBA algorithms discussed in this paper are assumed to possess known variances for samples of
the designs. However, the variances are unknown in a lot of applications and are typically estimated by
sample variances. It is an important future research direction to study the convergence rates of the OCBA
algorithms in this case.
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